
Taking the lower branch once and then always the upper branch we get

x0 = 5, x1 = 2, x2 = 5, x3 = 4 +
√
5 ≈ 6.236, x4 = 4 +

√
x2 − 1 ≈ 6.288.

Another possible trajectory is the periodic one given by

x0 = 5, x1 = 2, x2 = 5, x3 = 2, x4 = 5.

Exercise 1.8 In the same way as in example 1.7 one can obtain the first-order condition

v′(mt/pt)/pt = u′(mt/p
e
t+1)/p

e
t+1.

Multiplying by mt and using the equilibrium condition mt =M for all t this implies

V (M/pt) = U(M/pet+1).

From the definition of adaptive expectations we obtain pt = [pet+1 − (1− γ)pet ]/γ. Substituting
this into the above condition yields

V (γM/[pet+1 − (1− γ)pet ]) = U(M/pet+1).

The price forecast is pre-determined because of the interpretation of adaptive expectations.

Chapter 2

Exercise 2.1 We have z(1)t = λ(1)tw(1) and z(2)t = λ(2)tw(2), where w(1) and w(2) are
eigenvectors corresponding to λ(1) and λ(2), respectively. Because the eigenvalues λ(1) and
λ(2) are assumed to be different from each other, it follows that w(1) and w(2) are linearly
independent vectors of Rn.

Now suppose that there exist numbers α and β, not both equal to 0, such that

αz(1)t + βz(2)t = 0

holds for all t ∈ N0. For t = 0 this implies that αw(1) + βw(2) = 0. Since w(1) and w(2) are
linearly independent, it follows that α = β = 0. This contradiction proves the claim.

Exercise 2.2 (a) Define yt = xt−1. Then the equation can be written as(
xt+1

yt+1

)
=

(
4 −4
1 0

)(
xt
yt

)
.

(b) The system matrix has a double eigenvalue 2 with an eigenvector w = (2, 1)⊤. Since
there does not exists another eigenvector that is linearly independent of w, one has to find a
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generalized eigenvector satisfying Av = 2v + w. This holds for example for v = (1, 0)⊤. The
general solution is therefore given by(

xt
yt

)
= α2t

(
2
1

)
+ β

[
2t
(

1
0

)
+ 2t−1t

(
2
1

)]
=

(
2t[2α + β(1 + t)]
2t−1(2α+ βt)

)
.

(c) The initial condition is x1 = 0 and y1 = 1. Substituting these values and t = 1 into the
result of part (b) it follows that α = 1 and β = −1. The particular solution is therefore given
by (

xt
yt

)
=

(
2t(1− t)
2t−1(2− t)

)
.

Exercise 2.3 (a) The equations are

πt = πt−1 + αyt,

yt = βyt−1 + γπt−1,

which can also be written as(
πt
yt

)
=

(
1 + αγ αβ
γ β

)(
πt−1

yt−1

)
.

(b) For α = 1 and β = 4/9, γ = 2/9 we obtain the system matrix

A =

(
11/9 4/9
2/9 4/9

)
.

This matrix has the eigenvalues 4/3 and 1/3 with corresponding eigenvectors (4, 1)⊤ and
(−1, 2)⊤, respectively. The general solution is therefore given by(

πt
yt

)
= c1(4/3)

t

(
4
1

)
+ c2(1/3)

t

(
−1
2

)
= 3−t

(
4t+1c1 − c2
4tc1 + 2c2

)
.

(c) For the initial condition π0 = 0 and y0 = 1 it follows that c1 = 1/9 and c2 = 4/9 and
therefore πt = 4(4t − 1)3−(t+2) and yt = (4t + 8)3−(t+2).

(d) (
πt
yt

)
=

(
1 + αγ(1− b) αβ
γ(1− b) β

)(
πt−1

yt−1

)
.

A =

(
−4/9 4/9
−13/9 4/9

)
.

The eigenvalues of A are {2i/3,−2i/3} with corresponding eigenvectors (4− 6i, 13)⊤ and (4 +
6i, 13)⊤, respectively. The first eigenvalue can also be written as r[cos(θ) + i sin(θ)] with r =

5



2/3 ∈ (0, 1) and θ = π/2. The general solution is therefore(
πt
yt

)
= (2/3)t

{
c1

[
cos(πt/2)

(
4
13

)
− sin(πt/2)

(
−6
0

)]
+c2

[
sin(πt/2)

(
4
13

)
+ cos(πt/2)

(
−6
0

)]}
= (2/3)t

(
(4c1 − 6c2) cos(πt/2) + (6c1 + 4c2) sin(πt/2)

13[c1 cos(πt/2) + c2 sin(πt/2)]

)
.

For t = 0, π0 = 0, and y0 = 1 it follows that c1 = 1/13 and c2 = 2/39 such that(
πt
yt

)
= (2/3)t

(
(26/39) sin(πt/2)

cos(πt/2) + (2/3) sin(πt/2)

)
.

Exercise 2.4 As in exercise 2.3(d) we have

A =

(
1 + αγ(1− b) αβ
γ(1− b) β

)
.

This implies T = 1 + β + αγ(1 − b) and D = β. As b moves from 0 to +∞ the point (T,D)
travels along a ray starting at (1+β+αγ, β) in area A8 and protruding horizontally to the left
through areas A4, A1, A3, and A7.

b ∈ (0, 1): A8 saddle point dynamics;
b ∈ (1, 1 + 2(1 + β)/(αγ)): A4, A1, A3 stable;
b ∈ (1 + 2(1 + β)/(αγ),+∞): A7 saddle point dynamics.

Exercise 2.5 (a) Since the non-homogeneity is a linear function of time, we try the guess
x̄t = A+Bt. Substituting the guess into the equation yields

Bt+ (A+B) = (λB + α)t+ λA,

which holds for all t if and only if B = α/(1− λ) and A = −α/(1− λ)2. Hence, the particular
solution is

x̄t =
α[(1− λ)t− 1]

(1− λ)2
.

The general solution of the homogeneous equation is xt = Cλt. It follows that the general
solution of the non-homogeneous equation is

xt = Cλt +
α[(1− λ)t− 1]

(1− λ)2
.

(b) In this case there is resonance and we try the guess x̄t = A+ Bt+ Ct2. Substitution into
the equation yields

Ct2 + (B + 2C)t+ (A+B + C) = Ct2 + (B + α)t+ A,
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which can hold for all t if and only if B = −α/2 and C = α/2. The value of A is irrelevant and
we set it therefore equal to 0. This yields the particular solution

x̄t = α(t2 − t)/2.

The general solution of the homogeneous equation is xt = D. It follows that the general solution
of the non-homogeneous equation is

xt = D + α(t2 − t)/2.

Exercise 2.6 For λ = µ ̸= 1 the equation reads as xt+1 = λxt + νt2 + λt. We try

x̄t = Aλt +Btλt−1 + Ct2 +Dt+ E.

This works for

B = 1 , C =
ν

1− λ
, D = − 2ν

(1− λ)2
, E =

ν(1 + λ)

(1− λ)3
.

The value for A is irrelevant and we set it arbitrarily to 0. A particular solution is therefore
given by

x̄t = tλt−1 +
νt2

1− λ
− 2νt

(1− λ)2
+
ν(1 + λ)

(1− λ)3
.

When λ = µ = 1 the equation boils down to xt+1 = xt + νt2 + 1. We try the guess

x̄t = At3 +Bt2 + Ct+D,

which works for
A =

ν

3
, B = −ν

2
, C = 1 +

ν

6
.

The value for D is irrelevant and we set it to 0. A particular solution is therefore given by

x̄t =
νt3

3
− νt2

2
+
(
1 +

ν

6

)
t.

2.7 (a) The system matrix is

A =

 −3/2 8 9/2
−9/4 3 1/4
1/2 8 5/2

 .

The eigenvalues are 3+4i, 3−4i, and −2 with corresponding eigenvectors (2, i, 2)⊤, (2,−i, 2)⊤,
and (2, 1,−2)⊤, respectively. The general solution is therefore given by

α5t

cos(θt)
 2

0
2

− sin(θt)

 0
1
0

+β5t
sin(θt)

 2
0
2

+ cos(θt)

 0
1
0

+γ(−2)t

 2
1
−2

 ,
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where θ = arctan(4/3). This can also be written as 2× 5t[α cos(θt) + β sin(θt)]− (−2)t+1γ
5t[β cos(θt)− α sin(θt)] + (−2)tγ

2× 5t[α cos(θt) + β sin(θt)] + (−2)t+1γ

 .

(b) Since the non-homogeneity is constant, we try a constant particular solution (x̄, ȳ, z̄)⊤.
Substituting into the equation it follows that

x̄ = −(3/2)x̄+ 8ȳ + (9/2)z̄,

ȳ = −(9/4)x̄+ 3ȳ + (1/4)z̄ + 10,

z̄ = (1/2)x̄+ 8ȳ + (5/2)z̄.

These equations hold for x̄ = 4, ȳ = −1, and z̄ = 4. The general solution of the non-
homogeneous equation is therefore xt

yt
zt

 =

 2× 5t[α cos(θt) + β sin(θt)]− (−2)t+1γ + 4
5t[β cos(θt)− α sin(θt)] + (−2)tγ − 1

2× 5t[α cos(θt) + β sin(θt)] + (−2)t+1γ + 4

 .

Setting t = x0 = y0 = z0 = 0 yields α = −2, β = 1, and γ = 0. The particular solution starting
at the given initial point is therefore

xt = zt = 2× 5t[sin(θt)− 2 cos(θt)] + 4 , yt = 5t[cos(θt) + 2 sin(θt)]− 1.

Exercise 2.8 Let xt denote the balance on birthday t. Then we have x0 = 0 and x1 = 100.
The balance evolves according to

xt+1 = (1 + r)xt + 100(t+ 1).

The general solution of the homogeneous equation is

xt = A(1 + r)t.

For a particular solution we try
x̄t = B + Ct.

Substituting this conjecture into the equation we obtain

B + C(t+ 1) = (1 + r)(B + Ct) + 100(t+ 1),

which holds for all t if and only if

C = (1 + r)C + 100

and
B + C = (1 + r)B + 100.
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This is the case if and only if

C = −100/r and B = −100(1 + r)/r2.

The general solution of the non-homogeneous equation is therefore

xt = A(1 + r)t − 100(1 + r + rt)

r2
.

To satisfy the initial condition x1 = 100 we have to choose

A = 100(1 + r)/r2.

The final result is therefore

xt =
100

r2
[(1 + r)t+1 − 1− r − rt].

Chapter 3

Exercise 3.1 (a) The unique fixed point is x = 1/2. Every point x ̸= 1/2 is a periodic point
of period 2.

(b) There are two fixed points, namely x = (−
√
5− 1)/2 and x = (

√
5− 1)/2. Periodic points

of period 2 must satisfy x = f(f(x)) = f(1 − x2) = 1 − (1 − x2)2 = 2x2 − x4. This equation
can also be written as

x4 − 2x2 + x = x(x− 1)(x2 + x− 1) = 0.

This holds for the two fixed points and for x ∈ {0, 1}. Hence x = 0 and x = 1 are the only
periodic points of period 2.

(c) The fixed point equation A/(1 + x) = x has the solutions x = (−
√
1 + 4A − 1)/2 and

x = (
√
1 + 4A−1)/2. Only the solution with the plus sign is an element of the system domain.

The unique fixed point is therefore x = (
√
1 + 4A − 1)/2. Periodic points of period 2 must

satisfy f = f(f(x)) = A(1 + x)/(1 + x+ A). This equation can be written as

x2 + x− A = 0,

which is only satisfied by the fixed point. Hence, there do not exist any periodic points of
period 2.

(d) Fixed points must simultaneously satisfy x = 1 − y and y = 1 − x2. This implies that
(x, y) ∈ {(0, 1), (1, 0)}. These are the fixed points. It holds that f(f(x, y)) = f(1− y, 1−x2) =
(x2, y(2 − y)). A periodic point of period 2 must therefore satisfy x = x2 and y = y(2 − y).
This gives the four solutions {(0, 0), (0, 1), (1, 0), (1, 1)}. Hence, the periodic points of period 2
are given by {(0, 0), (1, 1)}.
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