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Real Solutions

(Chapter 10 from the Second Edition)

Introduction

We have now considered both ideal solution behavior and deviations from this, but in a
rather generalized way, using activity coefficients. We now have to start to consider how to
measure these things, and doing this means we have to consider partial molar properties in
much more detail.

We start with a fairly detailed look at the volumetric properties of solutions, because
these are the most intuitive. Partial molar properties of the other state variables are the
same in principle, but become more complicated in the case of enthalpy measurements
because of their relative nature. The Gibbs energy is also a relative property, but is treated
in quite a different way.

Most of the material in this chapter is quite general, and can be applied to any kind
of solution, although most of our examples are for aqueous solutions. The properties of
electrolyte solutions introduce complications, discussed in Chapter 15. The properties of
real gaseous solutions are often handled by “equations of state,” the subject of Chapter 13,
and those of solid solutions have some unique aspects, discussed in Chapter 14.

Solution Volumes

All real solutions are of course non-ideal. Our discussion of their properties will be
concerned for the most part with deviations from the properties of ideal solutions, whether
Henryan or Raoultian.

Partial and Apparent Properties

The properties of a dissolved substance are described in terms of partial, apparent, and
excess total or molar properties, so we begin by discussing these terms, using volume as
an example.

The Volume of Mixing
If two substances are immiscible (they do not dissolve into one another to any appreciable
extent, like oil and water), obviously the volume of the two together is simply the sum of
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the two volumes separately. But if they are completely miscible (they dissolve into one
another completely, forming a solution), this may be more or less true, but probably not
exactly true. Why?

If you mix white sand and black sand together, there is no interaction or chemical
reaction at all between the two kinds of sand, and the volume of the mixture is the same as
the two volumes separately. If the volume of the white sand is V, and the volume of the
black sand is Vj, the total volume is

V=V,+Vy

It’s sort of like stacking boxes as in Figure 10.1. There is no change in total volume just
because they are together.

However, using total volumes usually turns out to be inconvenient. If the volume per
mole of white sand is V4, and that of black sand is V4, then the total volume is

V = ny Vi + mp Vo (10.1)

where ny and np, are the numbers of moles of white and black sand in the mixture.
The molar volume is defined as the total volume divided by the number of moles of all
components in the system (i.e., the molar volume of pure white sand is therefore Vy, /ny,);
so if the mixture contains n,, moles of white sand and ny moles of black sand, the total
number of moles in the mixture is ny + np. Dividing both sides of equation (10.1) by
nw + np, we get

V=xw Vw+x W (10.2)

Figure 10.1 (a) There is no volume change when

boxes are stacked together — they do not interact.
(b) When molecules are mixed together, they may
occupy less volume than they did separately.

(a)

(b)
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Figure 10.2 The molar volume of solutions of A and B. The molar volume of pure A (V3) is
18.0cm? mol~! and that of pure B (V3) is 16.0 cm? mol~!. The molar volume of an ideal solution
having xg = 0.41is 0.6 x 18.04+ 0.4 x 16.0 = 17.2 cm? mol~!. The molar volume of a real solution
having xg = 0.4 is actually 15.9 cm? mol ! 1t may be calculated in the same way, but using Vo
and V7§ instead of VZ and V3. The difference between the real and the ideal molar volumes is the
change in V on mixing A p;y V. The apparent molar volume of B (? V) in a solution is the intercept
on the xg = 1 axis of a line joining the molar volume of pure A and the molar volume of the
solution. ?V = 12.75 cm3 mol~! from Equation (10.12)

Here, V is the molar volume of the mixture and x is the mole fraction, where
J— nw
X

Nw

= 10.3
nw + np ( )

Xw

and similarly for xy,. This equation simply says that the volume of the mixture is the same as
the volume of the two things separately. The introduction of n and x is just to determine how
much of each is used. If we plot molar volume against mole fraction of either component
sand, we get a straight line (Figure 10.2), called the ideal mixing line.

Clearly these relations do not depend on the grain size of the sands;' they depend on
the fact that the sands do not react in any way with each other. Each grain of white sand is
indifferent to what kind of sand is next to it. Now imagine that the grain size of the sands

! Actually, only as long as the grain sizes of the black and white sands are the same.
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gets smaller and smaller. Soon they get so small that you can no longer distinguish the
colors — the mixture becomes gray. Imagine the grain size continuing to get smaller and
smaller — right down to atomic proportions, so that instead of having a mechanical mixture
of black and white sand, we have a true solution of black and white atoms. If the black
and white atoms continue to have no attraction, repulsion, or chemical reaction with one
another, the volume of the two together will continue to be exactly the same as the sum of
the two separately. Actually, we have oversimplified a bit — normally the white molecules
interact with each other even in the pure state, and similarly with the black molecules.
If these interactions are very similar in nature, then when they are mixed together the
molecules will continue to interact with each other in the same way, and the volumes will
be additive. In other words, it is not necessary for there to be no molecular interactions
for ideal mixing, only that white molecules react with black molecules in exactly the same
way that they do with other white molecules.

But suppose that at this molecular size, white (w) and black (b) particles are attracted
to one another more than to others of the same kind, perhaps even forming a new kind
of particle (wb). Because of this attraction, the particles will be closer together than they
would otherwise be, and the total volume of the mixture will be smaller, as shown in Figure
10.1(b), and instead of getting a straight mixing line as in Figure 10.2, the line is curved
downward as in Figure 10.2. Alternatively, if the white and black particles repel each other,
the total volume will be greater, and in Figure 10.2(b) the curved line for the molar volume
of the mixture will lie above the straight line that represents no interaction. The volume
change on mixing (Amix V, Figure 10.2) caused by the attraction between A and B is the
difference between the straight line and the curved line. The straight line

V =xa VS +x V3 (10.4)

is called ideal mixing and is rarely observed.” The curved line represents non-ideal mixing,
the general case. The difference between the ideal mixing line and the actual molar volume
V is called the change in volume on mixing, Apix V. Thus

AmixV =V — (xa V3 + x5 V3) (10.5)

Partial Molar Volumes

Now suppose in our mixture of white and black particles that attract each other, that we are
not satisfied to have the total volume or the molar volume of the mixture as a whole. We
would like to know the volume of each component in the mixture, not just the combined
volume. But how can this be done, when each is dispersed at the molecular level and is
interacting strongly with another component? Simple. Just draw the tangent to the molar
volume curve at the composition you are interested in. The intercepts of this tangent give
the volumes of each component in the solution, called partial molar volumes, which are
combined to give the total molar volume in exactly the same way as the black and white
sands in Equation (10.2) and Figure 10.2.

2 Volumetric ideal mixing (Equation (10.4)) is also called Amagat’s law, which we saw was connected to the
Lewis fugacity rule in Chapter 8.
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Looking at partial molar volumes in this way, they seem to be just a sort of geomet-
rical construct. They are defined such that they can be substituted for V4 and Vg in
Equation (10.2) in cases where mixing results in a curved line for the molar volumes; thus

V =xa ‘_/A + xB ‘_/B (Figure 10.2) (10.6)
or, multiplying both sides by (ns + np),
V =na VA +ng Vp (10.7)

In Figure 10.2 we have shown a case where A and B are attracted to each other, and their
partial molar volumes are both less than the volumes of the pure components (Vo < V3
If A and B repelled one another, the mixing line would lie above the straight line and the
partial molar volumes would be larger than the pure volumes. There is no general rule for
the shapes and positions of these mixing curves; they must be measured experimentally.
This would be done by density measurements in the case of volume, and calorimetry
in the case of enthalpy and entropy. It is quite possible for the mixing curve to be
shaped such that in a certain range of composition one of the tangent intercepts is at less
than zero volume — a negative partial molar volume. This is why some of the tabulated
thermodynamic parameters in Appendix B are negative for some solute components. It is,
of course, not possible for pure components to have a negative volume.

The Room Analogy

But there is another way of looking at partial molar volumes which shows that they really
are the volume of a mole of each component in solution. Just for a change we will switch
from components A and B to a solution of salt (NaCl) in water. Consider an extremely large
quantity of water — say enough to fill a large room (Figure 10.3). Now let’s add enough salt
to make the concentration exactly 1 molal, and adjust the volume of the solution so that
the room is full and a little excess solution sticks up into a calibrated tube inserted into the
ceiling. By observing changes in the level of solution in the tube, we can accurately record
changes in the V of the solution in the room.

Tube showing total volume of fluid Figure 10.3 A roomful of 1 molal salt solution.
The observer sees the change in volume caused
by adding one mole of salt, which is the partial

) /AV is partial molar volume of NaCl

molar volume of salt in the 1 molal solution.
1 mole NaCl added
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Now, when we add a mole of NaCl (58.5 g of NaCl occupying 27 cm?) to the solution,
the change in concentration is very small. In fact, if we can detect any change in
concentration by the finest analytical techniques available, then our room is too small, and
we must find and inundate a larger one. Eventually, we will fill a sufficiently large room
with salt solution that on adding 58.5 g of NaCl we are unable to detect any change in con-
centration — it remains at 1.000 mole NaCl/kg H,O. But although the concentration remains
unchanged, the volume of course does not. The salt added cannot disappear without a trace.
The level in the tube in the ceiling changes, and the AV seen there is evidently the volume
occupied by 1 mole of NaCl in a 1 molal NaCl solution, in this case about 19.47 cm? mol !
of NaCl. This is, in quite a real sense, the volume occupied by a mole of salt in that salt
solution and has a right to be thought of as a molar volume (just as much as 27 cm> mol~!
is the molar volume of crystalline salt) rather than as an arbitrary mathematical construct.
It is referred to as the partial molar volume of NaCl in the salt solution, Vnacl.

Some readers will have difficulty in seeing how, on adding our salt, the concentration
does not change but the total volume does. If this is the case, think of the room as containing
not a solution, but nine million white tennis balls and one million black tennis balls, all
mixed together. The room is full, the balls are arranged so that no space is available for
another ball, and a few balls overflow into the tube in the ceiling. The total volume is the
volume of ten million tennis balls. Now we add one more black tennis ball, somewhere in
the middle of the room. The fractional concentration of black balls changes from 10°/107
to (10° + 1)/(107 + 1), or from 0.1 to 0.10000009, a change so small it is completely
negligible.> But the total volume has changed by the volume of one tennis ball, and this
change must be reflected by the level of the balls in the tube, which will rise by the volume
of one ball. We can even extend the analogy by imagining that the balls in the room are
compressed by the pressure, so that when we add another ball, it becomes compressed too,
and the level in the tube rises by the volume of a compressed tennis ball, not a normal
(standard state) tennis ball.

The Formula for Partial Molar Properties
The partial molar concept is applied to most thermodynamic properties, not just volume.
The mathematical expression, introduced in Section 2.4.1, is

AN
(_) _7 (10.8)
Bn,- i

where Z is a thermodynamic parameter such as V, S, G, etc., n; is the moles of component
i, and 7; is the moles of all solution components except i. It is important to note that the
derivative is taken of the toral quantity, Z, not the molar property, Z. It is the change in the
total volume of the solution in the room that is measured, not the molar volume.

Put in this partial differential form, partial molar properties look somewhat obscure.
However, it is important to have an intuitive grasp of their meaning, and you will be well
advised to think of them in the sense of the room analogy, as molar properties of solutes in
solutions of particular compositions, rather than in terms of Equation (10.8).

3 If you don’t find it negligible, just imagine a bigger room and more tennis balls, until the change is negligible.
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Apparent Molar Volume

The first thing we come across when looking at real data is that quite often the data are
reported as “apparent” molar volumes, enthalpies, entropies or heat capacities. If we call
component 1 the solvent (usually water in our cases), component 2 the solute (say, NaCl),
Z and Z the total and molar forms of any of these properties, then apparent molar properties
are defined as

7 —mZ?
o7 21 (10.9)
na
or, in the case of volume,
V—-—mV?
¢y — ~ M1 (10.10)
np

where V7 is the molar volume of the pure phase. Thus the apparent molar volume is
the volume that should be attributed to a mole of solute, if one assumes that the solvent
contributes the same volume it has in its pure state (Figure 10.2). Alternatively,

V= mVS 4 ma?V (10.11)
or, dividing by (n; + ny),
V=xV{+x-9V (10.12)

The apparent molar volume is known as accurately and as easily as the molar volume or the
total volume of a solution whose composition is known, whereas finding the partial molar
volume always involves some manipulation of the raw data (such as determining a tangent)
and requires a knowledge of a range of compositions, not just a single one. Therefore
measurement of the density of a solution (Section 5.8.1), enables you to calculate V, the
total volume of the solution. Then because you know the molar volume of the pure solvent
V1, Equation (10.10) gives you the apparent molar volume of the solute in the solution you
measured.

To obtain partial molar volumes from measurements of apparent molar volumes,
differentiate Equation (10.11),

v _
(—) =V, (10.13)
02 ) 7.p.ny
¢
- (3 V) Loy (10.14)
ony T.Pn
vV
=m<—) +%V ifn = 5551 (10.15)
om

so that evidently we need an equation to represent ?V as a function of m, in order to
calculate (3% V/dm). For electrolytes, it is found that using /m rather than m gives a more
linear plot, so that Equation (10.15) becomes
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— 9V ami/? é
Vz:m(é%mlﬂ)( om >+ Y

vV
_ 1.1/
= 5m (aml/z) —‘,—¢V (10.16)

Extrapolating values of ?V back to m = 0 will therefore provide a value of \_/Z, the partial
molar volume at infinite dilution, which is the standard state value.

An Example from NaCl-H,0

As an example of the various terms we have defined, consider the system NaCl-H,O. This
system differs from the system A-B in Figure 10.2 only in the sense that A and B are
completely miscible (they dissolve in each other in all proportions), while in NaCl-H,O
water becomes saturated with NaCl at a concentration which depends on P and 7. This is
6.1 molal at 25 °C, 10.4 molal at 300 °C, so we can only look at concentrations below this
value.

Partial Molar Volume

Apparent molar volumes at concentrations up to 5 molal are shown in Table 10.1 and
Figure 10.4. If the mass of solvent, water, is 1 kg, then n; is 1000/18.0154 = 55.51, and
ny is the NaCl molality, m. The volume of the pure solvent V7 is 18.068 cm’ mol ™!,
so measurements of the total volume of the solution V give molar volumes (from
V/(55.51 + m)) and apparent molar volumes from Equation (10.11).

Table 10.1. Volumetric data for NaCl-H;0 at 25 °C, 1 bar. From the equation of state of
Archer (1992).

Molality Apparent molar Molar volume Total volume Partial molar
m Mole volume ¢V v A% volume V
(mol kg_l) fraction (cm3 mol_l) (cm3 mol_l) (cm3) (cm3 mol_l)
0.0 0.0000 16.62 18.068 1002.95 16.62

0.2 0.0036 17.43 18.066 1006.44 17.85

0.4 0.0072 17.78 18.066 1010.07 18.39

0.6 0.0107 18.05 18.068 1013.79 18.80

0.8 0.0142 18.28 18.071 1017.59 19.15

1.0 0.0177 18.49 18.076 1021.45 19.47

1.5 0.0263 18.94 18.091 1031.37 20.15

2.0 0.0348 19.33 18.112 1041.59 20.75

2.5 0.0431 19.67 18.136 1052.09 21.27

3.0 0.0513 19.98 18.165 1062.84 21.75

3.5 0.0593 20.27 18.197 1073.81 22.19

4.0 0.0672 20.52 18.232 1085.00 22.59

4.5 0.0750 20.76 18.270 1096.39 22.97

5.0 0.0826 20.97 18.311 1107.97 23.31
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Figure 10.4 Apparent molar volume of NaCl (V) in water, and the total volume of solution, as a
function of NaCl molality. Top curve: ?V vs. my,cy; middle curve: ?V vs. mll\]/ 32(:1; bottom curve:
total volume of NaCl solution.

Apparent molar volumes ¢V can be converted into partial molar volumes in several
ways. One way would be to actually do the operation illustrated in Figure 10.2, that is,
construct the tangent to the molar volume curve, and determine the intercept on the xn,c1 =
1 axis.* The tangent at 3 molal is shown in Figure 10.5. Note that the intercept at xxac] = 1,
which is 21.67 cm? mol™!, is a bit different from the value in Table 10.1, 21.75 cm> mol 1.
This is because the tangent method involves differentiation plus a very long distance from
xNacl = 0.0513 (the value at 3 molal) to xNac1 = 1.

Another way would be to determine the slope of the total volume curve (Equa-
tion (10.13)), which gives another slightly different value. But the commonest method has
been to fit an equation to ¢V data. If we use a linear equation and m'/? in place of m, we get

OV =V 4 SHm!/? (10.17)

known as the Masson equation, where the slope is Sj, and the intercept at m = 0 is the
partial molar volume at infinite dilution, v, Using the data in Table 10.1, S}k, is 1.978,
and V°° is 16.54 cm3 mol . However, Millero (1971) shows that despite the fact that this
equation has the correct theoretical slope at infinite dilution, and was used extensively for
many years, it often gives incorrect values of v,

4 The mole fractions in Table 10.1 and Figure 10.5 are calculated using v = 1 rather than v = 2 as defined in
Equation (7.2). Extrapolating a tangent to xnac] = 1 using v = 2 results in a value of %VNaCI, and the diagram
is less intuitive.
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Figure 10.5 Molar volume of NaCl solutions vs. mole fraction NaCl. The tangent to the curve at
3 molal intercepts the xn,c1 = 1 axis at V;IaCl and the xn,c] = 0 axis at V?IZO- The dashed line
intercepts the xy,c] = 1 axis at the apparent molar volume ? V. The tangent to the curve at
xNaCl = O intercepts the xngacy = 1 axis at VRcy-

Other approaches can be used based on corrections to this equation (e.g., Helgeson and
Kirkham (1976)), but in recent years the tendency has been to use the Pitzer equations
(Chapter 15). Determining the intercept of this equation, or any nonlinear equation, at
m = 0 places great emphasis on measurements of very dilute solutions, where they are
most difficult. Clearly, some theoretical knowledge of what the slope at the intercept (the
“limiting slope”) should be is important, and all modern treatments of data of this type
use the limiting slopes predicted from Debye—Hiickel theory, which will be discussed in
Chapter 15. The values in Table 10.1 from Archer (1992) are from an equation of state
which uses the theoretical limiting slopes, and in addition involves not just the data at
25°C, 1 bar, but a great many other data as well.

Electrostriction

Millero (1971) provides an interesting history of ideas on the volume occupied by dissolved
electrolytes. Before 1770, a salt was thought to dissolve in water simply by filling up void
spaces, thereby not changing the water volume. The experimental evidence used to support
this idea was that a glass of water did not overflow when a spoonful of salt was added.
In 1770 Watson (reference in Millero (1971)) showed that the volume definitely decreases
when various salts are added to water, showing that the prevailing theory of the “porous”
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Figure 10.6 The partial molar volume of NaCl at infinite dilution as a function of temperature and
pressure. P = sat is 1 bar up to 100 °C, and the saturation pressure of water above 100 °C. Data
from Pitzer et al. (1984).

nature of water was incorrect. However, his work was soon forgotten, and the older ideas
prevailed for another 70 years. Millero reports that Watson tired of chemistry and entered
the ministry.

These days we look at the partial molar volume of salts. The molar volume of pure
crystalline NaCl is 27.015cm® mol~!, so you see from the values of the partial molar
volume in Table 10.1 that NaCl occupies less volume per mole in solution than it does
in the solid form, at all concentrations. This fact is even more striking if you look at the
partial molar volume at infinite dilution at high temperatures, as shown in Figure 10.6. At
every pressure up to 1000 bars, Vnacl becomes negative, reaching almost —100 cm? mol ™!
at 300 °C, saturation vapor pressure (which is 86 bars). This means that if you were the
observer on top of the room full of pure water in Figure 10.3, and if the water was at
300 °C, you would observe the volume of water in the room to decrease by almost 100 cm?
when 58 grams of NaCl was added to the water. The volume of water is so large that after
adding the salt, its presence is undetectable, i.e., it is at infinite dilution.

Figure 10.1 suggests that this effect is due to attraction between the NaCl and the H,O.
This is true, but in the case of electrolytes in water, it is somewhat oversimplified. Water
is not gas-like, with a complete absence of structure, but largely due to its polar nature
and hydrogen bonding, it has some kind of structure which has been the subject of much
debate. Addition of charged particles in the form of a dissociated electrolyte disrupts and
“collapses” this structure, and the resulting ion—water interactions of several types usually
results in an overall decrease in volume, known as “electrostriction,” despite the additional
volume of the electrolyte. These interactions form the basis of the HKF model embedded
in SUPCRTQ2, to be discussed in Chapter 15.
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The Infinite Dilution Standard State

So far we have just assumed that the standard state for our mixing components is the pure
phase, just as it was in Chapter 3. This presents no problem for water and NaCl — the
standard states are, or could be, pure water and pure halite at the 7" and P of interest. But
this doesn’t work in the many cases where the solute does not exist as a pure liquid or solid
phase, such as any gaseous solute. An alternative is the “infinitely dilute solution,” which
is always available by extrapolation, and has the advantage that in the standard state the
solute particles interact only with the solvent, not with other solute particles. Deviations
from the standard state value are then some measure of solute—solute (or solute—affected
solvent-solute) interactions. So infinite dilution is the standard state chosen for enthalpy. It
is also the standard state for volume and heat capacity.

A Final Reminder about Standard States. Standard states are necessary because G, A, H,
and their partial derivatives, as well as the activity (functionally related to a difference in
Gibbs energies), can only express the energy difference between a state of interest and
some other state. The standard state is used to answer the question, the difference from
what other state? Once this state is defined, it of course also has values of V° and Cp, which
don’t really require standard states, because their absolute values are (or can be) known.

The Entropy Standard State

In summary, then, for dissolved substances we use the ideal one molal standard state for
Gibbs energy, and the infinite dilution standard state for enthalpy, volume and heat capacity.
What about entropy?

By looking at one of our Equations (7.26)

UA — G; =RT lnxA

it is easy to see why we cannot use infinite dilution for Gibbs energy. G} is a constant, so
A — —oo as xo — 0. So infinite dilution is hard to deal with. Equation (7.28) is

§,~ — E? = —RlInx;

so the same problem arises for entropy. Now we can write
G=H-TS and

G°=H°—-TS°

and

G—-G°=H-H)-TE -5

where G° is for an ideal one molal solution and H° is for infinite dilution, and the question
is, to what does S° refer?

It happens that for H (and V, Cp), the value at infinite dilution is equal to the value in
an ideal one molal solution (and anywhere else on the Henryan tangent), so if G, H, and S
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10.4 Excess Properties

refer to an ideal one molal solution, then G — G° and H — H° are both zero, and S — S°
is zero only if S° also refers to an ideal one molal solution. Because entropy is calculated
from other measurements (e.g., S = (H — G)/T) rather than being measured directly, this
fact is perhaps not as useful as the others we have been discussing.

The Reference State

Because partial molar volume, enthalpy, and heat capacity are the same anywhere on the
Henry’s law tangent, including both the state of infinite dilution and the ideal one molal
solution, either of these states can serve as the standard state for these properties. We have
chosen to say that the infinitely dilute solution is the standard state, but many treatments
prefer to say that the standard state for these properties, as well as for the Gibbs energy
and entropy, is the ideal one molal solution. For some reason, these treatments (e.g., Klotz
(1964, p. 361)) then define the “reference state” for enthalpy, volume and heat capacity as
the state of infinite dilution. This appears to have little usefulness, whatever standard state
definition is used.

If the standard state is defined as having a fixed pressure of 1 bar, the reference state
is also sometimes referred to as a state reached from the standard state by a change in
pressure (Pitzer and Brewer, 1961, p. 249). Because in this text we use a variable pressure
standard state, we have no need of the reference state in this sense either.

Symbols for the Standard State

Superscript °, as in V°, indicates the standard state. Up to this point, this has generally been
synonymous with the pure state (pure solid, liquid, or gas), so one might get the impression
that © indicates the pure phase. However, with solutions, we must be more careful, because
the pure phase is not always the standard state.

In solutions, particularly electrolyte solutions, the standard state for the solvent is always
the pure phase (pure water), so that, for example, V7 refers to the molar volume of pure
component 1, that is, pure water. For the solute, the standard state for most properties is,
as just mentioned, the state of infinite dilution, so we could use \_/z for the partial molar
volume of the solute in the standard state. However, this proves a bit confusing, so for
clarity we introduce superscript ® to indicate the infinite dilution state (‘_/;O ), and we
understand that this is also the standard state for volume, enthalpy, and heat capacity. This
raises the question of what symbol to use for the solute in its pure state. The [TUPAC recom-
mends the use of * for pure substances, but our examples involve only minerals so we will
just use the mineral name. Thus we use V" for the molar volume of pure NaCl. In the
case of the Gibbs energy (Section 8.2.3) and entropy the standard state is neither the pure
phase nor the infinitely dilute state, and the usual © symbol is appropriate, as in G° and ©°.

Excess Properties

In this section we extend our discussion of solution volumes (Section 10.2) to other
properties, and introduce the excess properties. The difference between the property
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(V, H, etc.) of a real solution, and what that property would be if the solution was ideal, is
called an excess property.
Thus, from Equations (7.9), (7.10), and (7.11),

EX
V™ = Vieal solution — Videal solution

= Vreal solution — invio (10.18)
i

= AmixV (10.19)
and similarly
H™ = AmixH (10.20)
Cp™ = AnixCp (10.21)

For ideal solutions, these quantities are of course all zero (Equations (7.12), (7.13), and
(7.14)). They are also true for the total properties, so that for ideal solutions

VX =0 (10.22)
H™ =0 (10.23)
cEX=o0 (10.24)

Relations between excess properties are the same as between their parent properties. For
example,

8 GEX _ 8 Greal _ a Gldeal ( 1 O 25)
ap ), \aP 0P |

= Vieal — Videal (10.26)
= V™ (10.27)
so that in addition,
aGEX
= - (10.28)
oT Jp
BHEX
( ) = Cp™ (10.29)
oT Jp
and so on.

The total excess enthalpy is also called the relative enthalpy, L, and is related to the
excess total Gibbs energy by

L — HEX
— GEX + TSEX
aGEX
=G¥ T < > (10.30)
oT Pm

AGEX /T
=—T2< / ) (10.31)
or P,m
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The total excess heat capacity, the relative heat capacity, also gets its own symbol

J=CEX (10.32)

aHEX)
B ( oT Pm

(10.33)
For entropy,
S®* = Sreal solution — Sideal solution (10.34)
= AnmixSreal solution — AmixSideal solution
= AnmixSreal solution + R Y _ x;Inx; (10.35)

1

Excess total entropy is also related to the relative enthalpy and excess total Gibbs energy as
S¥ = (L - G™/T (10.36)
For Gibbs energy,

EX
G = Greal solution — Gideal solution

= Amix Greal solution — Amix Gideal solution

= AmixGreal solution — RT in In x; (10.37)

1

Partial Molar Excess Properties
These have the same meaning as other partial molar properties. The general formulation
then is

8ZEX .
=7"
87’11' i
B aZreal 8Zideal
o 8ni 3ni

=real  =ideal
=7 PR 7.

1

For volume, using i = 2 to indicate the solute, this becomes

—EX —real  —ideal

Vz - Vz - V2
—treal 00
The superscript real is not generally needed, so we have

Vy =V, —Vy (10.38)

.. —ideal | = . o . .
where the substitution Vlz = V;O means that we are using the infinitely dilute solution
of the solute as the ideal solution. It is therefore a Henryan sort of ideal solution.
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Similarly for enthalpy and heat capacity, the only difference being that they get special
symbols,

Hy =H,—Hy (10.39)
=L, (10.40)
Cpy =Cpy—Cpy. (10.41)
=7, (10.42)

The meanings of these terms are illustrated in Figures 10.7 and 10.8. In Figure 10.5 we
see that in a 3 molal solution of NaCl in water, Vnaci = 21.67 cm?® mol~!, and Ve =
16.62 cm3 mol~!, so that in Figure 10.7, V-V* = 505cm? mol~!, but note that we
know this difference because we know both V and V°°.

In Figure 10.8, on the other hand, we know that Inacl = H — H™ = 45] mol~1, but
although we can measure L (see below), we don’t know either H or H™. When we can
only measure differences, the standard state becomes important. As shown, H—H” is
negative, meaning that ApjxH is positive (H of the solution is greater than the combined
H of the pure phases), and so dissolution of NaCl is endothermic (absorbs heat). Entropy
and Gibbs energy on the other hand do not get special symbols.

—ideal

$*=5-5 (10.43)

[}

- VNaCl

Molar Volume

XNacl

Figure 10.7 Schematic illustration of the meaning of V™. The diagram is a modification of
Figure 10.5 but with the dilute region of the xn,c) scale greatly exaggerated and not to scale.
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7 HNaCl
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S
o
>
0 1
X Nacl
Figure 10.8 Schematic illustration of the meaning of ™
and is not measured but calculated from other quantities, and
EEX — MEX
— E _ aideal
=y — pidedl (10.44)

But there are some important differences besides the lack of special symbols.

1. We write superscript ° rather than * because the standard state for these quantities is
not the infinitely dilute solution, and it is not always the pure phase.

2. Gibbs energy has a completely different functional relationship to concentration than do
the other properties. They all use the apparent properties, which we defined in Section
10.2.3, whereas with Gibbs energy we use Equations (8.30).

For aqueous solutions, it is more useful to write

G = u
=i — Mideal
= i —
= [u] + RT In (m;y;)] — [1f + RT Inm;]
= RTIny; (10.45)
or
EX
o =l (10.46)



18

Real Solutions

or, as it often appears,

IG™/RT

—Iny (10.47)
8}1,’

Another Expression for Excess Gibbs Energies
The molar Gibbs energy of ideal mixing was given as in Chapter 7 as

AmixGideal solution = RT Z x; Inx; (7.20)
14

It will be useful to have an expression for the Gibbs energy of mixing of real solutions.

This is a bit more complicated for aqueous systems which are “unsymmetrical,” that is,

which have different standard states for the solvent and solute, and a completely different

method of expressing deviations from ideality — osmotic coefficients for the solvent, and

Henryan activity coefficients for the solutes. This development follows Pitzer (1991).

To start, think about Figure 7.4, but instead of ideal mixing, the mixing is for a real
case, and the curve has any shape. Whatever the shape of the mixing curve, the chemical
potentials of the two components are still given by the tangent intercepts, and the molar
Gibbs energy of mixing of a real solution can be expressed as

AnixG = xa(1a — 1) + xB(UB — UB)

Because we will need excess chemical potentials as well, we change to the total form of
the Gibbs energy (recall that chemical potentials are derivatives of the total Gibbs energy
G, not of the molar Gibbs energy G). Multiplying both sides by (na + np), we get

AmixG = na(ua — uy) + np(uB — up)
or, where component A is H>O and there are several solutes B,

AmixG = n,0(H,0 — Ki,0) + Z ni(wi — 17)

1

= RT (nHzo In ap,o + Zn[ In ai) (10.48)
i
If the number of moles of water in a system is ny,0, the number of kilograms of water is
NH,0
kg, =
Sw = 5551

and for n; moles of solute i, n;/kg,, is the number of moles of i per kg of water, i.e., the
molality, m;. Substituting this relation, the relation a; = m;y;, and Equation (8.37)

55.51
=—=""1 8.37
¢ Zi m; nag,o ( )
into (10.48), we get
AmixG =RT Y mil—¢ + In (my)] (10.49)

1
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Next we divide this into an ideal part containing only concentration terms and another
part containing the correction terms ¢ and y,

AmixG = —RT Y “ni(1 —Inm) +RT Y " ni(1 — ¢ +Inyy)
l. .

1

ideal part corrective part

The “corrective part” is evidently the excess Gibbs energy, so

G™ = AmixG +RT Y ni(1 — Inm;) (10.50)
i
=RTY nmi(l—¢+1Iny) (10.51)
i
and
G™/kg,, = RT Z mi(1 — ¢ + Iny;) (10.52)

1

and, as in (10.47),

9G® /(kg, RT
[M} —Iny (10.53)
om; 0

(Pitzer (1973, Equation 23) or Pitzer (1991, Equation 34)) but now we also have an
expression for ¢ in terms of G*,

_ (aGEX/akgw)n,

1=
¢ RTZimi

(10.54)

(Pitzer (1973, Equation 22) or Pitzer (1991, Equation 35)).

Because Gibbs energy as a function of 7 and P is a fundamental equation
(Section 4.12.1), excess Gibbs energies can be used to calculate not only activity
coefficients but all other deviations from ideal behavior, such as osmotic coefficients,
excess enthalpies, excess heat capacities, excess volumes, and so on (Section 10.4), so
it is potentially quite informative. Also, properties calculated from G** in this way will
be entirely self-consistent, which might not be the case if each property was determined
separately.

However, determining G®* for multicomponent electrolyte aqueous solutions has proved
to be a difficult task. Virtually all applications these days use the formulation of K. S. Pitzer
and his colleagues, developed during the 1970s and 1980s, which we discuss in Chapter 13.
Equation (10.52) and its derivatives are the essential first step in the development of the
Pitzer equations.
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Enthalpy and Heat Capacity

Starting with Equation (10.7) as applied to enthalpy rather than volume, and adopting the
usual convention where component 1 is the solvent and component 2 the solute,’

H=n El + ny EQ (10.55)

where the partial molar enthalpies are of course

_ <8H)
H=(—
an1 T,P,ny

_ <3H)
H, = —
02 /) 1.p g

And, as with the other partial molar properties (except w), it is convenient to use apparent
properties, so from Equation (10.9),

H — ny H°
op, = — M (10.56)
ny
and
H*® — 5y H°
PHS = Ay (10.57)
ny

where H} is the molar enthalpy of pure water. As before, the apparent and partial molar
enthalpies are related by

_ <a¢H2
Hy =ny
ony

) L oH, (10.58)
T,P,nl

Equation (10.55) remains true as ny — 0, so we can write
H>® = ni HTO + nzﬁgo
=n H} + my Hy (10.59)

where we can write H} in place of ﬁ?o because infinitely dilute component 1 is just pure
water, and partial molar properties are the same as molar properties for pure phases.
Subtracting (10.59) from (10.55),

H—-H>* =n (H —H}) +n(Hy —Hy) (10.60)
=ny(YHy — ?HY) (10.61)

Now if we define
L=H-H® (10.62)
Li=H, —H (10.63)
L,=H,—H; (10.64)
L, =¢H2—¢H;O (10.65)

5 Equation (10.55) is self-evident to someone familiar with Euler’s theorem (Section C.7).
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we have
L=nL +mL, (10.66)
=m?L, (10.67)
SO
L, = £ (10.68)
ny

where L is called the relative enthalpy of the solution, Ly is the relative partial molar
enthalpy and ? L, is the apparent relative molar enthalpy of component 2. Equation (10.66)
is clearly analogous to (10.7) and (10.55). At infinite dilution, both L; and L, are zero.
Equation (10.62) can also be written

L=H-HS
=H_n1H? (1069)

In other words L is the difference between the total enthalpy of a solution and the total
enthalpy of the same amount of pure water. Differentiating Equation (10.67) with respect
to ny we get a familiar expression for L,

- oL
2= ony
I’L
_ nz( 2) VoL, (10.70)
anz T,P,ny
and, as with volume, using /m is often advantageous, so Equation (10.70) becomes
— I’L
— L1222 ¢
Ly = 5m <8m1/2> +%L (10.71)

An expression for L; can be obtained by substituting Equations (10.70) and (10.67) into
(10.66),

nmL; = n2¢L2 —ml

d?L
= n2¢L2 —np |:¢L2 +ny ( 8”22) :|
n

2 /00

_ L

I =-2 <—2> (10.72)
ni 8n2

Values of L can be obtained by measuring heats of dilution. The meaning of some of these
terms is illustrated in Figure 10.9.

Heat of Dilution

When a solution of initial molality m; is diluted to a final molality m¢, the observed heat
effect is

AditionH = ?La(mg) — ® Lo (my)
= A%L, (10.73)
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differential heat
of solution

Molar enthalpy, H
3
5

Figure 10.9 Schematic illustration of the meaning of some enthalpy terms.

which, if you insert the definitions of ?L, and ¢ H, means that
Hf — H;
ny

AdilutionH =

or, if you prefer,

AgiltionH = Hf — H; (10.74)

Some experimental heat of dilution data for NaCl are shown in Figure 10.10. The negative
values show that the enthalpy of a dilute NaCl solution is less than that of a more
concentrated one. The data in this diagram are an answer to the question “what is the
(non-ideal) heat of mixing of NaCl and water?” In this case the NaCl is at two different
concentrations — one is 1.0 molal, and the other is as shown on the x-axis.

After adjusting to a common pressure, the data were fitted with a Pitzer equation, the
slopes determined, and Equation (10.71) used to calculate values of L, which are shown
in Figure 10.11.

Another question would be “what is the heat of mixing of water and solid halite?”

Integral Heat of Solution

The dissolution of halite in water can be written as

ny NaCl(s) + n; HoO(1) = [solution of n, moles of NaCl and n; moles of H,O] (10.75)
or alternatively

nz NaCl(s) + 55.51 H,O(l) = np NaCl(aq, m) (10.76)

where (aq, m) signifies an aqueous solution of concentration m.
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Figure 10.10 The heat of dilution of NaCl from 1 molal to the final molality shown, at the indicated
temperatures. Data from Busey et al. (1984).

This process of forming a solution from pure solvent and pure solute is called the integral
heat of solution, and the heat effect in this process is

AintegralH = AmixH

= (mH\ + mHy) — (m H + npgH"™1)

H solution H pure phases

= n(Hy — HY) + np(Hy — H™1) (10.77)

=mLi +ny(Hy — Hy ) — my(H™ —Hy)

= mLy 4 npLy —ny (H™it® — H7) (10.78)
L

where (n; Hy + ny H») is the absolute enthalpy of the solution itself (Equation (10.55)),
Heoltion and (m H T+ H halitey i the absolute enthalpy of the pure starting materials, water
and halite. It is actually a form of Equation (7.13), except that we write H**"" and mole
numbers rather than Fdea! solution anq mole fractions, and it is a form of Equation (10.60)
but using a different standard state for component 2. Many sources introduce another
symbol for (H"e — H3°), such as 2 or T(s), but we will retain (Fhalie — Hy) in
a small and perhaps futile attempt to lessen confusion.

Integral heats of solution cannot be obtained directly from heat of dilution measure-
ments, because they do not include the energy required to break the solid into its constituent
ions, and then hydrate them. This is shown by the fact that a term for A" appears in our
equations.

Dividing through by n, in Equation (10.78) we get a more intuitive expression for the
integral heat of solution.
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Figure 10.11 (a) The apparent relative molar enthalpy of NaCl (?L,), from the data in Figure 10.10.
(b) The relative partial molar enthalpy (L,) of NaCl from the data in Figure 10.10. Data from Busey
et al. (1984).
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AintegralH _ £ — (HMlite _ ﬁgo)
nz n2
or
Aimegra]l'l = ¢L2 + ([_{;o - Hhalite) (10.79)

In this equation (ﬁ;o — HMli) js the heat of solution of halite into an infinite amount
of water, and ?L, is the heat difference between this infinitely dilute solution (which is
pure water) and the solution at whatever concentration we wish. When the concentration
of interest is 1 molal, ?L, is given by the intercept of the curves in Figure 10.10 at
m = 0, and because ?L, at infinite dilution is zero, it is shown for all concentrations in
Figure 10.11(a).

Integral Heat of Solution of NaCl

How much heat is absorbed (or evolved?) when 1 mole of halite is dissolved in 1 kg of
water at 100, 150, and 200 °C?

To calculate this we need to know

1. the enthalpy change when a mole of halite is dissolved in an infinite amount of water,
and

2. the enthalpy change between this solution and the 1 molal solution, which is the negative
of the heat of dilution from 1 m to infinite dilution.

This is summed up in Equation (10.79).

Criss and Cobble (1961), 0 to 95 °C and Gardner et al. (1969), 100 to 200 °C, report
values of the heat of solution of halite in dilute NaCl solutions, extrapolated to mNac1 = O,
thus giving values of ﬁ§° — HMlie_If we combine these data we find they are fit very well
by a cubic polynomial, which is

Hy® — Hhlie — 1833 66 — 38.8870 T + 0.161221 T? — 0.000803184 T° (10.80)

where T is in °C.

From the tabulated values in Busey et al. (1984) which were used to plot Figure 10.11(a),
we find values of ? Lyacr. Combining these data we get

r Ego —-H halite ¢LNaCl AintegralH
(°C) (Imol™1 Imol™!)  (Jmol™1)

25 +914 < from Criss and Cobble (1961)
100 —5213 2861 —2352
150 —12898 5731 —7167

200 —24771 10400 —14371
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The remarkable decrease in both H§° — Hhalite gnd A integralf{ With temperature, including a
change from endothermic to exothermic in ﬁ;o — Hhalite hetween 25 and 100 °C, is but one
of many indications that there is a great increase in energy liberating processes (hydration,
solvent collapse, ion-pair formation) as T is increased.

Differential Heat of Solution

The differential heat of solution is another name for the partial molar enthalpy of solution,
i.e., the heat effect of dissolving a mole of solute in an infinite amount of solution of some
particular concentration. It’s like measuring the heat effect instead of the volume effect in
Figure 10.3, and it’s just the slope of the integral heat effect. The integral and differential
heats of solution become identical at infinite dilution. According to the definition of partial
molar properties (Equation (10.8)), differentiation of an equation for the integral heat
should give us the differential heat, so

(8AintegralH> _ (E) n dnp (Hhalite — ﬁ;o)
8”12 T.P.n anz T,P.n anz TPy

=L, + (H"lie _F7) (10.81)

= H, — gl (10.82)

Klotz and Rosenberg (1994, p. 394) give the following expression for the heat absorbed
(in cal mol~1) when m moles of halite are dissolved in 1000 g of H>O (the integral heat of
solution of halite in water) at 25 °C

AintegraltH = 923 m + 476.1m>% — 726.1m* + 243.5m>/? (10.83)
so the differential heat is
3 AinteoralH
(Ll) =923 + 714.15m"/? — 1452.2m + 608.75 m>/? (10.84)
aom T.P
Heat Capacity

Heat capacities can be measured directly in twin tube flow calorimeters (Section 5.8.2)
or by manipulation of other measurements. For example, Criss and Cobble (1961)
and Gardner er al. (1969) measured the heat of solution of halite in water at various
temperatures, extrapolated to standard state conditions (infinite dilution), then determined
the temperature derivative of the heat of solution measurements. At infinite dilution,
because H = H7, Equation (10.77) becomes

T halit
AimegralH =m(H, —H A1)
or

Aintegrall"l = (Hgo - Hhalite) (10.85)
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Figure 10.12 Standard state heat capacity of aqueous NaCl as a function of temperature. Squares,

Criss and Cobble (1961). Open circles, Gardner et al. (1969). Crosses, Helgeson (1981). Line,
Pitzer et al. (1984).

and the temperature derivative is

(8 (H;O _ Hhalite)

0 halite
= — 10.86
aT ) ) CP CP ( )

where C3° is the heat capacity of aqueous NaCl at infinite dilution, and is normally called
Cp. The heat capacity of halite (Cpha“te) as a function of temperature is well known, so
this is added to the result to obtain C3°. Figure 10.12 shows their results, compared with a
more recent compilation by Pitzer et al. (1984).

Heat Capacity from Integral Heat of Solution

As shown in Equation (10.86), the temperature derivative of an equation for Hgo — fhalite
will give 6;0 - C;‘f‘me, and adding C}‘f‘me to this will give (_f;o.

The temperature derivative of Equation (10.80) is
Cp — Chaliie — _38 8870 + 0.0322442 T — 0.002409552 T°

where T is in °C and E;o - C}‘f‘lite is in calmol~! K~!. The heat capacity of halite is given
by (NIST web site, Shomate equation)

chalite — 5072389 + 6.672267(T/1000) — 2.517167(T/1000)?
+ 10.15934(T/1000)* — 0.200675/(T1000)>
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where T is in kelvins and Cf?,alite is in Jmol~! K~!. Converting calories to Joules and
combining these data, we get

T 6}0)0 _ C?)alite C}l)alite 6}0)0

(o)) @mol~1K-1) @mol~1K-1) @mol~1K-1)
25 —135.28 50.50 —84.78

50 —120.45 51.04 —69.41

75 —118.23 51.51 —66.71

100 —128.61 51.95 —76.66

125 —151.59 52.36 —99.23

150 —187.17 52.75 —134.43

175 —235.36 53.12 —182.24

200 —296.15 53.50 —242.65

These values of E‘;o are almost identical to those plotted in Figure 10.12. The inverted-U
shape of the Cp curve as a function of T is typical of all electrolytes.

The heat capacity of solution at finite concentrations is analogous to volume, in that they
can be measured directly in calorimeters, so that (Cp — C POO) can be evaluated by knowing
both quantities, not just the difference. Like volume, Cp ~ is evaluated by extrapolating
measurements of Cp to infinite dilution, or, as above, by manipulating other infinite dilution
quantities.

Gibbs Energies

At this point we have a fundamental problem. Given the relationship between Gibbs
energies and compositions for ideal solutions we have developed, how do we handle
deviations from this behavior? What mathematical form should our equations for non-
ideality take? There is a variety of approaches for this. The most general is to develop
an equation of state, and there are a variety of types of those (Chapter 13). Then there
are different approaches for dilute and concentrated solutions, and for electrolytes and
non-electrolytes. In this section we look at some fairly general methods which have been
applied to many solid and liquid solutions.

Regular Solutions

The simplest form of excess Gibbs energy (Equation (10.44)) is illustrated in Figure 10.13.
This is a completely symmetrical G**. The ideal AnixG curve from Figure 7.4 is shown
as a dashed line. The “real” AnixG curve is the sum of this and G®*, and is therefore also
symmetrical. Of course in real solutions both AnixG and G** will generally have more
complicated shapes, but we can use this simple form of non-ideal solution behavior to
examine the relationship between G** and several other features of non-ideal solutions.
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Figure 10.13 The excess Gibbs energy of mixing. The dashed curve is the ideal mixing line from
Figure 7.4. The dash—dot curve shows values of G** for wg = 2000J mol~! which are added to the
ideal mixing values.

How should we define the simplest possible deviation from ideal solution behavior? It
should evidently have about the same parabolic shape as the ideal mixing curve, which
means we need some kind of y o x* function. Then because excess properties are
zero for pure components, this function should approach zero as the mole fraction, xa
or xg of either of the two components, approaches 1.0. Finally, in a solution of two
similar components such as benzene and toluene, we might expect the solution to be most
non-ideal when the components are mixed in equal proportions (because that’s when non-
uniform interactions between the two species are maximized). That means the equation
should have a maximum or minimum at the 1:1 composition. The simplest equation which
satisfies all these conditions is

GEX = WGXAXB (10.87)

where wg is a constant with units of energy which is independent of composition, but
varies with T and P. If wg is positive, then molecules A and B repel each other (or prefer
energetically to be with molecules of the same type); this can lead to immiscibility and
exsolution. If wg is negative, there is an energy preference for A and B to associate in the
solution, and this can produce intermediate compounds. Equation (10.87) is also called a
one-parameter Margules equation. The equation for the mixing curve in Figure 10.13 is
therefore

AnixG = RT (xp Inxa + xg Inxg) + wgxaxs (10.88)

Hildebrand and Scott (1964) discuss many (mostly binary) systems which can be
conveniently treated with this formalism. It has been applied to ternary systems, but
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beyond that it gets quite cumbersome. Although not many real systems show such behavior
(examples are systems like argon—oxygen; benzene—cyclohexane; Au—Cu), we can easily
imagine adding more terms involving adjustable constants and mole fractions to account
for more complex non-ideality, and this approach has in fact been pursued extensively.

In Figure 10.13 we have assumed wg = 2000J mol~!, so that at xg = 0.4, wgxaxg =
480.0 Jmol ™!, and ApixG from Equation (10.88) is —1668.4 +480.0 = —1188.4 Jmol .

Solution Theories

There are literally thousands of articles on the theory of solutions, going back to the origins
of physical chemistry itself, yet, as pointed out by Prausnitz et al. (1999, Chapter 7) after
an extensive survey of the subject, “...we are still far from an adequate theory of liquid
mixtures.” Traditionally, and for good reason, theories on electrolyte and non-electrolyte
solutions are treated separately, but there is of course some common ground such as the
laws of Raoult and Henry. Theories of the two types of solutions also have an interesting
similarity in that they have generally been developed emphasizing either the “physical” or
the “chemical” approach.

In non-electrolyte theory, the physical approach goes back to van der Waals, and
develops theories which deal with particle arrangements and generalized intermolecular
forces, but nothing about the specific nature of any new particles formed due to these
forces. The chemical approach concentrates on identifying these new particles, and in
the extreme form, begun by Dolezalek in 1908, suggests that if all molecular species
are correctly identified, with their respective equilibrium constants, Raoultian mixing is
sufficient to account for the solution properties. The physical approach can be traced from
van der Waals through van Laar, Scatchard and Hildebrand, resulting in regular solution
theory (references in Prausnitz et al., 1999), which turns out to have some overlap with the
equations proposed by Margules in 1895.

In electrolyte theory, so different in most respects because of the electrically charged
nature of the particles, the same distinction between physical and chemical approaches
can be seen. We will present more detail in Chapter 15, but basically the Pitzer equations
represent the physical approach, having no reference to individual ionic species, and the
HKF model of Helgeson (1981) represents the chemical approach, in which the standard
state properties of individual species are defined.

Modern theories of solutions combine aspects of both approaches, and the theories of
Pitzer and Helgeson et al. are no different in this respect. The Pitzer approach must take
into account strong complex formation, and the HKF approach uses activity coefficients,
based on generalized electrostatic considerations, in addition to species information.

Corrections to AH and AS
Because AG = AH — TAS, applying a correction to AG raises the question as to how this
correction is divided between AH and AS. The two extreme cases would be
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(1) that it all appears as a correction to AH with AS remaining ideal, or
(2) it all appears as a correction to AS, with AH remaining zero.

and, of course, there could be some adjustment in both terms. The original definition of
regular solutions by Hildebrand in 1927 was case 1, with an ideal entropy of mixing and
a non-ideal enthalpy of mixing. The other case, retaining AH = 0, produces athermal
solutions. Many other descriptive terms have been used by other authors, and the term
“regular solution” now covers both these cases, as well as some extensions.

Because GE* = HEX — TSEX, then

9GEX
oT

SEX=_

0
=37 (WG xaxB)

where (d wg/0T) = —ws, and H** is
HEX — GEX + TSEX

= xpaxg(wg + T wg)

= XAXB WH (10.90)
Similarly, (3 wg/dP) = wy, VE* = xaxgwy, and
wg = wyg — Tws + Pwy (10.91)

Measurements of any of these excess quantities could then contribute to a knowledge of a
system’s non-ideality as a function of T and P. We give some examples of how this is done
in Chapter 13.

i — n° From Tangent

The slope of the tangent to the mixing curve is

dAnixG d
——— ) = — [RT (xpInxp + xg Inxg) + wgxaxg]
de de

—RTIn <@> T wg (1= 2xp) (10.92)
XA

and the equation for the tangent line itself is, as before,

(10.93)

AdAmixG
MAZAmixG—xB< = )

dx; B

Calculating the intercept on the x4 axis of the tangent at xg = 0.4 with these equations, we
get u — pu° = —946Jmol .
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i — u° From Equation
Substitution of Equation (10.92) into Equation (10.93), remembering that ApixG is now
Equation (10.88), we find that

ua = RT Inxp + wazB

but we know that here wa is really ua — u°, because we have implicitly assumed that
u° = 0. In other words, the intercept we calculated is the numerical value on the xp axis,
but that numerical value is a AG of mixing, a difference, so our 4 is also a difference.
What we have calculated is in fact

pa — 1S = RT Inxa + wexd (10.94)

and at xo = 0.6, xg = 04, wg = 2000J mol~!, Equation (10.94) gives ua — ,uf& =
—946 Jmol~!, in agreement (of course) with the tangent method.
ideal

If in Equation (7.34) we change u; to 1, “*, and we compare this with Equation (10.94),
we see that

ideal EX
=u

HA — Mp
= wexg (10.95)
= 2000 x (0.4)°
= 320J mol~! (10.96)
= —946 + 1266 J mol !

(1266 is RT Inxa from page 195).

i — p° From Activity Coefficient

Also, it proves very convenient to define a correction factor for the mole fraction term
in Equation (7.34), such that the non-ideal effects are taken into account. In other words,
instead of correcting the AG or  — u° side of the equation with G®*, we correct the mole
fraction on the other side of the equation to give the same effect (we looked at this approach
in more detail in Chapter 8). So we define a factor yr such that

pa — 1y = RTIn (xayg,) (10.97)
=RTInxa +RT Inyg,

and comparing this with Equation (10.94) we see that

RT Inyg, = wex }

(10.98)
RT Inyg, = wai

At xg = 04 and wg = 2000Jmol~!, yg, = 1.1378 and ua — u§ = RTIn
(0.6 x 1.1378) = 946 Jmol~! again.

So there is complete equivalence between the use of the activity coefficient and the
excess Gibbs energy. In a sense there is hardly any difference at all. If the correction for
non-ideality is in a logarithmic form (RT'Iny) it can be combined with the ideal term
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(RTInx) as a correction to x. If it does not have a logarithmic form (wx?) it becomes a
correction to the AG or Ap term.

CO; Solubility in NaCl Solutions

An interesting application of regular solution theory is presented by Nesbitt (1984).
He shows that activity coefficients for CO; in aqueous NaCl solutions to quite high
temperatures (= 500°C) and NaCl concentrations (=~ 6m) can be fit very well by a
slight modification of (10.98). As written, the activity coefficients in (10.98) are based
on Raoultian activities; that is, yg — 1 as xg — 1. Solubility studies on the other hand
normally use Henryan coefficients, where yg — 1 as mp — 0, where mp is the molality
of the solute.

Following Robinson and Stokes (1959), Nesbitt plots In yco, vs. —(x% —1) instead of x%,
where x; is the mole fraction of H>O in the system. This has the desired effect of having
yco, — 1 asxy — 0. Nesbitt calculates values of wg and discusses applications to boiling
hydrothermal solutions.

Unmixing

As wg becomes larger, the mixing curve develops a flat portion, and eventually splits
into two separate parabolic curves, one on each side of the diagram, as shown in Figure
10.14. In a real system this means that “unmixing” occurs. Instead of one homogeneous
solution, two solutions form at equilibrium, the compositions of which are at the minima
in the mixing curve. The chemical potentials in each of the two solutions are given by
the tangent common to the two minima, showing that ua and up are the same in each
solution. Generally, the two compositions converge as temperature increases, generating a

500 —500
i w =28000J/mol ]
0 -0
N taﬂgeﬂt 77777 y
-500 - —-500
R ]
£ - ]

q - -
—1000 | —-1000
—1500 | —1-1500
oo b bbb | ppgg

0 0.2 0.4 0.6 0.8 1
X

B
Figure 10.14 The excess Gibbs energy of mixing with various values of w¢, showing unmixing into

two separate solutions when wg = 8000J mol~!. The dashed line is a tangent common to both
minima in this curve.
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solvus (a subject continued in Chapter 17). The mixing curve and the solvus are not usually
symmetrical as in this simple model. Somewhat more complex equations are required to
generate asymmetry (Section 10.7).

The Raoultian Activity

The activities of A (apa = xayr,) and B (ag = xgyRry) as a function of mole fraction are
shown in Figure 10.15 and Table 10.2. Atxg = 0.4 and wg = 2000Jm01_1, vrg = 1.337
(Equation (10.98)), so the activity of B is 0.4 x 1.337 = 0.5348, as shown.

Table 10.2. Activities and activity coefficients in a binary
regular solution having wg = 2000 J mol~".

XA XB YR,y YRy aa ap
0.9 0.1 1.008 1.922 0.907 0.192
0.8 0.2 1.033 1.676 0.826 0.335
0.7 0.3 1.075 1.485 0.753 0.445
0.6 0.4 1.138 1.337 0.683 0.535
0.5 0.5 1.223 1.223 0.612 0.612
0.4 0.6 1.337 1.138 0.535 0.683
0.3 0.7 1.485 1.075 0.445 0.753
0.2 0.8 1.676 1.033 0.335 0.826
0.1 0.9 1.922 1.008 0.192 0.907
1.0
0.9 —
08F
0.7 —
06F
2 C
2 05F
o -
© o
0.4F
03F
02f
01E
L AN
0-0 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 10.15 The activities of A and B as a function of xg from Equations (10.98), with
wg = 2000J mol~!. The same data are shown in Figure 8.2.
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The standard state we have just used is pure substance A, because our values of pa
are measured on the xo = 1 axis, and our values of (us — u°) refer to the difference
between the chemical potential of A in the solution and A in its pure form, whatever that
is (solid or liquid A). Standard states in other cases, where we will be dealing with gases
or electrolytes in solution, may not always be so obvious.

It is important to realize that all the features we have discussed — the tangent intercepts,
activity coefficients, etc. — operate just the same no matter how complex the mixing curve
becomes. They are just easier to discuss with a simple model.

Margules Equations

Because most real solutions do not follow the parabolic, symmetrical form of the one-
parameter Margules equations, it is necessary to add more flexibility to the equations by
adding more coefficients and more terms. One way to do this is to simply define a second
wg term of the type in (10.87), then combine the two wg terms in a linear equation in
x. This can be imagined as the “mixing” of two solutions, each symmetrical but having
different values of wg:

solution 1 = WG X1X2 (10.99)
f())(lution 2 = WG X1X2 (10.100)

Now mix xp moles of the first solution with x;(= 1 — xp) moles of the second, stir well,
and make a new solution, which is described by the sum of (10.99) and (10.100):

Giotution = X1 (WG, X1%2) + X2(WG, X1X2) (10.101)

or if you want to carry this process further, to m terms, the general expression is

solution

m
Glution = X152 ) _ Wi, x ! (10.102)
i=1

What we have now is the (weighted) sum of two (or more) parabolic equations to
describe a non-ideal, asymmetric solution. Because of the second parameter, (10.101)
is frequently called a two-parameter Margules equation, and (10.102) can be called the
generalized Margules equation. It seems reasonable that this might have an appropriate
form because (10.101) still goes to zero as either x; or x approaches 1.0 (the excess Gibbs
energy must be zero for pure substances); also with two parameters and two parabolas
we should be able to fit a distorted parabolic shape, and that’s what we might expect the
excess Gibbs energy to look like for many real systems. In fact, two-parameter equations
of this type do fit experimental data on real systems quite closely, and even work well
with minerals that are sufficiently non-ideal that they have miscibility gaps (a solvus
region).
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The Margules Equations

Margules (1895) suggested an equation for the vapor pressures of solution components
(partial pressures) in the form of a series expansion, using the systems ethyl alcohol-water
and methyl alcohol-water as examples. Using our notation, his equation was

P =P? X?Oe[al(l—xi)'l‘a%(]_Xi)2+d73(1—xi)3+'“] (10.103)

where i is 1 or 2 (binary solutions, so x, = 1—x1), and where, to have the limiting condition
that Henry’s law is followed as x, — 0, g = 1 and o1 = 0. This gives, as (1 — x1) — O,

O
P;=P/x;
or
P; = constant - x;

which is Henry’s law (Section 7.4.2).
If we assume that the partial pressures are in fact fugacities (f; = P;), then, using a; =

Jilf?s

Iny; =1In (&)
X
1 .
=> ;[aj(l —xY] (10.104)

which, for a binary solution and n = 3 is
1 2 1 3
Iny; = 500x5 + 303X
and so
RT In y| = constant; -x% + constanty -x%

which is the same in form as Equations (10.105) and (10.107), and if truncated to the first
term on the right, is the same as the regular solution expression, Equations (10.98).

There is an extensive literature in both chemistry and geochemistry on these and other
similar equations and their interrelations. Useful guides are Grover (1977) and Thompson
(1967). They apply to any solutions, solid, liquid, or gaseous. Thompson points out that
the Margules equations bear the same relationship to Henry’s law that the Virial equation
(Section 13.5) has to the ideal gas law, in that the first term in the Virial series (in the form
of (13.26)) is the ideal gas law, and the Margules equation condenses to Henry’s law, as
shown above.
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Activity coefficients can also of course be written in terms of the two-parameter
equations. Without derivation, they are

RTlny, =G|
= Q2wg, — WG )x% +2(wg, — wg ))c3
L ‘ 2 (10.105)
= 2wg, — WGZ)x% +2(wg, — wGl)x?
A different extension of Equation (10.87) is the Redlich—Kister equation,
G™ = x1x2 [A + B(x; —x2) + C(x2 — x2)> + D(x; — x2)° + - - ] (10.106)
which has the activity coefficients
RTIny, = a(l)xg + b(l)x% + C(l)xg + -
(10.107)
RTInyy = a®xf + 6@ + @} + -

in which the a, b, c, . .. parameters are simple combinations of the A, B, C, . .. parameters
in (10.106) (see Prausnitz et al., 1999, p. 228).

These equations ((10.101) and (10.106)) are just a small sample of the many that have
been proposed and used in the chemistry and chemical engineering literature.

Margules Equations and Virial Equations

It seems likely that various forms of the Margules equations work well in modeling
solutions because they are actually forms of the virial equation (Section 13.5), which, as
we said, has a secure theoretical foundation. To show that the Margules equations have
the form of a virial equation, rearrange (10.101) for the total excess free energy of a real,
asymmetric solution, remembering that x| = 1 — x, giving

G™ =04 we,x2 + (WG, — 2wG,)x3 + (WG, — wG,)x (10.108)

Because excess Gibbs energy is zero for ideal solutions, this has exactly the required form —
the first term on the right-hand side (zero) is the value of G** for an ideal solution, and the
remaining terms are an ascending polynomial in the variable x;. Assuming that we can
substitute mole fraction for volume ((13.24)) or pressure ((13.26)) by virtue of Henry’s
law, this has the form of a virial equation carried to the fourth coefficient. For symmetric
solutions, wg, = wg, and (10.108) reduces to

G™ = wexy — wex (10.109)

This has the form of a virial equation carried only to the third coefficient (which is why it
doesn’t fit more general, asymmetric solutions).

Margules Equations for Ternary and Higher-Order Systems

In the examples so far, we have used binary (two-component) solutions exclusively. Exactly
the same reasoning may be used to derive equations for ternary, quaternary, and even more
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complex solutions. The equations become more unwieldy with each added component, and
the properties they represent cannot be illustrated in two-dimensional graphs. However, the
equations can be used in computer programs to generate properties of multicomponent sys-
tems for given conditions, and they should continue to fit real solutions adequately for the
same reasons discussed above. The main problem with these higher-order systems is not in
using the Margules equations, but that a lot of experimental data are required if the fit is to
be useful, and rather few solid solutions have been sufficiently investigated in this respect.

Rather than writing out all equations for all properties, we will save space by deriving
only the Gibbs energy equations for ternary systems. The same approach can then be
used to derive equations for other properties or for solutions containing more than
three components. First, for a ternary symmetric solution, we can follow the analogous
procedure used to derive (10.101) and imagine three regular binary solutions with a total of
three components (1+42; 14 3; 24 3) being mixed to form a single ternary regular solution
(14-2+4-3). The total excess Gibbs energy is the sum of the one-parameter equations (10.99)
for each of these three solutions:

S())(lution = WG, X1X2 + WG, X2X3 + WG 5X1X3 (10.110)

Similarly, we can derive the analogous equation for a ternary asymmetric solution by
summing expressions (10.101) for a mixture of three asymmetric binary solutions of the
same three components:

EX 2 2 2 2
solution — (WG23x2x3 + WG32x3x2> + (WG|3x1x3 + WG31x3x1)

+ (wGlzx%xz + wGle%xl) (10.111)

The brackets here show the original three asymmetric binary solutions we have “mixed.”
Derivation of Equation (10.111) by series expansion shows that there is actually a seventh
term on the right side, a constant, which is often arbitrarily set to zero.

Notice that (10.111) reduces to (10.110) by setting wg; = wg; and that symmetric
models therefore have half the number of w coefficients. A slightly more complex version
of this equation, where the three terms are weighted in proportion to molar composition, is
proposed by Grover (1977, p. 81); this is similar to the weighting technique used to derive
the binary, asymmetric equation (10.101) above. Notice that the number of Margules w
parameters increases three times relative to a binary system for both the symmetric and
asymmetric equations. For a quaternary system they would increase four times, and so
on. This means that we are going to need a great many data points in multicomponent
systems so as not to over-fit the data. For example, you would not want to fit 7 data points
in a quaternary system with an 8-parameter Margules equation analogous to (10.111). In
practice, this imposes an upper limit on the number of components one might wish to
consider if the amount of data for a system is limited.

Fortunately, it is not often necessary to consider solid solutions of more than three or four
components. Many minerals have fewer than four major components. Minor components
do not have a very significant effect on excess properties of the overall solution, as you
can see from Equations (10.110) and (10.111) for ternary systems above. For more detail,
see Guggenheim (1952), Prigogine and Defay (1954), Saxena (1973), Thompson (1967),
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and Grover (1977). An algorithm for computer calculation of Margules equations based
on higher-degree virial equations and applicable to multicomponent systems is given by
Berman and Brown (1984).

Beyond Margules
As useful and as influential as they have been, series expansions like the Margules, regular
and virial equations can really only deal effectively with smooth, continuous curves. A
high degree of molecular association, leading eventually to compound formation, as well
as or combined with order—disorder effects, results in more complex types of curves
which cannot be represented by series expansions without carrying the expansion to
unmanageably high orders.

Kress (2003) uses the system CO-O; to illustrate the problem in a striking fashion.
A naive consideration of the energetics of mixing of these two gases would result in a
near-zero enthalpy of mixing and an entropy of mixing based on Equation (7.15)

AmixSideal solution = —R(x1 Inx1 + x2 Inx2) (7.15)

or some slight variation, resulting in a smooth curve of positive ApixS values. In reality,
the reaction

CO(g) + $02(g) = COx(g)

occurs to a very great extent, and the entropy curve between CO and O, is curved
downward with a cusp at the CO, composition, and the enthalpy and Gibbs energy
variations are similarly totally different from ideal mixing.

This problem has long been recognized. Kress presents a useful short summary of the
many approaches that have been suggested, beginning with Guggenheim’s (1952) “quasi-
chemical” approach, as well as algorithms allowing computation of species standard state
and mixing properties in non-ideal associated solutions. The problem extends beyond
aqueous solutions to fused salts and silicate melts, and represents a research area that will
be active for some time to come.

The Gibbs—-Duhem Equation

We must be aware of one very important relationship between solution components,
which is that they are not all independent of one another. This seems reasonable enough
qualitatively. You can well imagine that changing the concentration, say, of one component
of a binary system would have some effect on the activities and activity coefficients of
both components, not just one. These changes can be quantified, and this is a highly
useful device, because it is very common to measure the activity of only one component
in a binary system as a function of concentration, and then calculate the activity of the
other component, instead of measuring it too. We mentioned one way of doing this in
Section 5.8.4, the isopiestic method.
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This relationship was introduced in Section 4.14.2. Equation (4.72) from that section is
x
dpy = o dus 4.72)

showing the interdependence of the chemical potentials in a binary system, but the equation
is not used in this form. Now that we have the activity, in the form of Equation (8.19), which
is

wi = +RTIna;
we can substitute this into (4.72) (u7 is a constant so du; = 0, and RT cancels out),

obtaining

X2
dlna; = ——dha (10.112)
X1
This looks more useful, but it is difficult to integrate because a plot of xp/x; vs. —Inay is
asymptotic to both axes. If we rewrite the equation with x;y; instead of a;, and note that

dx1 dXQ
xidlnx) +xpdInx; =xj— +xp—
X1 X2
=dx1 + dxy
=0
it becomes
X2
dlny; = ——dlny, (10.113)
X1
and a plot of x»/x1 vs. — In y» has only one asymptotic branch (for x; — 0). Integrating,
x{
1ny{’—1ny{=—/ 2 diny, (10.114)
X Xl
or, if x| is pure phase 1 (Raoultian standard state), In y; = 0, and
x|
Iny; :—/ 2 diny, (10.115)
x1=1 X1

showing that if you know In y» over a range of compositions, you can calculate In y; over
the same range.

There is a rather large literature on how to perform this integration graphically and
analytically. We will show just one very effective method, introduced by Darken and Gurry
(1953, Chapter 10), see also Lupis (1983, Chapter 5). If we define

_ Iny
(11— x)?
then

o (i=1lor2) (10.116)
dlny, = d(oezx%)
= 2apx1 dx| +x% doy

and Equation (10.115) becomes

X1 X1
Iny; = —/ 2 a0x) dxy —/ X1x2 dotp (10.117)
x1=1 x1=1
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Integrating the second integral by parts® gives

X1 X1
f X1X2 dotz = 0X1X2 — / [0%) d(xpcz) (10.118)
x1:1 X]:l
Combining this with (10.117) then gives, after some manipulation,
x|
Iny; = —apx1x0 — / oy dx; (10.119)
X1 =1

The last term is quite easy to integrate, because the « function is always finite, even as
x; — 0. That is,

. Iny;
lim | ——
51 (1 —x;)?

is finite, despite the zero squared term in the denominator.

Function ¢; in Equation (10.116) looks a lot like our use of wg in Equation (10.98). In
fact, if the solution is strictly regular, in which o1 = a» = a constant, then « = wg/RT,
and Equation (10.119) becomes
Iny; = —Z—;xm— Z—;(xl - (10.120)
and similarly for In y».

Summary

In previous chapters we have built an impressive theoretical structure, and seen how it
could be applied to idealized systems, especially solutions, with a mention of real systems
here and there. Eventually, of course, we have to take measurements on real solutions and
somehow fit these into our theoretical structure. In this chapter, we start to do that.

We discussed solution volumes at length, because this seems to be the most intuitive way
to understand partial molar quantities, and other solution properties. We then broadened
the discussion to include enthalpies, heat capacities, and Gibbs energies. A persistent
theme is the attempt to find equations that will not only fit real data, but which have some
relationship to our theory, so that we can extract thermodynamic data from them.

We found that equations for the Gibbs energy have a different form than equations for
the other properties, basically because of its pressure derivative relationship to volume, and
hence fugacity and activity. We introduced regular solution theory as the simplest way of
dealing with deviations from ideal behavior, and then saw that the basic structure could
be expanded to more complex solutions in the form of the Margules equations. Regular,
Margules, and virial equations have proven extremely useful, but they are inadequate in
solutions with a high degree of association.

Finally we looked at the Gibbs—Duhem equation, and how it is used in binary systems.
We will see some applications of this in Chapter 14.

6 How to integrate by parts is shown in Section 5.6.4, except that here u = a5 and v = x| xp.



