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o Ve L The conservation equations for the liquid phase can then be represented as:

%+%—=0 \ ©)
8uL BPL (azul_ azuL ] -
==ty | —+— (6
ot ox (ox* 9y
oy, _ 9F (azv;_ 0%y, 7
PrL at_ ay'l'luf.\axz"'ayz ()

The gas phase conservation equation are similar, except that they do not include viscosity.
Periodic motion of incompressible fluid surfaces obeying the Navier-Stokes equations can be

represented using a potential and a stream function- :© ° _° Each velocity component of the

liquid is therefore assumed to consist of an inviscid term and a perturbation representing the

effect of viscosity 71 "

uL=ug+UL (8)
v =vg+VL ‘ )
P=p? ' (10)

where parameters with superscript 0 represent ideal fluid conditions, and U and V represent the

velocities in x and y directions due to viscosity, respectively. The gas phase is assumed to be
inviscid; the gas velocity domponents therefore do not include terms representing viscosity. The

above ideal-fluid velocities are represented by a potential function of the form:

O, =4, e cosk x (11)
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@G = Ag cosh[ k(y+4)]e” cosk x (12)

where for both phases:

a o= @ 8
(v )—[ax,ay (13)

These potential functions fully represent the irrotational, ideal liquid and gas fields. The liquid

velocity terms that account for the viscosity-induced rotational motion can be represented by a

stream function, ¥, that must satisfy -

Y, 2
—Y L=y, V 14
3 ViV, (14)
where:
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Equation (14) and all the necessary boundary conditions can be satisfied using:
WL = BLe_m'v+aH sin kx (1 6)
Note that the above equation approximates the liquid core as infinitely-deep. Using Eq. (14), it

can be shown that:

e (17)

The above potential and stream functions are now utilized in a linear stability analysis, using

the following boundary conditions at the interphase:

VL =Vg (18)

_PL +2ﬂ1_ [&J="—PG'“O'8_2-APO- . (19)
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dy ox
where:
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The term APy in Eqn. (19), which is de-stabilizing, is the surface tension force caused by the

curvature of the channel, and can be represented as:
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Equations (19-21) following substitution _for velocities using the aforementioned potential
and stream functions, lead to:

"'"AL ‘f‘BL —.AG sinh(kh)-—:{) (24)

2% 4y —(m® +k%) B, =0 (25)
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A non-trivial solution is possible if the determinant of the coefficient matrix of Eqns. (24-26)

vanishes, and that leads to:
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where p"=pg/p.; H=6/R; R" =R GZ;K=k 0'2 ; and Q=o)| £L L |. The
PLvL PLvVL o

interface is evidently unstablc when Q > 0, and the neutral condition (2 = 0) occurs when

(k) == (28)

Disturbances with wavelengths longer than A, thus cause instability, where:
Aer =27 (R~ §) (29)
The neutral wavelength thus is similar to the predictions of the Kelvin-Helmholtz stability;
and does not depend on liquid viscosity, in agreement with the Taylor stability analysis for film

boiling of viscous liquids, " * The fastest growing wavelength, Qg , occurs when dQ/dK =0,

whereby:
*R*H i % ‘_112
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