

PAPALAMBROS AND WILDE

Principles of Optimal Design
Solutions Manual

Third Edition

Chapter 2

10

Principles of Optimal Design
Third Edition 11

2.1

Derive general expressions for the coefficients of linear, quadratic, and cubic approximations, when
the sampling points are equally spaced along the x-axis.

Solution

i) Linear approximation with 2 data points (x0, y0) and (x1, y1)
Let ∆x = x1 − x0

Approximating the solution as y = a0 + a1x, then we obtain
y0 = a0 + a1x0

y1 = a0 + a1x1
⇒
(

1 x0

1 x1

)(
a0

a1

)
=

(
y0

y1

)
⇒
(
a0

a1

)
=

(
y0 − x0

∆x(y1 − y0)
y1−y0

∆x

)
Determining ∆y1 = y1 − y0, we get
a1 = ∆y1

∆x and a0 = y0 − a1x0.

ii) quadratic approximation with 3 data points (x0, y0), (x1, y1) and (x2, y2)
Let ∆x = x1 − x0 = x2 − x1, ∆y1 = y1 − y0 and ∆y2 = y2 − y1

Approximating the solution as y = a0 + a1x+ a2x
2, then we obtain

y0 = a0 + a1x0 + a2x
2
0

y1 = a0 + a1x1 + a2x
2
1

y2 = a0 + a1x2 + a2x
2
2

⇒

1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

a0

a1

a2

 =

y0

y1

y2


⇒

1 x0 x2
0

0 (x1 − x0) (x1 − x0)(x1 + x0)
0 (x2 − x0) (x2 − x0)(x2 + x0)

a0

a1

a2

 =

 y0

y1 − y0

y2 − y0


⇒

1 x0 x2
0

0 ∆x ∆x(x1 + x0)
0 0 ∆x(2x2 − 2x1)

a0

a1

a2

 =

 y0

∆y1

∆y2 − 2∆y1


⇒

1 x0 x2
0

0 ∆x ∆x(x1 + x0)
0 0 2∆x2

a0

a1

a2

 =

 y0

∆y1

∆y2 − 2∆y1


Therefore,

a2 = (∆y2 − 2∆y1)/2∆x2

a1 = ∆y1
∆x − (2x0 + ∆x)a2

a0 = y0 − a1x0 − a2x
2
0

.

iii) cubic approximation with 4 data points (x0, y0), (x1, y1), (x2, y2) and (x3, y3)
Let ∆x = x1 − x0 = x2 − x1 = x3 − x2, ∆y1 = y1 − y0, ∆y2 = y2 − y1 and ∆y3 = y3 − y2

Approximating the solution as y = a0 + a1x+ a2x
2 + a3x

3, then we obtain
y0 = a0 + a1x0 + a2x

2
0 + a3x

2
0

y1 = a0 + a1x1 + a2x
2
1 + a3x

2
1

y2 = a0 + a1x2 + a2x
2
2 + a3x

2
2

y3 = a0 + a1x3 + a2x
2
3 + a3x

2
3

⇒


1 x0 x2

0 x3
0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3



a0

a1

a2

a3

 =


y0

y1

y2

y3


⇒


1 x0 x2

0 x3
0

0 ∆x ∆x(x1 + x0) ∆x(x2
1 + x1x0 + x2

0)
0 2∆x 2∆x(x2 + x0) 2∆x(x2

2 + x2x0 + x2
0)

0 3∆x 3∆x(x3 + x0) 3∆x(x2
3 + x3x0 + x2

0)



a0

a1

a2

a3

 =


y0

∆y1

∆y2

∆y3


Version 1.0, May 2017

12
Principles of Optimal Design

Third Edition

⇒


1 x0 x2

0 x3
0

0 1 (x1 + x0) (x2
1 + x1x0 + x2

0)
0 1 (x2 + x0) (x2

2 + x2x0 + x2
0)

0 1 (x3 + x0) (x2
3 + x3x0 + x2

0)



a0

a1

a2

a3

 =


y0

∆y1/∆x
∆y2/2∆x
∆y3/3∆x


⇒


1 x0 x2

0 x3
0

0 1 (x1 + x0) (x2
1 + x1x0 + x2

0)
0 0 ∆x ∆x(x2 + x1 + x0)
0 0 2∆x 2∆x(x3 + x1 + x0)



a0

a1

a2

a3

 =


y0

∆y1/∆x
(∆y2/2−∆y1)/∆x
(∆y3/3−∆y1)/∆x


⇒


1 x0 x2

0 x3
0

0 1 (x1 + x0) (x2
1 + x1x0 + x2

0)
0 0 1 (x2 + x1 + x0)
0 0 0 ∆x



a0

a1

a2

a3

 =


y0

∆y1/∆x
(∆y2/2−∆y1)/∆x

(∆y3/6−∆y2/2 + ∆y1/2)/∆x2



Therefore,

a3 = (3∆y1 − 3∆y2 + ∆y3)/6∆x3

a2 = (∆y2 − 2∆y1)/2∆x2 − 3(x0 + ∆x)a3

a1 = ∆y1
∆x − (2x0 + ∆x)a2 − (3x2

0 + 3∆xx0 + ∆x2)a3

a0 = y0 − a1x0 − a2x
2
0 − a3x

3
0

.

Version 1.0, May 2017

Principles of Optimal Design
Third Edition 13

2.2

Consider an electric motor series cost model with the data given below (Stoecker 1971):

hp Cost/$ $/hp

0.50 50 100.00

0.75 60 80.00

1.00 70 70.00

1.50 90 60.00

2.00 110 55.00

3.00 150 50.00

5.00 220 44.00

7.50 305 40.50

15.00 560 37.30

Derive the curve-fitting equation $/hp = 34.5 + 36(hp)−0.865.
Hint: Draw the curve using the table values and estimate a value for the constant term. For the steep
part of the curve, draw its representation on a log–log plot to get values for the coefficient of the
second term. Iterate as necessary.

Solution
Assume that the form of approximated equation for data is

$/hp = a+ b(hp)m (2.1)

Following the hint, plot the data and estimate that $ /hp levels out at a value of about 34.

hp

$/hp

34

Then plot the value of ($/hp-34) versus hp in log-log scale for the steepest point of the curve, which
is between the 6th and 7th datum. From the slope of the line, m is found to be -0.865.

Version 1.0, May 2017

14
Principles of Optimal Design

Third Edition

Next step, the $/hp values are plotted against (hp)−0.865. The plot is shown below. The intersection
of the line with $ /hp axis, a, is estimated as 34.5

$/hp

(hp)
-0.865

Therefore, the final approximated equation is

$/hp = 34.5 + 36(hp)−0.865 (2.2)

If one wants more precise coefficients, the leat square curve fitting is the most convenient and popular
method. The ’lsqcurve fit’ in the Matlab will give a more precise equation. And the result is following.

$/hp = 34.0754 + 36.6451(hp)−0.8344 (2.3)

% Example code for Exercise 2.2
hp=[0.5 0.75 1 1.5 2 3 5 7.5 15];
dphp=[100 80 70 60 55 50 44 40.5 37.3];
fun = inline('x(1)+x(2).*(hp).^(x(3))','x','hp');
x = lsqcurvefit(fun,[34 36.5 -0.83], hp, dphp)

Version 1.0, May 2017

Principles of Optimal Design
Third Edition 15

2.3

Helical compression spring design is an often-used example of optimization formulation because
of its simplicity. Formulate such a model with spring index and wire diameter as the two design
variables. Choose an objective function (e.g., weight) and create as many constraints as you can
think of. Typically, these include surging, buckling, stress, clash allowance, geometric limitations, and
minimum number of coils. Select parameter values and find the solution graphically.

Solution
Objective Function:
Minimize the inverse of the safety factor for yielding SFy or Fatigue SFf , ie Maximize ”Reliability”.

Spring Material : Music Wire (ASTM A228)
Experimental data shows that the ultimate strength of spring material is a function of the wire
diameter.
Su = A1dA1

Sus = 0.8Su
Sy = 0.75Su
Sys = 0.577Sy
SNS = C1d

A1(NC)B1

: Ultimate Strength
: Ultimate Shear Strength
: Yield Strength Strength
: Shear Yield
: Fatigue Strength as Expressed by the S-N curve

where A1 = 200, 000, A1 = −0.14, C1 = 630, 500, B1 = −0.2137 and NC : Number of Cycle to Failure
(106)

Sys

Sns

SusSys
o

o‘

o‘’

o‘’’

A

τ

τ

m

a

Figure 2.1. Fatigue Diagram for spring Design

From Fatigue Diagram(Figure 2.1), we have

SFf = OO′′

OO′
= 1

(τm/Sns+τm/Sus)

SFy = Sys

τa+τm

and if τa
τm
≥ Sns(Sys−Sus)

Sus(Sns−Sys)

then fatigue will be critical, else yielding will be critical.

Version 1.0, May 2017

16
Principles of Optimal Design

Third Edition

where

τa = 8FaDKw

πd3

τm = 8FmDKw

πd3

Kw = 4C−1
4C+4 + 0.615

C
.
= 1.6

C0.14

Fa = FU−FL

2

Fm = FU+FL

2

, and

Fa :Alternative Force
Fm :Mean Force
FU :Max Force(30lb)
FL :Min Force(18lb)
D :Average Coil Diameter
d :wire diameter
C :Spring Index

Objective function ObjF = 1
SFf

= τa
Sns

+ τm
Sus

ObjY = 1
SFy

= τa+τm
Sys

i.e. min Obj = K0C
0.86d−(2+A1)

where KF
0 = 2.04(FU−FL

C1(NC)B1
+ FU+FL

C2
) C2 =160,000

KY
0 = 4.07(FU)

C3
C3 = 86,550

Constraints:
Surging : For Constrained end spring, the lowest material frequency is fn = 1

2(Kgc/w)1/2

where k = spring rate = Gd4

8D3N = FU−FL

∆

W = weight of active coils = π2d2DNρ
4

For Steel, fn = 112800(FU−FL)
G∆ Cd−2 and ρ: density (0.28lb/in3)

G : Shear modulus (11.5× 106psi)
∆ : defelction (0.25in)

The allowable nature frequency of the spring is taken as 13 times the frequency of the applied force,
fna(Hz)

fn ≥ 13fna = 500(Hz)

Thus, g1 : K1C
−1D2 ≤ 1 K1 = 13Gfna∆

112800(FU−FL)

(2.4)

Buckling : The critical length of spring is a function of boundary conditions. An approximated equa-

tion to avoid buckling, conservatively, assuming both ends hinged is L = Nd(1 + a) ≤ 11.5k(D2)2/FU
where A= a

d =0.004 , a: clearance under maximum force

N = Gd4

8D3k

Thus, g2 : K2C
−5 ≤ 1 K2 = GFU (1+A)

22.3k2 (2.5)

Maximum Number of Coils : Nmin = 3

N ≥ Nmin

Thus, g3 : K3C
3D−1 ≤ 1 K3 = 8kNmin

G

(2.6)

Spring Index : C = D
d

4 ≤ C ≤ 20
Thus, g4 : K4C ≤ 1 K4 = 1

20
g5 : K5C

−1 ≤ 1 K5 = 4
(2.7)

Pocket Length : When space is limited, the length of spring must be below an upper limit.

Version 1.0, May 2017

Principles of Optimal Design
Third Edition 17

L+Qd ≤ Lm = 1.25(in) Q:number of inactive coil (2)
L=Nd(1+A)

Thus, g6 : K6d
2C−3 + L6d ≤ 1 K6 = G(1+A)

8kLm
, L6 = Q

Lm
(2.8)

Upper and Lower Limit on Coil Diameter:

D + d ≤ OD OD : Outside diameter (1.5in)

D − d ≥ ID ID : Inside diameter (0.7in)

Thus, g7 : K7(C + 1)d ≤ 1 K7 = OD
−1

g8 : C−1 +K8C
−1d−1 ≤ 1 K8 = ID

(2.9)

Upper and Lower Limits on Wire Diameter :

0.004 ≤ d ≤ 0.25
Thus, g9 : K9d

−1 ≤ 1 K9 = 0.004
g10 : K10d ≤ 1 K10 = 1

0.25

(2.10)

Clash Allowance : The usual recommendation of clash allowance is approximately 10 % of the total
spring deflection at the maximum force.
L2 = [N(1 +A) +Q]d : Spring Length at Max Force
LS = (N +Q)d : Solid Length
L2 − Ls = NAd ≤ 0.1∆

Thus, g11 : K11d
−2C3 ≤ 1 K11 = 0.8(FU−FL)

AG
(2.11)

Optimization Model:
min Obj = K0C

0.86d−(2+A1)

g1 : K1d
2C−1 ≤ 1 Surging

g2 : K2C
−5 ≤ 1 Buckling

g3 : K3C
3d−1 ≤ 1 Min. Coils

g4 : K4C ≤ 1 Max. Index
g5 : K5C

−1 ≤ 1 Min. Index
g6 : K6d

2C−3 + L6d ≤ 1 Pocket Length
g7 : K7(C + 1)d ≤ 1 Outside Diameter
g8 : C−1 +K8C

−1d−1 ≤ 1 Inside Diameter
g9 : K9d

−1 ≤ 1 Lower Limit on d
g10 : K10d ≤ 1 Upper Limit on d
g11 : K11C

3d−2 ≤ 1 Clash Allowance

Using the Values given for each parameter, we can graphically find the solution.
C∗ = 10, d∗ = 0.093(in) and SFf ∗ = 1

0.78 = 1.28

Version 1.0, May 2017

18
Principles of Optimal Design

Third Edition

0.04 0.06 0.08 0.12

2.5

5

7.5

10

12.5

15

17.5

20

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

Obj =0.753
Obj =1Obj =1.4

d

C

Version 1.0, May 2017

Principles of Optimal Design
Third Edition 19

2.4

Sometimes the rate of flow of viscous substances can be estimated by measuring the rate that
vortices are shed from an obstacle in the flow. This is the principle behind a vortex meter. A sensor
gives a pulse every time a vortex passes and the volumetric rate of flow can be estimated by measuring
the pulse rate. The (fictional) data in the table were taken to calibrate such a meter.

Fictional Data Representing the Pulse Rate of a Vortex Meter as a Function of

the Velocity of the Fluid Passing the Meter

Flow Rate V Pulse Rate ρ Flow Rate V Pulse Rate ρ

1.18 1.28 27.8 15.6

1.45 1.65 44.0 20.0

1.83 2.12 72.1 25.7

2.36 2.72 123.0 33.1

3.14 3.49 218.8 42.5

4.26 4.48 407.8 54.5

5.91 5.75 798.3 70.1

8.39 7.38 1645.2 90.0

12.1 9.49 3573.9 115.5

18.1 12.1 8186.7 148.4

(a) Plot the data on a log–log scale. (b) Fit the data to the equation ρ = aV b. (c) This fit can be
improved; specifically, using the relation from (b) employ a neural net as a correction factor, namely,
train a small neural net to fit the equation ρ = ϕ(V)aV b or, more appropriately, find a correction
factor that is a function of V :

ϕ(V) =
ρ

aV b
.

(d) Using the same log–log graph from part (a), plot the relations from parts (b) and (c), namely,
plot V versus ϕ(V)aV b.

Solution

a)

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

data

Flow Rate V

Pulse Rate

ρ

b) Fit the data ro the equation ρ = aV b ⇒ log ρ = log a+ blog V
Applying the least square method,(

m Σlog V
Σlog V Σ(log V)2

)(
log a
b

)
=

(
Σlog ρ

Σ(log ρ · log V)

)
Version 1.0, May 2017

20
Principles of Optimal Design

Third Edition

⇒
(

20 72.7645
72.7645 406.5764

)(
log a
b

)
=

(
52.4763
266.3990

)
and

(
a
b

)
=

(
1.9894
0.5321

)
Therefore, the approximated equation by the least square method is

ρ = 1.9894V 0.5321 (2.12)

c)Applying ’train’ command in the Matlab, which uses the Levenberg-Marquardt method, to find a
correction factor ϕ(V) = ρ

aV b , we obtain

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

data
Leat Square Fit
Neural Net

Flow Rate V

φ(V)
%Example Code for Exercise 2.4(c)
p = [1.18 1.45 1.83 ... 3573.9 8186.7];
t = [1.28 1.65 2.12 ... 115.5 148.4];
G=1.98935*p.^0.53128;
tt = t./G
net = newff([0 10000],[20 1],{'tansig' 'purelin'},'trainlm');
net.trainParam.epochs = 60;
net.trainParam.goal = 0.0001;
net = train(net,p,tt);
y2 = sim(net,p)
y3 = y2.*G
loglog(p,t,'o',p,G,p,y3,'*')

d) From ϕ(V) = ρ
aV b , we can get a more accurate plot

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

data
Least Squre
Neural Net

Flow Rate V

Pulse Rate

ρ

Version 1.0, May 2017

Principles of Optimal Design
Third Edition 21

2.5

Consider the case where there is no correlation between any of the data points. (a) If a constant
term were used for f(x), what would the kriging model degenerate to? (b) Consider the opposite ex-
treme where there is perfect correlation between data points, say, as in a straight line. What happens
to the kriging system?

Solution
The kriging metamodel in multidimensional form is Y (x) = f(x)+Z(x), and is comprised of two parts:
a polynomial f(x) (assuming a polynomial kernel), and a functional departure from that polynomial
Z(x). This can be written as,

Y (x) = f(x) + Z(x) =
k∑
j=1

βjfj(x) + Z(x) (2.13)

where fj(x) are the basis functions (i.e. the polynomial terms), βj are the corresponding coefficients,
and Z(x) is a stochastic Gaussian process.
Revisiting equation (2.13), the polynomial term of the model comprises of the k×1 vector of regression
functions

f(x) = [f1(x), f2(x), · · · , fk(x)]T

and the associated k×1 vector of constants

β = [β1, β2, · · · , βk]T .

We next define the n×k expanded design matrix

F =


f t(x1)
f t(x2)

...
f t(xn)


If we notates the stochastic process as

z = [Z(x1), Z(x2), · · · , Z(xn),]T

then, for the output of the sampling data y = [y1, y2, · · · , yn]T , one can rewrite equation (2.13) as

y = Fβ + Z (2.14)
where {F}ij = fj(xi), {β}j = βj (2.15)

Using maximum likelihood estimation, we estimate the coefficient β as

β̂ = (FTR−1F)−1FTR−1y (2.16)

and therefore the new point of interest x has an estimate value

ŷ(x) = fTβ + rT (x)R−1(y − Fβ̂) (2.17)

If a constant term was used for f(x) (e.g. f(x)=β) and F =

1
...
1

 = 1, the equation (2.17) reduces to

equation (2.28) in the text.

ŷ(x) = β + rT (x)R−1(y − β1) (2.18)

Version 1.0, May 2017

22
Principles of Optimal Design

Third Edition

where

β = (1TR−11)−11TR−1y (2.19)

Because of no data correlation, R is equal to I. Then from equation (2.19), β = 1Ty and ŷ(x) = β.
That means, the model degenerates to the polynomial coefficient estimate.

b) If all data points are perfectly correlated, the matrix R has linearly dependent columns and is,
therefore, singular, i.e. cannot be inverted. Thus the kriging ”system” cannot be solved.

2.6

Derive the expressions for the midpoint and slope of the midpoint given in Figure 2.6.

Solution
We note that Figure 2.6 is the logistic function f(x) = 1

1+e−(wx−b) , where w is a slope parameter and b
is a bias/offset parameter. The logistic function is a common function used in neural network neurons,
as well as a number of other fields due to its nice analytic properties. Specifically, the derivative (or
gradient in its multivariate form) include the original logistic function, i.e., df

dxf(x) = f(x)(1− f(x)).

To solve for the midpoint of the logistic function, we note that this function is symmetric and the
infinite limits bound the range within [0, 1], leading to a midpoint at f(x) = 0.5. Solving for this
midpoint,

0.5 =
1

1 + e−(wx−b) (2.20)

0.5e−(wx−b) = 0.5 (2.21)
e−(wx−b) = 1 (2.22)
log(1) = b− wx (2.23)

x =
b

w
(2.24)

To solve for the slope of the logistic function at the midpoint, we first find its derivative,

df

dx
f(x) =

df

dx
[e(wx−b)(1 + e(wx−b))−1]

= e(wx−b)(1 + e(wx−b))−1 − e2(wx−b)(1 + e(wx−b))−2

=
e(wx−b)(1 + e(wx−b))− e2(wx−b)

(1 + e(wx−b))2

=
e(wx−b)

(1 + e(wx−b))2

= f(x)(1− f(x))

Since the value of the logistic function at the midpoint is 0.5, we can see that the slope at the midpoint
is then 0.5(1− 0.5) = 0.25.

Version 1.0, May 2017

