Chapter 2

Stress, Strain and Isotropic Elasticity

2.7 Exercise Problems

2.1 A strip of metal is subjected to a uniform tension stress oy, = o, as shown in Fig. 2.16.

e

Figure 2.16: A strip of metal subjected to tensile stress.

(a) Calculate the shear stress 0,5 acting on a plane that is 45° to the horizontal axis.

(b) Write a general expression for the shear stress o,5 on a plane making an arbitrary angle ¢
with the horizontal axis.

(c) Show that o, is maximum at § = 45°.

(d) Calculate the hydrostatic pressure p in the strip.

Solution
(a) 0ap = (cos45°)(sin45°) oyy = %g_

(b) 0ap = (cos0)(sinb) oy = 5 sin(26) 0.

(c) Maximum of sin(26) occurs at § = 45° where sin(20) = sin90° = 1. Therefore, maximum of

oqp occurs at § = 45° where 0,5 = %J.

11
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(d)p= —%(am +oyy+0.2) = —%O’.

2.2 An FCC single crystal thin film with the orientation shown in Fig. 2.17 is subjected to an
equal-biaxial tensile stress o. Plastic deformation of this crystal will occur by slip on the (111)
plane (shaded) and along the [011] direction as shown. Write an expression for the shear stress
acting on the slip plane in the slip direction.

Figure 2.17: An FCC single crystal thin film under biaxial tension.

Solution
In (zyz) coordinate system,
Ope = Oyy =0, 0, =0

Choose a new coordinate system (2’y’z’) in which the 2/-; /-, and 2’-axes are along the [011],

[111], and [211] directions respectively. The stress component in question is o,

Opry = Q1k Q21 Oy
= Q11 Q21 04z + Q12 Q22 0yy

where Q1 = (€ - é).

Qu:\}i[ou].[mo] -0
13 1
QQlZ%[lll]-[loo]:%
1 1
Qu:%[ou]-[om] =7
Qm = ——[111]-[010] = ——

S
S

3

Therefore,
(&) () =7
O-ZL‘/ /= e —_—— o= ——=0
Y V2 V3 V6

2.3 A single crystal of BCC iron is pulled in uniaxial tension along a cube direction, [100]. We
assume slip occurs on the (211) plane and in the [111] direction as shown in Fig. 2.18(a). The
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critical resolved shear stress (CRSS) for slip to occur is 10 MPa. Calculate the tensile stress at
which plastic yielding begins.

Figure 2.18: (a) A single crystal of BCC iron subjected to tension along the [10 0] direction. (b) An
FCC single crystal subjected to tension along the [110] direction. Two (111) planes are shaded
to help show the atomic positions.

Solution
In (zyz) coordinate system,
Ope =0, Oy =0yy =0

Choose a new coordinate system (2’y’z’) in which the 2/-; /-, and 2’-axes are along the [111],

[211], and [011] directions respectively. The stress component for the CRSS is 0,7,

Opry = Q1k Q21 Oy

= Q11 Q21 04z
where Q1 = (€ - éx).
1 1
Q11 = %[111] -[100] = %
Q21 = L[_ll] [100] = - -

S
S

Therefore,

=%

g

= () ()=

3
|0gry| = 10MPaoc = — x 10 MPa = 21.2 MPa

V2
2.4 An FCC single crystal is subjected to a uniform tensile stress of magnitude o in the [110)]

direction, as shown in Fig. 2.18(b). Calculate all the non-zero stress components in the cubic (zyz)
axes.

Solution
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Let the z, y, z axes in the (zy z) coordinate system be aligned along the [100], [010], and [00 1]

directions, respectively. Choose a new coordinate system (z’y’ 2’) in which the 2/-, y/-, and 2’-axes

are along the [110], [111], and [112] directions respectively. Here we know that
O‘x/x/ = 0'7 O'y/y/ = O'Z/Z/ = O
The stress components in the (zy z) coordinate system are

T AT _7
oij = Qi Q1 okt

T AT
= Qi1 Q)1 oo

where Q. = (€], - &;).

1
=510 =

QL = L[110]-[010] =

V2

QF = —=[110]-[001] =0

V2

ST

Therefore,
1
T AT

Ozz = Q11 Q1 Oprar = 5 o

_ AT AT 1
Oyy = Q21 Q21 Oprar = ) 9

_ AT AT 1
Ozy = Q11 Qo1 Oprgr = 3 o

Ogz = Oyz = Ozz =0

2.5 Consider a single crystal rod subjected to a uniaxial tensile stress o, as shown in Fig. 2.19.
Plastic deformation would occur if the resolved shear stress 7 on a certain crystallographic plane
(with normal vector 72) and along a certain crystallographic direction 7 exceeds a threshold value.
Express the resolved shear stress 7 in terms of the tensile stress o and the angles # and ¢ that
vectors n and 7 make with the tensile axis. The ratio S = 7/c is called the Schmid factor.

Solution

T =cosf cosp o
S = cosf cos ¢

2.6 The stress field of an infinite isotropic elastic medium containing a pressurized cylindrical hole
(of radius r¢) has the following form,

A (2.81)
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Figure 2.19: Single crystal subjected to uniaxial tension.

for r > rg. Transform the stress field into Cartesian components: 0., oyy, 0zy. Make contour

plots of oy, 09, 099 and 0z, Oyy, Ouy-

Solution

Let coordinate system A be the cylindrical (r, 6, z) coordinate system and coordinate system A’
be the Cartesian (x, y, z) coordinate system. Let matrix @ be,

é:v ér) (é:c . é9) (éz : éz)
Qir, = (éi ve. é"r;ez) = (éy Ar) (éy ) éG) (éy éZ)
(éz AT) (éz : é9) (éz : éZ)
Given that
ér = €, cosl + &, sind
€ = —€, sinf 4 &, cos 0
we have,
er Qx@ sz cosf@ —sinf 0O
Q= Qur Quo Qy. | = | sinfd cost 0
er Qz@ sz 0 0 1

A
Opz = Qur Qur orr + Qup Qo 009 = —(C082 0 — sin® 0) (2)
v

. A
Oyy = er er Opr + Qy@ QyH 099 = (0052 0 — sin? 9) <7’2>

Ozz = er er Oppr + Qze QZO ogg =0

. A
Ouy = Qur Qurorr + Quo ng ogg = —2sinf cosf (7"2)
Oyz — er er Opr + Qy@ Qz@ g9 =0
Orz = Q:m" er Opp + Qm@ Q29 ogg =0
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The results can be simplified as: 0., = —Acos(20)/r%, o = Acos(20)/r?, o,y = —Asin(20)/r%.
They can be written in terms of x, y, z as

$2_y2
(oF = — AT 55
rr (m2+y2)2
x2—y2
g = T 55
vy ($2+y2)2
2xy
o - A 7
ry (x2+y2)2
o, /A o /A o /A
XX yy Xy
4 4 4
2 2 B 2
‘_O ~ f\\ = ‘_O / ‘/A“ ‘_O ‘(F /ﬂ
Sof (@ Y Lo T oy T
> S E > > @ J
\\\ﬂ \\t_ﬂ/ —
2 -2 -2
-2 0 2
x/r0
Gre/A
0.5 1
x/ro

2.7 A strain gauge measures tensile strain along a given direction through the change of electrical
resistance of thin wires aligned in that direction. Consider a solid subjected to uniaxial tensile
stress, which induces a normal strain € in the tensile direction, and a normal strain —ve in the
perpendicular directions, as shown in Fig. 2.20(a). Express the strain measured by a strain gauge
oriented at 60° from the tensile axis.

Solution
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Tg

i
I
|
I ’
1 60° y

1\// ve  \ :x'
—_— % -

[}

l

For the coordinate system (xy) shown,

Epp = —VE

Eyy = €

17

The coordinate system (z'3’) is rotated from the coordinate system (xy) by 30°. What the strain

gauge measures is component €,/

Exat = Qi Qi ERi
= Q11 Q11 €xz + Q12 Q12 6yy

~ ~

where Q. = (é; - éx).

Q11 = cos30° = \f

1
Q12 = cos60° = 5

Therefore,

2.8 Express the strain measured by a strain gauge oriented at 45° from the vertical axis of a solid

subjected to an engineering shear strain of v, as shown in Fig. 2.20(b).

Solution

y’l ,
X

i
I
| X
I
|
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B// ve

|
A
T
T %/ a

(a) (b)
Figure 2.20: Strain gauge.

For the coordinate system (zy) shown,

0%
Exy = Eyx = 5

The coordinate system (z'3’) is rotated from the coordinate system (xy) by 45°. What the strain
gauge measures is component £,/,..

Exra = Q1 Qu el
= Q11 Q126y + Q12 Q11 6y

where sz = (é; . ék).

Q11 = cos45° =

Q12 = cos45° =

SIS

Therefore,

;=

Exlx

V2 v2
2

o2

V2 V2
Ty

o2

M\Qw‘

2.9 A thin film is subjected to strain €,, = €1, £,y = €2, €., = €3. Write an expression for the axial
strain ¢ in the arbitrary direction shown in Fig. 2.21.

Solution
Choose a coordinate system (2’7’ z’) such that the 2/-axis is along the the arbitrary direction shown
in Fig. 2.21.

€=¢épy = Quk Quen
= Q1 Q1 zx + Q12 Q128yy + Q13 Q13622
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Figure 2.21: A thin film subjected to strain €1, €9, €3 in the z, y, z directions, respectively.

where Q1 = (€ - éx).

Q11 = sin cos ¢
Q12 =sinysinp
Q13 = cosy

Therefore,

e = (sintcos p)? &1 + (sinthsing)? ey + (costp)?e3

2.10 A solid cube with shear modulus p and Poisson’s ratio v is subjected to a compressive stress
along z, i.e. 0,, = —p, but is not allowed to expand in the = direction due to constraints imposed
by rigid plates. The solid is allowed to expand freely in the y direction. Obtain the normal stress
and strain of the solid in z, y and z directions.

Solution

1

Eax = E [0z — V(Uyy +022)]
1

= % [0y — V(022 + 022)]
1

€= F (022 — V(0 + Tyy)]

For this problem, ¢, = 0 and o, = 0. Therefore,

1
0= Exx = —= (Jxm - VUZZ)

E

Oggy =V 0z = —VDP
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In summary,

Ogy = —VD
Oyy =
02z —-p
€xx = —VDP
v v(l+v)p

Eyy = _E(O.xx + UZZ) = (_E)

1 1—1%)p
€2z = E(O'zz - Vo'xz) = _(E.)

2.11 Repeat the analysis in Problem 2.10 but for a solid constrained (i.e. unable to expand) in
both z and y directions.

Solution
1
Eax = E [0z — V(Uyy +022)]
1
=% [oyy — V(022 + 022)]
1
€= F (022 — V(0ga + Tyy)]
For this problem, ;, = 0 and €,, = 0. By symmetry, we have 0., = 0,,. Therefore,
1
0=¢c4, = E [(1 - V)Ux:p - VUZZ]
v v
Owe = Oyy = 7 0z = —7_ P
In summary,
v
Ogx = — 1— v p
v
w= T P
Ozz = —P
€re = 0
€yy =0
1 P 202
€zz = E(Uzz - QVUxac) = _E <1 - 1— l/)

2.12 Estimate the compressive stress that arises in a block of aluminum when the temperature
increases from 0°C to 30°C if its volume is not allowed to expand. Use the thermoelastic properties
of aluminum given in Table B.1. If the block were allowed to expand freely, it would experience a
thermal strain of €T = o AT in all three direction with zero stress, where « is the thermal expansion
coefficient and AT is the temperature increase.

Solution
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tot __ _el T _ el _
€y = Eoy T Egp = €y + AT =0

tot __ _el T _ _el _
Eyy - Eyy + Eyy - 63/1/ + OCAT =0
tot __ _el T _ _el —
Ezz - Ezz + Ezz - 2::zz + CMAT - O
Therefore, €, = ggly =¢esl = —aAT.
1 1 1
Oz = Oyy = 05 = B+ (g, + &, +€5,) = —3Ba AT

From Table B.1, we find B = 75.9 GPa, a = 23.1 x 107K~! for aluminum. Therefore, for
AT = 30 K, we have
Opg = Oyy = 0, = =3B a AT

= -3 x75.9x%23.1x107% x 30 GPa
= 0.158 GPa
— 158 MPa

2.13 Consider an infinite elastic solid containing a cylindrical hole of radius rg, which is filled with
a gas with pressure p. The stress field in the solid is given in Eq. (2.81). Express the coefficient
A in terms of the pressure p inside the hole and the hole radius rg. Verify that this stress field
satisfies the equilibrium condition, Eq. (2.56).

Solution
A
—p= 0'7‘7"’7’:7"0 = _7'78
A= pr%

Because 0,9 = 09, = 0, = 0, and all the remaining stress components are independent of 6 and z,
it can be easily seen that, (F, = Fp = F, = 0)

00,9 1 dogg 009, 2 .
or + r 00 0z + ;UTG =0
00y, n 1909, 0oz, +1 0
or r 00 0z TUTZ -

The only equilibrium condition we need to verify is

00y n 1807”9 ooy, 1

—\Oprr — =0
or r 00 + 0z * T (o 700)
Because 0, = —A/r? and og9 = A/r?,
00, A
=92 —
or 73
1 1 A A A
y (o o) =0 (‘ﬂ‘ﬂ) =23

Therefore,
Jdo. 1
8;7" + ; (Urr - 099) =0
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Because 0,9 = 0,, = 0, we have

0oy 1807"6 0o, 1 ( . ) —0
or r 00 0z Orr — 000) =

2.14 Given the stress field expression, Eq. (2.81), for an infinite elastic solid containing a pressurized

cylindrical hole,

(a) Find the corresponding strain field. Express the strain field in Cartesian (xyz) components.

(b) Verify that the strain field satisfies the compatibility condition Eq. (2.67).
(c) Verify that the displacement field u, = C/r, ug = 0 is consistent with the strain field, and

express the coefficient C' in terms of hole radius ry and pressure p.

Assume the solid is a linear isotropic material with with shear modulus p and Poisson’s ratio v.

Solution
(a) We have the plane strain condition ¢,, = 0. To find 0., we use the condition that

Given that o, = —A/r? and ogg = A/r?, A = pr3 (see Problem 2.13), we have

0., =0

So we also have a plane stress condition in the solid (outside the hole).

1
= [Urr - V(UGG + Uzz)}

57“7":E
_1+v A A1
a E r2  2ur?

1
€9 = E [009 - V(UTT + O'zz)}
1+v A Al
 E r2 2ur?

Erg = Erz = €9, =0

Similar to the stress transformation rule from cylindrical to Cartesian coordinates derived in Prob-

lem 2.6, we have similar expressions for the strain transformation, i.e.

er Qxe sz cosf —sinf 0
Qik=| Qur Quo Qyz | = | sinf cost 0
QZT QzG sz 0 0 1
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. A
Exx = er er Err + Qz@ Qx@ €09 = _(C052 0 — 811’12 9) <2,LL 7“2>
2 c 2 A
Eyy = er er Erp 1 Qy9 Qy@ €00 = (COS 0 — sin 0) 2 r2
€, =0
. A
Exy = er er Err + an@ Qy@ €gg = —2sin 6 cos 2# r2
Eyz = er Qzr Err + Qy9 Q2000 =0
Exz = er er Epr + Qx@ Qz@ €00 = 0

The results can be simplified as: 0., = —Acos(20)/r2, 0,y = Acos(20) /12, 04y = —Asin(20)/r2.
They can be written in terms of x, y, z as

B A 332 7y2
= o (o 1 )
A x2 _y2
A 2zy

T T @ 4 )

(b) The compatibility condition to be verified is

Eaz,yy + Eyyaz — 2€ayay =0

L@ At bmyty)
oy 2 (a2 )t
92 A 6(z* — 62y + 9
Eyy,zx @%y = Z (22 + y2)4
0? A 6(z* — 6zy + yh)

Therefore,

Exzyy + Eyyaz — 2€ayay =0
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(¢) Suppose u, = C'/r and ug = u, = 0, then

o _Ow _ C

T or 2

10up wuw, C
_

Ep=——77+t—=>3
r 00 r 72

ou,
EZZ: =

0z

1 %_% Louw
ETQ_Z 7“69

1 8ur 8uZ
57‘2—2< )—0

1 (10u, Oug)
o 2<r80+8z>_0

These are consistent with the displacement fields in (a) as long as

_ A _prg

C2u 2p
2.15 Given the stress and strain expressions in Problems 2.13 and 2.14 for an infinite solid containing
a pressurized cylindrical hole, express the total elastic energy per unit length along the hole in terms

of the pressure p and hole radius rg using the following two approaches and show that they agree
with each other.

(a) Integrate the strain energy density Aw over the entire volume of the solid.

(b) Integrate the work done on the interior surface of the cylindrical hole as the pressure gradually
increases from 0 to p.

Solution
(a)
A 1 N 1 1 A2 N 1 A2
W = —Opp€ —0pecPe = — —
9 rrérr 2 06c o0 2 2,u7‘4 2 2Mr4
A2
- 2urt
0 27 [e%s) A2
E = rdr/ d@Aw:/ dr2mr 1
0 0 r0 QNT

_m A w(pr)?  wpPng

2pur3 2urd 2p

1
E = 5 p (27 7o) Ur|r=ro
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From Problem 2.14, we have u, = C/r with C = pr/(2u), so that

| _pr% 1
rir=ro — o
2,u To
1 pr% 1 7rp27"(2)
E=—-pQ2rry) |=—— ) =
2 2p 1o 2

consistent with the result in (a).

2.16 Find the expressions for the displacement field for Kelvin’s problem, in which a unit force
in the z direction is applied at the origin in an infinite elastic medium. Express the displacement
field in cylindrical coordinates. Which strain and stress components are non-zero in cylindrical
coordinates?

Solution
In Cartesian coordinates, the displacement field caused by a point force in the z-direction is,

1 Tz

e = 16mp(l — v) (22 + y2 + 22)3/2

oo 16mp(1 — v) (22 + y2 + 22)3/2
1 3—4v 22

e = 16mp(l —v) [(ﬁ + 92 4 22)1/2 + (22 + 2 + 22)3/2}

In cylindrical coordinates (76 z), where r = \/W , the displacement field is,
1 rz
Ur = 16mpu(l —v) (r2 + z2)3/2

ug =0

" — 1 3—4v N 22
T 16mu(1—v) |(r2+ 2212 T (12 4 22)3/2
In cylindrical coordinates, the strain field is related to the displacement field through,

o _Ouw 10w ur _ Ou.
T or ) YT o8 r’ T 0z

1 (Oug uy n 1 Ou,
2\ Or r r 00
1 /0u, Ou,
6TZ_2<82 * 87“)
=7 2\r o960 " 0z
Given that u, and u, are independent of # and ug = 0, we have €,y = €9, = 0. The non-zero strain
components are: €., g9, €., and &;.,.

Erp =

From generalized Hooke’s law, we have 0,9 = 0y, = 0. The non-zero stress components are: o,
000, Oz, and oy..



