
Chapter 2

Stress, Strain and Isotropic Elasticity

2.7 Exercise Problems

2.1 A strip of metal is subjected to a uniform tension stress σyy = σ, as shown in Fig. 2.16.
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Figure 2.16: A strip of metal subjected to tensile stress.

(a) Calculate the shear stress σαβ acting on a plane that is 45◦ to the horizontal axis.

(b) Write a general expression for the shear stress σαβ on a plane making an arbitrary angle θ
with the horizontal axis.

(c) Show that σαβ is maximum at θ = 45◦.

(d) Calculate the hydrostatic pressure p in the strip.

Solution
(a) σαβ = (cos 45◦)(sin 45◦)σyy = 1

2 σ.

(b) σαβ = (cos θ)(sin θ)σyy = 1
2 sin(2θ)σ.

(c) Maximum of sin(2θ) occurs at θ = 45◦ where sin(2θ) = sin 90◦ = 1. Therefore, maximum of
σαβ occurs at θ = 45◦ where σαβ = 1

2 σ.

11
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(d) p = −1
3(σxx + σyy + σzz) = −1

3 σ.

2.2 An FCC single crystal thin film with the orientation shown in Fig. 2.17 is subjected to an
equal-biaxial tensile stress σ. Plastic deformation of this crystal will occur by slip on the (1 1 1)
plane (shaded) and along the [0 1 1] direction as shown. Write an expression for the shear stress
acting on the slip plane in the slip direction.
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Figure 2.17: An FCC single crystal thin film under biaxial tension.

Solution
In (x y z) coordinate system,

σxx = σyy = σ , σzz = 0

Choose a new coordinate system (x′ y′ z′) in which the x′-, y′-, and z′-axes are along the [0 1 1],
[1 1̄ 1], and [2 1 1̄] directions respectively. The stress component in question is σx′y′ .

σx′y′ = Q1kQ2l σkl

= Q11Q21 σxx +Q12Q22 σyy

where Qik = (ê′i · êk).
Q11 =

1√
2

[0 1 1] · [1 0 0] = 0

Q21 =
1√
3

[1 1̄ 1] · [1 0 0] =
1√
3

Q12 =
1√
2

[0 1 1] · [0 1 0] =
1√
2

Q22 =
1√
3

[1 1̄ 1] · [0 1 0] = − 1√
3

Therefore,

σx′y′ =

(
1√
2

)(
− 1√

3

)
σ = − 1√

6
σ

2.3 A single crystal of BCC iron is pulled in uniaxial tension along a cube direction, [1 0 0]. We
assume slip occurs on the (2 1 1) plane and in the [1 1 1] direction as shown in Fig. 2.18(a). The
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critical resolved shear stress (CRSS) for slip to occur is 10 MPa. Calculate the tensile stress at
which plastic yielding begins.
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Figure 2.18: (a) A single crystal of BCC iron subjected to tension along the [1 0 0] direction. (b) An
FCC single crystal subjected to tension along the [1 1 0] direction. Two (1 1 1̄) planes are shaded
to help show the atomic positions.

Solution
In (x y z) coordinate system,

σxx = σ , σzz = σyy = 0

Choose a new coordinate system (x′ y′ z′) in which the x′-, y′-, and z′-axes are along the [1 1 1],
[2̄ 1 1], and [0 1̄ 1] directions respectively. The stress component for the CRSS is σx′y′ .

σx′y′ = Q1kQ2l σkl

= Q11Q21 σxx

where Qik = (ê′i · êk).
Q11 =

1√
3

[1 1 1] · [1 0 0] =
1√
3

Q21 =
1√
6

[2̄ 1 1] · [1 0 0] = − 2√
6

Therefore,

σx′y′ =

(
1√
3

)(
− 2√

6

)
σ = −

√
2

3
σ

|σx′y′ | = 10 MPaσ =
3√
2
× 10 MPa = 21.2 MPa

2.4 An FCC single crystal is subjected to a uniform tensile stress of magnitude σ in the [1 1 0]
direction, as shown in Fig. 2.18(b). Calculate all the non-zero stress components in the cubic (xyz)
axes.

Solution
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Let the x, y, z axes in the (x y z) coordinate system be aligned along the [1 0 0], [0 1 0], and [0 0 1]
directions, respectively. Choose a new coordinate system (x′ y′ z′) in which the x′-, y′-, and z′-axes
are along the [1 1 0], [1̄ 1 1], and [1 1̄ 2] directions respectively. Here we know that

σx′x′ = σ , σy′y′ = σz′z′ = 0

The stress components in the (x y z) coordinate system are

σij = QT
ikQ

T
jl σ
′
kl

= QT
i1Q

T
j1 σx′x′

where QT
ik = (ê′k · êi).

QT
11 =

1√
2

[1 1 0] · [1 0 0] =
1√
2

QT
21 =

1√
2

[1 1 0] · [0 1 0] =
1√
2

QT
31 =

1√
2

[1 1 0] · [0 0 1] = 0

Therefore,

σxx = QT
11Q

T
11 σx′x′ =

1

2
σ

σyy = QT
21Q

T
21 σx′x′ =

1

2
σ

σxy = QT
11Q

T
21 σx′x′ =

1

2
σ

σxz = σyz = σzz = 0

2.5 Consider a single crystal rod subjected to a uniaxial tensile stress σ, as shown in Fig. 2.19.
Plastic deformation would occur if the resolved shear stress τ on a certain crystallographic plane
(with normal vector n̂) and along a certain crystallographic direction m̂ exceeds a threshold value.
Express the resolved shear stress τ in terms of the tensile stress σ and the angles θ and φ that
vectors n̂ and m̂ make with the tensile axis. The ratio S = τ/σ is called the Schmid factor.

Solution

τ = cos θ cosφ σ

S = cos θ cosφ

2.6 The stress field of an infinite isotropic elastic medium containing a pressurized cylindrical hole
(of radius r0) has the following form,

σrr = −A
r2

σθθ =
A

r2

σrθ = 0

(2.81)
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Figure 2.19: Single crystal subjected to uniaxial tension.

for r ≥ r0. Transform the stress field into Cartesian components: σxx, σyy, σxy. Make contour
plots of σrr, σrθ, σθθ and σxx, σyy, σxy.

Solution
Let coordinate system A be the cylindrical (r, θ, z) coordinate system and coordinate system A’
be the Cartesian (x, y, z) coordinate system. Let matrix Q be,

Qik = (êxyzi · êrθzk ) =

 (êx · êr) (êx · êθ) (êx · êz)
(êy · êr) (êy · êθ) (êy · êz)
(êz · êr) (êz · êθ) (êz · êz)


Given that

êr = êx cos θ + êy sin θ

êθ = −êx sin θ + êy cos θ

we have,

Qik =

 Qxr Qxθ Qxz
Qyr Qyθ Qyz
Qzr Qzθ Qzz

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1



σxx = QxrQxr σrr +QxθQxθ σθθ = −(cos2 θ − sin2 θ)

(
A

r2

)
σyy = QyrQyr σrr +QyθQyθ σθθ = (cos2 θ − sin2 θ)

(
A

r2

)
σzz = QzrQzr σrr +QzθQzθ σθθ = 0

σxy = QxrQyr σrr +QxθQyθ σθθ = −2 sin θ cos θ

(
A

r2

)
σyz = QyrQzr σrr +QyθQzθ σθθ = 0

σxz = QxrQzr σrr +QxθQzθ σθθ = 0
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The results can be simplified as: σxx = −A cos(2θ)/r2, σyy = A cos(2θ)/r2, σxy = −A sin(2θ)/r2.
They can be written in terms of x, y, z as

σxx = −A x2 − y2

(x2 + y2)2

σyy = A
x2 − y2

(x2 + y2)2

σxy = −A 2xy

(x2 + y2)2

x / r0

y 
/ r

0

σxx / A

−2 0 2
−4

−2

0

2

4

x / r0

y 
/ r

0
σyy / A

−2 0 2
−4

−2

0

2

4

x / r0
y 

/ r
0

σxy / A

−2 0 2
−4

−2

0

2

4

x / r0

y 
/ r

0

σrr / A

−2 0 2
−4

−2

0

2

4

x / r0

y 
/ r

0

σ
θθ

 / A

−2 0 2
−4

−2

0

2

4

x / r0

y 
/ r

0

σrθ / A

0 0.5 1

0

0.2

0.4

0.6

0.8

1

2.7 A strain gauge measures tensile strain along a given direction through the change of electrical
resistance of thin wires aligned in that direction. Consider a solid subjected to uniaxial tensile
stress, which induces a normal strain ε in the tensile direction, and a normal strain −νε in the
perpendicular directions, as shown in Fig. 2.20(a). Express the strain measured by a strain gauge
oriented at 60◦ from the tensile axis.

Solution
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60o

ε

νε
x

x'

yy'

For the coordinate system (x y) shown,

εxx = −ν ε
εyy = ε

The coordinate system (x′ y′) is rotated from the coordinate system (x y) by 30◦. What the strain
gauge measures is component εx′x′ .

εx′x′ = Q1kQ1l εkl

= Q11Q11 εxx +Q12Q12 εyy

where Qik = (ê′i · êk).

Q11 = cos 30◦ =

√
3

2

Q12 = cos 60◦ =
1

2

Therefore,

εx′x′ =

√
3

2

√
3

2
(−ν ε) +

1

2

1

2
ε

=
1− 3ν

4
ε

2.8 Express the strain measured by a strain gauge oriented at 45◦ from the vertical axis of a solid
subjected to an engineering shear strain of γ, as shown in Fig. 2.20(b).

Solution

γ

45o

x

x'
y

y'



18 CHAPTER 2. STRESS, STRAIN AND ISOTROPIC ELASTICITY
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Figure 2.20: Strain gauge.

For the coordinate system (x y) shown,

εxy = εyx =
γ

2

The coordinate system (x′ y′) is rotated from the coordinate system (x y) by 45◦. What the strain
gauge measures is component εx′x′ .

εx′x′ = Q1kQ1l εkl

= Q11Q12 εxy +Q12Q11 εyx

where Qik = (ê′i · êk).

Q11 = cos 45◦ =

√
2

2

Q12 = cos 45◦ =

√
2

2

Therefore,

εx′x′ =

√
2

2

√
2

2

γ

2
+

√
2

2

√
2

2

γ

2

=
γ

2

2.9 A thin film is subjected to strain εxx = ε1, εyy = ε2, εzz = ε3. Write an expression for the axial
strain ε in the arbitrary direction shown in Fig. 2.21.

Solution
Choose a coordinate system (x′ y′ z′) such that the x′-axis is along the the arbitrary direction shown
in Fig. 2.21.

ε = εx′x′ = Q1kQ1l εkl

= Q11Q11 εxx +Q12Q12 εyy +Q13Q13 εzz
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Figure 2.21: A thin film subjected to strain ε1, ε2, ε3 in the x, y, z directions, respectively.

where Qik = (ê′i · êk).

Q11 = sinψ cosϕ

Q12 = sinψ sinϕ

Q13 = cosψ

Therefore,

ε = (sinψ cosϕ)2 ε1 + (sinψ sinϕ)2 ε2 + (cosψ)2 ε3

2.10 A solid cube with shear modulus µ and Poisson’s ratio ν is subjected to a compressive stress
along z, i.e. σzz = −p, but is not allowed to expand in the x direction due to constraints imposed
by rigid plates. The solid is allowed to expand freely in the y direction. Obtain the normal stress
and strain of the solid in x, y and z directions.

Solution

εxx =
1

E
[σxx − ν(σyy + σzz)]

εyy =
1

E
[σyy − ν(σxx + σzz)]

εzz =
1

E
[σzz − ν(σxx + σyy)]

For this problem, εxx = 0 and σyy = 0. Therefore,

0 = εxx =
1

E
(σxx − νσzz)

σxx = ν σzz = −ν p
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In summary,
σxx = −ν p
σyy = 0

σzz = −p
εxx = −ν p

εyy = − ν
E

(σxx + σzz) =
ν(1 + ν)p

E

εzz =
1

E
(σzz − ν σxx) = −(1− ν2)p

E

2.11 Repeat the analysis in Problem 2.10 but for a solid constrained (i.e. unable to expand) in
both x and y directions.

Solution

εxx =
1

E
[σxx − ν(σyy + σzz)]

εyy =
1

E
[σyy − ν(σxx + σzz)]

εzz =
1

E
[σzz − ν(σxx + σyy)]

For this problem, εxx = 0 and εyy = 0. By symmetry, we have σxx = σyy. Therefore,

0 = εxx =
1

E
[(1− ν)σxx − νσzz]

σxx = σyy =
ν

1− ν
σzz = − ν

1− ν
p

In summary,

σxx = − ν

1− ν
p

σyy = − ν

1− ν
p

σzz = −p
εxx = 0

εyy = 0

εzz =
1

E
(σzz − 2ν σxx) = − p

E

(
1− 2ν2

1− ν

)
2.12 Estimate the compressive stress that arises in a block of aluminum when the temperature
increases from 0◦C to 30◦C if its volume is not allowed to expand. Use the thermoelastic properties
of aluminum given in Table B.1. If the block were allowed to expand freely, it would experience a
thermal strain of εT = α∆T in all three direction with zero stress, where α is the thermal expansion
coefficient and ∆T is the temperature increase.

Solution
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εtot
xx = εel

xx + εT
xx = εel

xx + α∆T = 0

εtot
yy = εel

yy + εT
yy = εel

yy + α∆T = 0

εtot
zz = εel

zz + εT
zz = εel

zz + α∆T = 0

Therefore, εel
xx = εel

yy = εel
zz = −α∆T .

σxx = σyy = σzz = B · (εel
xx + εel

yy + εel
zz) = −3B α∆T

From Table B.1, we find B = 75.9 GPa, α = 23.1 × 10−6 K−1 for aluminum. Therefore, for
∆T = 30 K, we have

σxx = σyy = σzz = −3B α∆T

= −3× 75.9× 23.1× 10−6 × 30 GPa

= 0.158 GPa

= 158 MPa

2.13 Consider an infinite elastic solid containing a cylindrical hole of radius r0, which is filled with
a gas with pressure p. The stress field in the solid is given in Eq. (2.81). Express the coefficient
A in terms of the pressure p inside the hole and the hole radius r0. Verify that this stress field
satisfies the equilibrium condition, Eq. (2.56).

Solution

−p = σrr|r=r0 = −A
r2

0

A = p r2
0

Because σrθ = σθz = σrz = 0, and all the remaining stress components are independent of θ and z,
it can be easily seen that, (Fr = Fθ = Fz = 0)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ = 0

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz = 0

The only equilibrium condition we need to verify is

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = 0

Because σrr = −A/r2 and σθθ = A/r2,

∂σrr
∂r

= 2
A

r3

1

r
(σrr − σθθ) =

1

r

(
−A
r2
− A

r2

)
= −2

A

r3

Therefore,
∂σrr
∂r

+
1

r
(σrr − σθθ) = 0
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Because σrθ = σrz = 0, we have

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = 0

2.14 Given the stress field expression, Eq. (2.81), for an infinite elastic solid containing a pressurized
cylindrical hole,

(a) Find the corresponding strain field. Express the strain field in Cartesian (xyz) components.

(b) Verify that the strain field satisfies the compatibility condition Eq. (2.67).

(c) Verify that the displacement field ur = C/r, uθ = 0 is consistent with the strain field, and
express the coefficient C in terms of hole radius r0 and pressure p.

Assume the solid is a linear isotropic material with with shear modulus µ and Poisson’s ratio ν.

Solution
(a) We have the plane strain condition εzz = 0. To find σzz, we use the condition that

0 = εzz =
1

E
[σzz − ν(σrr + σθθ)]

σzz = ν(σrr + σθθ)

Given that σrr = −A/r2 and σθθ = A/r2, A = p r2
0 (see Problem 2.13), we have

σzz = 0

So we also have a plane stress condition in the solid (outside the hole).

εrr =
1

E
[σrr − ν(σθθ + σzz)]

= −1 + ν

E

A

r2
= − A

2µ

1

r2

εθθ =
1

E
[σθθ − ν(σrr + σzz)]

=
1 + ν

E

A

r2
=

A

2µ

1

r2

εrθ = εrz = εθz = 0

Similar to the stress transformation rule from cylindrical to Cartesian coordinates derived in Prob-
lem 2.6, we have similar expressions for the strain transformation, i.e.

Qik =

 Qxr Qxθ Qxz
Qyr Qyθ Qyz
Qzr Qzθ Qzz

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


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εxx = QxrQxr εrr +QxθQxθ εθθ = −(cos2 θ − sin2 θ)

(
A

2µ r2

)
εyy = QyrQyr εrr +QyθQyθ εθθ = (cos2 θ − sin2 θ)

(
A

2µ r2

)
εzz = 0

εxy = QxrQyr εrr +QxθQyθ εθθ = −2 sin θ cos θ

(
A

2µ r2

)
εyz = QyrQzr εrr +QyθQzθ εθθ = 0

εxz = QxrQzr εrr +QxθQzθ εθθ = 0

The results can be simplified as: σxx = −A cos(2θ)/r2, σyy = A cos(2θ)/r2, σxy = −A sin(2θ)/r2.
They can be written in terms of x, y, z as

εxx = − A
2µ

x2 − y2

(x2 + y2)2

εyy =
A

2µ

x2 − y2

(x2 + y2)2

εxy = − A
2µ

2xy

(x2 + y2)2

(b) The compatibility condition to be verified is

εxx,yy + εyy,xx − 2εxy,xy = 0

εxx,yy =
∂2

∂y2
εxx =

A

2µ

6(x4 − 6xy + y4)

(x2 + y2)4

εyy,xx =
∂2

∂x2
εyy =

A

2µ

6(x4 − 6xy + y4)

(x2 + y2)4

εxy,xy =
∂2

∂x∂y
εxy =

A

2µ

6(x4 − 6xy + y4)

(x2 + y2)4

Therefore,

εxx,yy + εyy,xx − 2εxy,xy = 0
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(c) Suppose ur = C/r and uθ = uz = 0, then

εrr =
∂ur
∂r

= −C
r2

εθθ =
1

r

∂uθ
∂θ

+
ur
r

=
C

r2

εzz =
∂uz
∂z

= 0

εrθ =
1

2

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
= 0

εrz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
= 0

εθz =
1

2

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
= 0

These are consistent with the displacement fields in (a) as long as

C =
A

2µ
=
p r2

0

2µ

2.15 Given the stress and strain expressions in Problems 2.13 and 2.14 for an infinite solid containing
a pressurized cylindrical hole, express the total elastic energy per unit length along the hole in terms
of the pressure p and hole radius r0 using the following two approaches and show that they agree
with each other.

(a) Integrate the strain energy density ∆w over the entire volume of the solid.

(b) Integrate the work done on the interior surface of the cylindrical hole as the pressure gradually
increases from 0 to p.

Solution
(a)

∆w =
1

2
σrrεrr +

1

2
σθθεθθ =

1

2

A2

2µ r4
+

1

2

A2

2µ r4

=
A2

2µ r4

E =

∫ ∞
r0

rdr

∫ 2π

0
dθ∆w =

∫ ∞
r0

dr 2π r
A2

2µ r4

=
π A2

2µ r2
0

=
π (p r2

0)2

2µ r2
0

=
π p2 r2

0

2µ

(b)

E =
1

2
p (2π r0)ur|r=r0
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From Problem 2.14, we have ur = C/r with C = p r2
0/(2µ), so that

ur|r=r0 =
p r2

0

2µ

1

r0

E =
1

2
p (2π r0)

(
p r2

0

2µ

1

r0

)
=
π p2 r2

0

2µ

consistent with the result in (a).

2.16 Find the expressions for the displacement field for Kelvin’s problem, in which a unit force
in the z direction is applied at the origin in an infinite elastic medium. Express the displacement
field in cylindrical coordinates. Which strain and stress components are non-zero in cylindrical
coordinates?

Solution
In Cartesian coordinates, the displacement field caused by a point force in the z-direction is,

ux =
1

16πµ(1− ν)

x z

(x2 + y2 + z2)3/2

uy =
1

16πµ(1− ν)

y z

(x2 + y2 + z2)3/2

uz =
1

16πµ(1− ν)

[
3− 4ν

(x2 + y2 + z2)1/2
+

z2

(x2 + y2 + z2)3/2

]
In cylindrical coordinates (r θ z), where r =

√
x2 + y2, the displacement field is,

ur =
1

16πµ(1− ν)

r z

(r2 + z2)3/2

uθ = 0

uz =
1

16πµ(1− ν)

[
3− 4ν

(r2 + z2)1/2
+

z2

(r2 + z2)3/2

]
In cylindrical coordinates, the strain field is related to the displacement field through,

εrr =
∂ur
∂r

, εθθ =
1

r

∂uθ
∂θ

+
ur
r
, εzz =

∂uz
∂z

εrθ =
1

2

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
εrz =

1

2

(
∂ur
∂z

+
∂uz
∂r

)
εθz =

1

2

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
Given that ur and uz are independent of θ and uθ = 0, we have εrθ = εθz = 0. The non-zero strain
components are: εrr, εθθ, εzz, and εrz.

From generalized Hooke’s law, we have σrθ = σθz = 0. The non-zero stress components are: σrr,
σθθ, σzz, and σrz.


