2. Vectors

Exercise 2.1 (Subpaces and dimensions) Consider the set S of points
such that
X1+ 2xp4+3x3 =0, 3x1+2x,+x3 =0.

Show that S is a subspace. Determine its dimension, and find a basis
for it.

Solution 2.1 The set S is a subspace, as can be checked directly: if
x,y € S, then for every A, € R, we have Ax +uy € S. To find
the dimension, we solve the equation and find that any solution to
the equations is of the form x; = —1/2xy, x3 = —1/3x2, where x; is
free. Hence the dimension of S is 1, and a basis for S is the vector
(—=1/2,1,-1/3).

Exercise 2.2 (Affine sets and projections) Consider the setin R3, de-
fined by the equation

P:{XGR3 : x1+2xz+3x3:1}.

1. Show that the set P is an affine set of dimension 2. To this end,
express it as x©) 4+ span(x(l),x(z)), where x© € P, and x(V),x(2
are linearly independent vectors.

2. Find the minimum Euclidean distance from 0 to the set P, and a
point that achieves the minimum distance.

Solution 2.2

1. We can express any vector x € P as x = (xq,x2,1/3 —x1/3 —
2xp/3), where x1, x; are arbitrary. Thus

x=x0 4 xlx(1> + xzx(2>,

where
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Since x(1) and x(?) are linearly independent, P is of dimension 2.

2. The set P is defined by a single linear equation a'x = b, with
a" =[123]and b = 1, ie, P is a hyperplane. The minimum
Euclidean distance from o to P is the £, norm of the projection of
0 onto P, which can be determined as discussed in Section 2.3.2.2.
That is, the projection x* of 0 onto P is such that x* € P and x*



is orthogonal to the subspace generating P (which coincides with
the span of a), that is x* = aa. Hence, it must be that alx* =1,
thus a||al|5 = 1, and « = 1/||a]|3. We thus have that
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~ lall3’
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and the distance we are seeking is |[x*||; = 1/||a|, = 1/V14.

Exercise 2.3 (Angles, lines and projections)

1. Find the projection z of the vector x = (2,1) on the line that passes
through xy = (1,2) and with direction given by vector u = (1,1).

2. Determine the angle between the following two vectors:

1 3
x=\|21|,y=1]2
3 1

Are these vectors linearly independent?

Solution 2.3

1. We can observe directly that u ' (x — xg) = 0, hence the projection
of x is the same as that of xy, which is z = x itself.
Alternatively, as seen in Section (2.3.2.1), the projection is

(

u'(x—xp)

zZ = X9+
ulu

which gives z = xo.

Another method consists in solving
min |[xo + tu — x| = min PuTu —2tu’ (x — xg) + ||]x — x03
= mtin (u"u)(t — to)? 4 constant,
where ty = (x — xg) ' u/(uTu). This leads to the optimal t* = t,
and provides the same result as before.
2. The angle cosine is given by

xTy 10

cosf = ——— = —,
[xll2llyll2 14

which gives 6 ~ 41°.
The vectors are linearly independent, since Ax + uy = 0 for A, u €

R implies that A = y = 0. Another way to prove this is to observe
that the angle is not 0° nor 180°.



Exercise 2.4 (Inner product) Let x,y € R". Under which condition
on « € R” does the function

flxy) = i KXYk

k=1

define an inner product on R"?

Solution 2.4 The axioms of 2.2 are all satisfied for any « € R", except
the conditions

flx,x) = 0;
f(x,x) = 01if and only if x = 0.

These properties hold if and only if & > 0, k = 1,...,n. Indeed, if
the latter is true, then the above two conditions hold. Conversely, if
if there exist k such that a; < 0, setting x = e, (the k-th unit vector
in R") produces f(ex, ex) < 0; this contradicts one of the two above
conditions.

Exercise 2.5 (Orthogonality) Letx,y € R” be two unit-norm vectors,
that is, such that ||x||2 = ||y|[2 = 1. Show that the vectors x — y and
x + y are orthogonal. Use this to find an orthogonal basis for the
subspace spanned by x and y.

Solution 2.5 When x, y are both unit-norm, we have
(x—yx+y)=x"x—yly—yx+x'y=x'x-y'y=0

as claimed.
We can express any vector z € span(x,y) as z = Ax + uy, for some
A, u € R. We have z = au + v, where

_Atp o A
oc—z,,B—z.

Hence z € span(u,v). The converse is also true for similar reasons.
Thus, (u,v) is an orthogonal basis for span(x,y). We finish by nor-
malizing u, v, replacing them with (/| u|2,v/||v||2). The desired or-
thogonal basis is thus given by ((x —y)/||x — yll2, (x +y)/||x + y||2)-

Exercise 2.6 (Norm inequalities)

1. Show that the following inequalities hold for any vector x:
el < llxle < llxlla < lxll < Vallxla < nllx]
\/ﬁ 2> 0 = 2 = 1= 2 = 00+

Hint: use the Cauchy-Schwartz inequality.



2. Show that for any non-zero vector x,

2
card(x) > Hle,
112

where card(x) is the cardinality of the vector x, defined as the num-
ber of non-zero elements in x. Find vectors x for which the lower
bound is attained.

Solution 2.6

1. We have

n
I3 = Yo < n-maxx? = n- v
i=1

Also, |[x[lo < /23 + ...+ 12 = ||x].

The inequality ||x|» < ||x||; is obtained after squaring both sides,
and checking that

2
n n n
Yo <Y A+ x| = <Z |xi|> = lxI3.
i=1 ]
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Finally, the condition ||x||; < v/n||x||2 is due to the Cauchy-Schwartz
inequality
2yl < llyllz - lzll2,
applied to the two vectors y = (1,...,1) and z = |x| = (|x1],..., |xx]).
2. Let us apply the Cauchy-Schwartz inequality with z = |x| again,

and with y a vector with y; = 1 if x; # 0, and y; = 0 otherwise.
We have [|y||> = vk, with k = card(x). Hence

2"yl = llxlh < yll2- l1zll2 = V- [Ix]l2,

which proves the result. The bound is attained for vectors with k
non-zero elements, all with the same magnitude.

Exercise 2.7 (Holder inequality) Prove Holder’s inequality (2.4). Hint:
consider the normalized vectors u = x/||x||,, v = y/||y||;, and ob-
serve that

Tyl = [lxllpllylly - 1ol < llxlpllylly 3 luevel.
k

Then, apply Young’s inequality (see Example 8.10) to the products
|uxok] = [u][oe].



Solution 2.7 The inequality is trivial if one of the vectors x, y is zero.
We henceforth assume that none is, which allows us to define the
normalized vectors 1, v. We need to show that

Yool < 1.
k

Using the hint given, we apply Young’s inequality, which states that
for any given numbers a,b > 0 and p, g > 0 such that

1,1,
p 19
it holds that 1 1
ab < —aP + =p1.
p q

We thus have, with a = |uy| and b = |vg|, and summing over k:
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where we have used the fact that ||u||, = ||v|[; = 1.

Exercise 2.8 (Linear functions)

1. For a n-vector x, with n = 2m — 1 odd, we define the median of
x as the scalar value x, such that exactly n of the values in x are
< x; and n are > x, (i.e., x, leaves half of the values in x to its left,
and half to its right). Now consider the function f : R” — R, with
values f(x) = x, — L Y7 | x;. Express f as a scalar product, that is,
find a € R" such that f(x) = a'x for every x. Find a basis for the
set of points x such that f(x) = 0.

2. For a € R?, we consider the “power law” function f : RZ, — R,
with values f(x) = x]'x52. Justify the statement: “the coefficients
«; provide the ratio between the relative error in f to a relative
error in x;”.

Solution 2.8 (Linear functions) TBD

Exercise 2.9 (Bound on a polynomial’s derivative) In this exercise,
you derive a bound on the largest absolute value of the derivative
of a polynomial of a given order, in terms of the size of the coeffi-
cients!. For w € R¥*1, we define the polynomial py,, with values

* See the discussion on regularization
in Section 13.2.3 for an application of
this result.



pu(x) = w1 + wox + ... + weq x5

Show that, for any p > 1

Wel3)| < (i, p ol

Vxel[-1,1] : ‘d)

where v = (wy, ..., W) € RK, and

k p=1,
Clk,p) = f}le P=2
7(;) p = .

Hint: you may use Holder’s inequality (2.4) or the results from Exer-
cise 2.6.

Solution 2.9 (Bound on a polynomial’s derivative) We have, withz =
(1,2,...,k), and using Holder’s inequality:

d
< wa| +2|ws| + ..+ k|wg ]
= |'UTZ|
< Alollp - [Izllg-
When p = 1, we have
Izllg = llzlleo = k.

When p = 2, we have

Izllg =zl = V1+4+...+k < Vk- k2 =2

When p = oo, we have

k(k+1
lzllg = llzli =14+2+...+k= (k+1)



