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2. Vectors

Exercise 2.1 (Subpaces and dimensions) Consider the set S of points
such that

x1 + 2x2 + 3x3 = 0, 3x1 + 2x2 + x3 = 0.

Show that S is a subspace. Determine its dimension, and find a basis
for it.

Solution 2.1 The set S is a subspace, as can be checked directly: if
x, y ∈ S , then for every λ, µ ∈ R, we have λx + µy ∈ S . To find
the dimension, we solve the equation and find that any solution to
the equations is of the form x1 = −1/2x2, x3 = −1/3x2, where x2 is
free. Hence the dimension of S is 1, and a basis for S is the vector
(−1/2, 1,−1/3).

Exercise 2.2 (Affine sets and projections) Consider the set in R3, de-
fined by the equation

P =
{

x ∈ R3 : x1 + 2x2 + 3x3 = 1
}

.

1. Show that the set P is an affine set of dimension 2. To this end,
express it as x(0) + span(x(1), x(2)), where x(0) ∈ P , and x(1), x(2)

are linearly independent vectors.

2. Find the minimum Euclidean distance from 0 to the set P , and a
point that achieves the minimum distance.

Solution 2.2

1. We can express any vector x ∈ P as x = (x1, x2, 1/3 − x1/3 −
2x2/3), where x1, x2 are arbitrary. Thus

x = x(0) + x1x(1) + x2x(2),

where

x(0) =




0
0
1
3


 , x(1) =




1
0
− 1

3


 , x(2) =




0
1
− 2

3


 .

Since x(1) and x(2) are linearly independent, P is of dimension 2.

2. The set P is defined by a single linear equation a>x = b, with
a> = [1 2 3] and b = 1, i.e., P is a hyperplane. The minimum
Euclidean distance from 0 to P is the `2 norm of the projection of
0 onto P , which can be determined as discussed in Section 2.3.2.2.
That is, the projection x∗ of 0 onto P is such that x∗ ∈ P and x∗
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is orthogonal to the subspace generating P (which coincides with
the span of a), that is x∗ = αa. Hence, it must be that a>x∗ = 1,
thus α‖a‖2

2 = 1, and α = 1/‖a‖2
2. We thus have that

x∗ =
a
‖a‖2

2
,

and the distance we are seeking is ‖x∗‖2 = 1/‖a‖2 = 1/
√

14.

Exercise 2.3 (Angles, lines and projections)

1. Find the projection z of the vector x = (2, 1) on the line that passes
through x0 = (1, 2) and with direction given by vector u = (1, 1).

2. Determine the angle between the following two vectors:

x =




1
2
3


 , y =




3
2
1


 .

Are these vectors linearly independent?

Solution 2.3

1. We can observe directly that u>(x− x0) = 0, hence the projection
of x is the same as that of x0, which is z = x0 itself.

Alternatively, as seen in Section (2.3.2.1), the projection is

z = x0 +
u>(x− x0)

u>u
u

which gives z = x0.

Another method consists in solving

min
t
‖x0 + tu− x‖2

2 = min
t

t2uTu− 2tu>(x− x0) + ‖x− x0‖2
2

= min
t

(u>u)(t− t0)
2 + constant,

where t0 = (x − x0)
>u/(uTu). This leads to the optimal t∗ = t0,

and provides the same result as before.

2. The angle cosine is given by

cos θ =
x>y

‖x‖2‖y‖2
=

10
14

,

which gives θ ≈ 41◦.

The vectors are linearly independent, since λx + µy = 0 for λ, µ ∈
R implies that λ = µ = 0. Another way to prove this is to observe
that the angle is not 0◦ nor 180◦.
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Exercise 2.4 (Inner product) Let x, y ∈ Rn. Under which condition
on α ∈ Rn does the function

f (x, y) =
n

∑
k=1

αkxkyk

define an inner product on Rn?

Solution 2.4 The axioms of 2.2 are all satisfied for any α ∈ Rn, except
the conditions

f (x, x) ≥ 0;
f (x, x) = 0 if and only if x = 0.

These properties hold if and only if αk > 0, k = 1, . . . , n. Indeed, if
the latter is true, then the above two conditions hold. Conversely, if
if there exist k such that αk ≤ 0, setting x = ek (the k-th unit vector
in Rn) produces f (ek, ek) ≤ 0; this contradicts one of the two above
conditions.

Exercise 2.5 (Orthogonality) Let x, y ∈ Rn be two unit-norm vectors,
that is, such that ‖x‖2 = ‖y‖2 = 1. Show that the vectors x− y and
x + y are orthogonal. Use this to find an orthogonal basis for the
subspace spanned by x and y.

Solution 2.5 When x, y are both unit-norm, we have

(x− y)>(x + y) = x>x− y>y− y>x + x>y = x>x− y>y = 0,

as claimed.
We can express any vector z ∈ span(x, y) as z = λx+ µy, for some

λ, µ ∈ R. We have z = αu + βv, where

α =
λ + µ

2
, β =

λ− µ

2
.

Hence z ∈ span(u, v). The converse is also true for similar reasons.
Thus, (u, v) is an orthogonal basis for span(x, y). We finish by nor-
malizing u, v, replacing them with (u/‖u‖2, v/‖v‖2). The desired or-
thogonal basis is thus given by ((x− y)/‖x− y‖2, (x + y)/‖x + y‖2).

Exercise 2.6 (Norm inequalities)

1. Show that the following inequalities hold for any vector x:

1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤

√
n‖x‖2 ≤ n‖x‖∞.

Hint: use the Cauchy-Schwartz inequality.
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2. Show that for any non-zero vector x,

card(x) ≥ ‖x‖
2
1

‖x‖2
2

,

where card(x) is the cardinality of the vector x, defined as the num-
ber of non-zero elements in x. Find vectors x for which the lower
bound is attained.

Solution 2.6

1. We have

‖x‖2
2 =

n

∑
i=1

x2
i ≤ n ·max

i
x2

i = n · ‖x‖2
∞.

Also, ‖x‖∞ ≤
√

x2
1 + . . . + x2

n = ‖x‖2.

The inequality ‖x‖2 ≤ ‖x‖1 is obtained after squaring both sides,
and checking that

n

∑
i=1

x2
i ≤

n

∑
i=1

x2
i + ∑

i 6=j
|xixj| =

(
n

∑
i=1
|xi|
)2

= ‖x‖2
1.

Finally, the condition ‖x‖1 ≤
√

n‖x‖2 is due to the Cauchy-Schwartz
inequality

|z>y| ≤ ‖y‖2 · ‖z‖2,

applied to the two vectors y = (1, . . . , 1) and z = |x| = (|x1|, . . . , |xn|).

2. Let us apply the Cauchy-Schwartz inequality with z = |x| again,
and with y a vector with yi = 1 if xi 6= 0, and yi = 0 otherwise.
We have ‖y‖2 =

√
k, with k = card(x). Hence

|z>y| = ‖x‖1 ≤ ‖y‖2 · ‖z‖2 =
√

k · ‖x‖2,

which proves the result. The bound is attained for vectors with k
non-zero elements, all with the same magnitude.

Exercise 2.7 (Hölder inequality) Prove Hölder’s inequality (2.4). Hint:
consider the normalized vectors u = x/‖x‖p, v = y/‖y‖q, and ob-
serve that

|x>y| = ‖x‖p‖y‖q · |u>v| ≤ ‖x‖p‖y‖q ∑
k
|ukvk|.

Then, apply Young’s inequality (see Example 8.10) to the products
|ukvk| = |uk||vk|.
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Solution 2.7 The inequality is trivial if one of the vectors x, y is zero.
We henceforth assume that none is, which allows us to define the
normalized vectors u, v. We need to show that

∑
k
|ukvk| ≤ 1.

Using the hint given, we apply Young’s inequality, which states that
for any given numbers a, b ≥ 0 and p, q > 0 such that

1
p
+

1
q
= 1,

it holds that
ab ≤ 1

p
ap +

1
q

bq.

We thus have, with a = |uk| and b = |vk|, and summing over k:

∑
k
|ukvk| ≤

1
p ∑

k
|uk|p +

1
q ∑

k
|vk|q

=
1
p
‖u‖p

p +
1
q
‖v‖q

q

=
1
p
+

1
q
= 1,

where we have used the fact that ‖u‖p = ‖v‖q = 1.

Exercise 2.8 (Linear functions)

1. For a n-vector x, with n = 2m− 1 odd, we define the median of
x as the scalar value xa such that exactly n of the values in x are
≤ xa and n are ≥ xa (i.e., xa leaves half of the values in x to its left,
and half to its right). Now consider the function f : Rn → R, with
values f (x) = xa − 1

n ∑n
i=1 xi. Express f as a scalar product, that is,

find a ∈ Rn such that f (x) = a>x for every x. Find a basis for the
set of points x such that f (x) = 0.

2. For α ∈ R2, we consider the “power law” function f : R2
++ → R,

with values f (x) = xα1
1 xα2

2 . Justify the statement: “the coefficients
αi provide the ratio between the relative error in f to a relative
error in xi”.

Solution 2.8 (Linear functions) TBD

Exercise 2.9 (Bound on a polynomial’s derivative) In this exercise,
you derive a bound on the largest absolute value of the derivative
of a polynomial of a given order, in terms of the size of the coeffi-
cients1. For w ∈ Rk+1, we define the polynomial pw, with values 1 See the discussion on regularization

in Section 13.2.3 for an application of
this result.
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pw(x) .
= w1 + w2x + . . . + wk+1xk.

Show that, for any p ≥ 1

∀ x ∈ [−1, 1] :
∣∣∣∣
dpw(x)

dx

∣∣∣∣ ≤ C(k, p)‖v‖p,

where v = (w2, . . . , wk+1) ∈ Rk, and

C(k, p) =





k p = 1,
k3/2 p = 2,
k(k+1)

2 p = ∞.

Hint: you may use Hölder’s inequality (2.4) or the results from Exer-
cise 2.6.

Solution 2.9 (Bound on a polynomial’s derivative) We have, with z =

(1, 2, . . . , k), and using Hölder’s inequality:
∣∣∣∣
dpw(x)

dx

∣∣∣∣ =
∣∣∣w2 + 2w3x + . . . + kwk+1xk−1

∣∣∣

≤ |w2|+ 2|w3|+ . . . + k|wk+1|
= |v>z|
≤ ‖v‖p · ‖z‖q.

When p = 1, we have

‖z‖q = ‖z‖∞ = k.

When p = 2, we have

‖z‖q = ‖z‖2 =
√

1 + 4 + . . . + k2 ≤
√

k · k2 = k3/2.

When p = ∞, we have

‖z‖q = ‖z‖1 = 1 + 2 + . . . + k =
k(k + 1)

2
.


