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Chapter 2

Solutions to exercises

2.1. Multiplication by an orthogonal matrix
We are given an orthogonal matrix U .

(i) To prove that multiplication by an orthogonal matrix preserves lengths, we write

‖Ux‖2 = (Ux)⊤(Ux) = x⊤U⊤Ux
(a)
= x⊤x = ‖x‖2, (S2.1-1)

where (a) follows from (2.237).

(ii) To prove that multiplication by an orthogonal matrix preserves angles, we write

〈Ux, Uy〉 = (Ux)⊤(Uy) = x⊤U⊤Uy
(a)
= x⊤y = 〈x, y〉,

where (a) again follows from (2.237).

(iii) Let λ and v be an eigenvalue/eigenvector pair of U , that is, Uv = λv. Then

‖v‖ (a)
= ‖Uv‖ = |λ| ‖v‖,

where (a) follows from (S2.1-1). Hence |λ| = 1 for any eigenvalue λ of U .

2.2. Bases and frames in R2

(i) The four matrices are

Φ1 =

[
1
2

0
√

3
2

1

]
, Φ2 =




1
2
√

2
−

√
3

2
√

2
1√
2

0
√

3
2
√

2
1

2
√

2
0 1√

2


 ,

Φ3 =




1
2

−
√

3
2√

3
2

1
2


 , Φ4 =

[
1 1√

2
0

0 1√
2

1

]
.

(ii) Finding the dual basis or a dual frame is easiest using matrices. As long as each ma-
trix above is of full rank (rank 2), we will be able to find the inverse (for bases/square
matrices) or a right inverse (for frames/rectangular matrices),

ΦΦ̃⊤ = I.

To specifically find the canonical dual frame, use (2.160a),

Φ̃ = (ΦΦ∗)−1 Φ.

The synthesis operators for the four duals are

Φ̃1 =

[
2 −

√
3

0 1

]
, Φ̃2 =




1
2
√

2
−

√
3

2
√

2
1√
2

0
√

3
2
√

2
1

2
√

2
0 1√

2


 ,

Φ̃3 =




1
2

−
√

3
2√

3
2

1
2


 , Φ̃4 =

[
3
4

1
2
√

2
− 1

4

− 1
4

1
2
√

2
3
4

]
.

The elements of the duals can be read off as columns of these matrices.

(iii) Φ1 is a basis, and it is not orthonormal because it is not equal to its dual. (Alter-
natively, its two elements are not orthogonal.) Φ2 is a frame, and it is tight because
it is a scalar multiple of its canonical dual; it is furthermore 1-tight and equal to
its canonical dual. (Alternatively, Φ2Φ∗

2 = I.) Φ3 is a basis, and it is orthonormal
because it is equal to its dual. (Alternatively, its two elements are orthogonal and
have unit norm.) Φ4 is a frame, and it is not tight because it is not a scalar multiple
of its canonical dual. (Alternatively, Φ4Φ∗

4 6= cI2 for a scalar c.)



Solutions to Exercises in Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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(iv) These projection coefficients can be computed as

αi = Φ̃⊤
i x,

and thus

α1 =

[
4

−2
√
3

]
, α2 =




1√
2

−
√

3√
2√
2

0



, α3 =

[
1

−
√
3

]
, α4 =




3
2
1√
2

− 1
2


 .

(v) We do this in more detail for the first representation than the others.

For Φ1 : x =
1∑

k=0

α1,kϕ1,k = α1,0ϕ1,0 + α1,1ϕ1,1

= 4

[
1
2√
3

2

]
− 2
√
3

[
0

1

]
=

[
2

2
√
3

]
+

[
0

−2
√
3

]
=

[
2
0

]
.

For Φ2 : x =
1√
2




1
2
√

2√
3

2
√

2


−

√
3√
2


−

√
3

2
√

2
1

2
√

2


+
√
2

[
1√
2

0

]
+ 0

[
0
1√
2

]
=

[
2

0

]
.

For Φ3 : x = 1

[
1
2√
3

2

]
−
√
3

[
−

√
3

2
1
2

]
=

[
2

0

]
.

For Φ4 : x =
3

2

[
1

0

]
+

1√
2

[
1√
2

1√
2

]
− 1

2

[
0

1

]
=

[
2

0

]
.

(vi) We have already done this by computing duals in (ii).

(vii) The norm of x is ‖x‖ = 2. The norms of the expansion vectors are

‖α1‖ = 2
√
7, ‖α2‖ = 2, ‖α3‖ = 2, ‖α4‖ =

√
3.

The orthonormal basis preserves the norm, as predicted by the Parseval equality
(2.96). The tight frame also preserves the norm because it is a 1-tight frame (see
(2.154)). The other two sets do not preserve the norm.

(viii) The expansions that produce more coefficients than the dimension of the signal are
redundant. Thus, expansions with respect to Φ2 and Φ4 are redundant, while those
with respect to Φ1 and Φ3 are not.

2.3. Best approximation in R3

The set {e0, e1, e2} forms an orthonormal basis in R3. Thus, the difference between the
vector x and its approximation x̂01 onto the (e0, e1)-plane is

‖x− x̂01‖2 = ‖(〈x, e0〉 − α0)e0 + (〈x, e1〉 − α1)e1 + 〈x, e2〉e2‖2
(a)
= |〈x, e0〉 − α0|2 + |〈x, e1〉 − α1|2 + |〈x, e2〉|2,

where (a) follows from the Pythagorean theorem. This difference is the smallest possible
and equal to 〈x, e2〉e2 when α0 = 〈x, e0〉 and α1 = 〈x, e1〉, that is, when x̂01 is an
orthogonal projection.

2.4. Matrices representing bases and frames

(i) We check norms and linear independence of the vectors in the set:

‖ϕ0‖ = ‖ϕ1‖ = ‖ϕ2‖ = 1,

〈ϕ0, ϕ1〉 =

(√
2

3

)(
− 1√

6

)
+

1

3
= 0,

〈ϕ0, ϕ2〉 =

(√
2

3

)(
− 1√

6

)
+

1

3
= 0,

〈ϕ1, ϕ2〉 =
1

6
− 1

2
+

1

3
= 0.
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Since all the ϕ vectors are orthogonal (and thus linearly independent), and there
are exactly as many vectors as dimensions, Φ is a basis. Moreover, all ϕ are of unit
norm, and thus Φ is represents an orthonormal basis.

(ii) The resulting matrix after projection is

Φ′ =



√

2
3
− 1√

6
− 1√

6

0 1√
2
− 1√

2


 .

Since the matrix is of full rank 2, and there are 3 vectors, Φ′ represents a frame.
Moreover, since



√

2
3
− 1√

6
− 1√

6

0 1√
2
− 1√

2







√
2
3

0

− 1√
6

1√
2

− 1√
6
− 1√

2


 =

[
1 0
0 1

]
,

Φ′ is also tight.

2.5. Linear independence
For U to be an independent set, it is necessary and sufficient that

λ0

[
0 a2

0 j

]
+ λ1

[
0 1
1 a− 1

]
+ λ2

[
0 0
ja 1

]
= 0 for λ0, λ1, λ2 ∈ C,

has the unique solution λ0 = λ1 = λ2 = 0. This equation is equivalent to the system

a2λ0 + λ1 = 0,

λ1 + jaλ2 = 0,

jλ0 + (a− 1)λ1 + λ2 = 0.

Thus, a2λ0 = −λ1 = jaλ2. By multiplying the last equation by a2 and substituting for
λ0 and λ1 from the first two, we get

ja2λ0 + (a − 1)a2λ1 + a2λ2 = j(jaλ2)− (a − 1)a2(jaλ2) + a2λ2

= (−a − j(a− 1)a3 + a2)λ2

= a(1 − ja2)(a − 1)λ2

= a(1 − ay)(1 + ay)(a − 1)λ2 = 0,

where y = (1 + j)/
√
2 is the square root of j. Assuming that a /∈ {0, 1,−1/y, 1/y}

means that λ2 = 0. We also have a2λ0 = −λ1 = jaλ2 = 0 with a 6= 0 which ensures
that λ0 = λ1 = 0. Hence, U is an independent set if and only if the complex number
a /∈ {0, 1, (1− j)/

√
2,−(1 − j)/

√
2}.

For a = j, we see that

(−2)
[
0 −1
0 j

]
+ 3

[
0 1
1 j − 1

]
+

[
0 0
−1 1

]
=

[
0 5
2 j − 2

]
.

2.6. Continuity of the inner product
We have

|〈x+ h1, y + h2〉 − 〈x, y〉| = |〈x, h2〉+ 〈h1, y〉 + 〈h1, h2〉|
≤ |〈x, h2〉|+ |〈h1, y〉|+ |〈h1, h2〉|
(a)

≤ ‖x‖ ‖h2‖+ ‖x‖ ‖h2‖+ ‖h1‖ ‖h2‖,
where (a) follows from the Cauchy–Schwarz inequality (2.29). Since the limit of the right-
hand side is 0, so is the limit of the left-hand side, leading to the desired result.

2.7. Inner product on CN

Definition 2.7(i)–(ii) hold by the form of y∗Ax, regardless of any condition on A. For (iii)
to hold,

x∗A∗y = (y∗Ax)∗ = 〈x, y〉∗ = 〈y, x〉 = x∗Ay = x∗Ay,
implying A = A∗, that is, A must be a Hermitian operator. For (iv) to hold,

0 < 〈x, x〉 = x∗Ax

for all nonzero x, which is precisely the definition of A being positive definite.
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2.8. Norms on CN

To prove that v is a norm on a vector space, we use Definition 2.9.
For v1:

(i) Positive definiteness: v1(x) =
∑N−1

k=0 |xk| is always positive for any x ∈ CN since it
is a finite sum of positive terms (|xk| ≥ 0, for all xk ∈ C). Moreover,

v1(x) = 0 ⇔
N−1∑

k=0

|xk| = 0

⇔ |xk| = 0, k ∈ {0, 1, . . . , N − 1}
⇔ xk = 0, k ∈ {0, 1, . . . , N − 1} ⇔ x = 0.

(ii) Positive scalability:

v1(αx) =

N−1∑

k=0

|αxk| =

N−1∑

k=0

|α| |xk| = |α|
N−1∑

k=0

|xk| = |α| v1(x).

(iii) Triangle inequality:

v1(x+ y) =

N−1∑

k=0

|xk + yk|
(a)

≤
N−1∑

k=0

(|xk|+ |yk|)

=

N−1∑

k=0

|xk|+
N−1∑

k=0

|yk| = v1(x) + v1(y),

where (a) follows from the triangle inequality on C.

For v2:

(i) Positive definiteness: v2(x) is always positive for any x ∈ CN since it is a the square
root of a finite sum of positive terms (|xk|2 ≥ 0, for all xk ∈ C). Moreover,

v2(x) = 0 ⇔
(

N−1∑

k=0

|xk|2
)

= 0

⇔ |xk|2 = 0, k ∈ {0, 1, . . . , N − 1}
⇔ xk = 0, k ∈ {0, 1, . . . , N − 1} ⇔ x = 0.

(ii) Positive scalability:

v2(αx) =

(
N−1∑

k=0

|αxk|2
)1/2

=

(
N−1∑

k=0

|α|2 |xk|2
)1/2

= |α| v2(x).

(iii) Triangle inequality:

v2(x+ y) =

(
N−1∑

k=0

|xk + yk|2
)1/2

(a)

≤
(

N−1∑

k=0

|xk|2
)1/2

+

(
N−1∑

k=0

|yk|2
)1/2

= v2(x) + v2(y),

where (a) follows from Minkowski’s inequality with p = 2.

2.9. Norms on C([0, 1])
To prove that v is a norm on a vector space, we use Definition 2.9.

For v1:

(i) Positive definiteness: v1(x) =
∫ 1
0
|x(t)| dt is nonnegative for any x ∈ V because the

integrand is nonnegative. Moreover,

v1(x) = 0 ⇔
∫ 1

0
|x(t)| dt = 0

⇔ |x(t)| = 0, t ∈ [0, 1] ⇔ x = 0.
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(ii) Positive scalability:

v1(αx) =

∫ 1

0
|αx(t)| dt =

∫ 1

0
|α| |x(t)| dt = |α|

∫ 1

0
|x(t)| dt = |α| v1(x).

(iii) Triangle inequality:

v1(x+ y) =

∫ 1

0
|x(t) + y(t)| dt ≤

∫ 1

0
(|x(t)| + |y(t)|) dt

=

∫ 1

0
|x(t)| dt +

∫ 1

0
|y(t)| dt = v1(x) + v1(y).

For v2:

(i) Positive definiteness: v22(x) =
∫ 1
0 |x(t)|2 dt is nonnegative for any x ∈ V because the

integrand is nonnegative. Moreover,

v2(x) = 0 ⇔
∫ 1

0
|x(t)|2 dt = 0

⇔ |x(t)|2 = 0, t ∈ [0, 1] ⇔ x = 0.

(ii) Positive scalability:

v2(αx) =

(∫ 1

0
|αx(t)|2 dt

)1/2
=

(∫ 1

0
|α|2|x(t)|2 dt

)1/2

= |α|
(∫ 1

0
|x(t)|2 dt

)1/2
= |α| v2(x).

(iii) Triangle inequality:

v2(x+ y) =

(∫ 1

0
|x(t) + y(t)|2 dt

)1/2

(a)

≤
(∫ 1

0
|x(t)|2 dt

)1/2
+

(∫ 1

0
|y(t)|2 dt

)1/2

= v2(x) + v2(y),

where (a) follows from Minkowski’s inequality with p = 2.

2.10. Orthogonal transforms and ∞ norm

(i) We can find the bounds a2 and b2 by considering rotations/rotoinversions of vectors
on the unit circle. By the definition of the ∞-norm, the upper bound b2 is clearly 1
since there is no vector on the unit circle whose maximum element is greater than
1. The lower bound is achieved when both components of the vector are equal, and
thus

1√
2
≤ ‖T2x‖∞ ≤ 1.

(ii) By the same arguments we conclude that the upper bound is again 1 since there is
no vector on the unit sphere whose maximum element is greater than 1. Similarly,
the lower bound is achieved when all components of the vector are equal, and thus

1√
N
≤ ‖TNx‖∞ ≤ 1.

2.11. Cauchy–Schwarz inequality, triangle inequality, and parallelogram law

(i) If one of the vectors is a zero vector, the result trivially holds. Suppose now that
‖x‖ 6= 0. Then, for any α ∈ R, we have

0
(a)

≤ 〈αx+ y, αx+ y〉 (b)
= 〈αx, αx+ y〉+ 〈y, αx+ y〉

(c)
= 〈αx, αx〉+ 〈αx, y〉 + 〈y, αx〉+ 〈y, y〉
(d)
= |α|2‖x‖2 + α〈x, y〉 + α∗〈y, x〉+ ‖y‖2,
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where (a) follows from the positive definiteness of the inner product; (b) and (c) from
distributivity; and (d) from the linearity in the first argument and the conjugate-
linearity in the second argument. Choosing α = −〈y, x〉/‖x‖2, so α∗ = 〈x, y〉/‖x‖2
and |α|2 = |〈x, y〉|2/‖x‖4, we get

0 ≤ |〈x, y〉|2
‖x‖2 − 2

|〈x, y〉|2
‖x‖2 + ‖y‖2 = −|〈x, y〉|

2

‖x‖2 + ‖y‖2.

Multiplying through by ‖x‖2, rearranging, and taking the square root gives |〈x, y〉| ≤
‖x‖ ‖y‖ as desired.

Note that the Cauchy–Schwarz inequality holds with equality if and only if in-
equality (a) above holds with equality. By positive definiteness of the inner product,
that occurs if and only if αx+ y = 0, meaning that x is a scalar multiple of y.

(ii) We use the Cauchy–Schwarz inequality we just proved:

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 〈x, y〉 + 〈y, x〉+ ‖y‖2
(a)

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

= (‖x‖ + ‖y‖)2,
where (a) follows from the Cauchy–Schwarz inequality, with equality if and only if
x is a scalar multiple of y. Taking square roots gives the desired triangle inequality.

(iii) A simple proof is as follows:

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈y, x〉+ ‖x‖2 + ‖y‖2 − 〈x, y〉 − 〈y, x〉
= 2(‖x‖2 + ‖y‖2).

(iv) Let the inner product be given by the real polarization identity (P2.11-1). We verify
some properties of an inner product in Definition 2.7.

(i) Distributivity:

〈x+ y, z〉 (a)
=

1

4

(
‖x+ y + z‖2 − ‖x+ y − z‖2 ± ‖x+ y + z‖2

)

(b)
=

1

2
‖x+ y + z‖2 − 1

4

(
‖x+ y + z‖2 + ‖x+ y − z‖2

)

(c)
=

1

2
‖x+ y + z‖2 − 1

2

(
‖x+ y‖2 + ‖z‖2

)

(d)
=

1

4

(
‖x+ y + 2z‖2 + ‖x+ y‖2 − 2‖z‖2

)
− 1

2

(
‖x+ y‖2 + ‖z‖2

)

=
1

4
‖x+ y + 2z‖2 − 1

4
‖x+ y‖2 − ‖z‖2

(e)
=

1

2
‖x+ z‖2 +

1

2
‖y + z‖2 − 1

4
‖x− y‖2 − 1

4
‖x+ y‖2 − ‖z‖2

(f)
=

1

2
‖x+ z‖2 +

1

2
‖y + z‖2 − 1

2
‖x‖2 − 1

2
‖y‖2 − ‖z‖2

=
1

2
‖x+ z‖2 −

(
1

2
‖x‖2 +

1

2
‖z‖2

)
+

1

2
‖y + z‖2 −

(
1

2
‖y‖2 +

1

2
‖z‖2

)

(g)
=

1

4

(
‖x+ z‖2 − ‖x− z‖2

)
+

1

4

(
‖y + z‖2 − ‖y − z‖2

)

(h)
= 〈x, z〉+ 〈y, z〉,

where (a) follows from the polarization identity; (b) from adding and subtract-
ing ‖x + y + z‖2/4; (c) from the parallelogram law applied to the summand
in parentheses with (x + y) and z as vectors; (d) from the parallelogram law
applied to ‖x + y + z‖2 with (x + y + z) and z as vectors; (e) from the par-
allelogram law applied to ‖x + y + 2z‖2 with (x + z) and (y + z) as vectors;
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(f) from the parallelogram law applied to the third and fourth summands; (g)
from the parallelogram law applied to the terms in parentheses; and (h) from
the polarization identity.

(ii) Hermitian symmetry: The arguments in the polarization identity commute
in the real case, hence: 〈y, x〉 = 〈x, y〉.

(iii) Positive definiteness:

〈x, x〉 =
1

4

(
‖x+ x‖2 − ‖x− x‖2

)
=

1

4

(
‖2x‖2 − 0

)
= ‖x‖2,

so the positive definiteness of the inner product follows from the positive
definiteness of the norm.

2.12. Norm induced by an inner product
To prove that v is a norm on a vector space, we use Definition 2.9.

(i) Positive definiteness: v2(x) is always positive since a square root is a nonnegative
function. Moreover,

v(x) = 0 ⇔
√
〈x, x〉 = 0 ⇔ x = 0.

(ii) Positive scalability:

v(αx) =
√
〈αx, αx〉 =

√
αα∗〈x, x〉 = |α|

√
〈x, x〉 = |α| v(x).

(iii) Triangle inequality:

v2(x+ y) = 〈x+ y, x+ y〉
= 〈x, x+ y〉+ 〈y, x+ y〉
= 〈x+ y, x〉∗ + 〈x+ y, y〉∗

= 〈x, x〉+ 〈x, y〉+ 〈y, y〉+ 〈x, y〉∗

= v2(x) + v2(y) + 2ℜ{〈x, y〉}.

Using the Cauchy–Schwarz inequality, we further have that

ℜ{〈x, y〉} ≤ |〈x, y〉| ≤
√
〈x, x〉〈y, y〉 = v(x)v(y).

Hence,
v2(x+ y) ≤ v2(x) + v2(y) + 2v(x)v(y) = (v(x) + v(y))2 .

Taking the square root of both sides yields the desired property.

2.13. Distances not necessarily induced by norms
To show that such a discrete metric is a valid distance, we verify that it satisfies the four
properties:

(i) Nonnegativity: For any x, y ∈ V , d(x, y) ≥ 0.

(ii) Symmetry: For any x, y ∈ V , if x 6= y then d(x, y) = 1 = d(y, x); if x = y then
d(x, y) = 0 = d(y, x).

(iii) Triangle inequality: For any x, y, z ∈ V that are not all equal, d(x, y) + d(y, z) ≥
1 ≥ d(x, z). In case x = y = z, d(x, y) + d(y, z) = 0 = d(x, z).

(iv) Identity of Indiscernibles: For any x, y ∈ V , by the definition of d(x, y) we have
d(x, x) = 0 and d(x, y) = 0⇒ x = y.

Hence, the defined discrete metric is a distance.
A simple example shows that d(x, y) is not induced by any norm. Consider two

vectors: x = 2e0 has 2 in the first position and zeros elsewhere; y = −2e1 has −2 in the
second position and zeros elsewhere. Then, for any p,

‖x− y‖p = (2p + 2p)1/p = 2(p+1)/p > 2 > 1,

while d(x, y) = 1.
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2.14. Convergence of the inner product in ℓ2(Z)
Let x and y be sequences in ℓ2(Z). Define x′ and y′ by

x′n = |xn| and y′n = |yn|, for all n ∈ Z.

It is clear that ‖x′‖ = ‖x‖ and ‖y′‖ = ‖y‖, so x′ and y′ are in ℓ2(Z). To check the absolute
convergence of (2.22b), first note

∑

n∈Z

|xn y∗n| =
∑

n∈Z

x′n (y′n)
∗.

The latter sum is of nonnegative terms and thus must converge or diverge to ∞. However,
divergence to infinity is not possible because the sum is bounded by ‖x′‖ ‖y′‖ through the
Cauchy–Schwarz inequality applied to 〈x′, y′〉.

2.15. Definition of ∞ norm

Following the hint, it suffices to consider x =
[
1 a1 a2 · · · aN−1

]⊤
with |ai| ≤ 1

for i = 1, 2, . . . , N − 1. (Why? All the norms we are considering satisfy Definition 2.9(ii).
Hence, multiplying by any scalar does not change whether the condition of interest holds.
In addition, changing the order of elements in a vector does not change its norm.) We need
to show that limp→∞‖x‖p = 1.

Because of the first entry of x, we have ‖x‖p ≥ 1. We also have

‖x‖pp = 1 + ap1 + ap2 + · · ·+ apN−1 ≤ N,

since |ai| ≤ 1 for each i. Thus limp→∞‖x‖p ≤ limp→∞N1/p = 1. Combining the upper
and lower bounds completes the proof.

2.16. Quasinorms with p < 1

(i) Let x =
[
1 0

]⊤
and y =

[
0 1

]⊤
. Then

‖x+ y‖1/2 = (1 + 1)2 = 4 > 2 = 1 + 1 = ‖x‖1/2 + ‖y‖1/2,
violating Definition 2.9(iii).

(ii) Let x ∈ RN . ‖x‖pp is a sum of N terms:
∑N

i=1|xi|p. Since a finite sum is always
interchangeable with a limit, we have

lim
p→0
‖x‖pp =

N−1∑

i=0

lim
p→0
|xi|p.

In this sum, each nonzero xi contributes 1 because limp→0|xi|p = 1. Each zero
xi contributes 0. This proves that limp→0‖x‖pp gives the count of the number of
nonzero components in x.

2.17. Equivalence of norms on finite-dimensional spaces

(i) (a) ‖x‖1 ≥ ‖x‖2 because

‖x‖21 =

(
N−1∑

i=0

|xi|
)2

=

N−1∑

i=0

|xi|2 + 2
∑

0≤i<j≤N−1

|xi xj |

= ‖x‖22 + 2
∑

0≤i<j≤N−1

|xi xj | ≥ ‖x‖22.

(b) ‖x‖2 ≥ ‖x‖∞ because

‖x‖22 =

N−1∑

i=0

|xi|2 ≥ max
i=0,2,...,N−1

|xi|2 = ‖x‖2∞.

(c) N‖x‖∞ ≥
√
N‖x‖2 because

(N‖x‖∞)2 = N2 max
i=0,1,...,N−1

|xi|2 = N

(
N max

i=0,1,...,N−1
|xi|2

)

≥ N

N−1∑

i=0

|xi|2 =
(√

N ‖x‖2
)2
.
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Redistribution is strictly prohibited Comments to book-errata@FourierAndWavelets.org

(d)
√
N ‖x‖2 ≥ ‖x‖1 because

(√
N ‖x‖2

)2
− ‖x‖21 = N

N−1∑

i=0

|xi|2 −




N−1∑

i=0

|xi|2 + 2
∑

0≤i<j≤N−1

|xi xj |




= (N − 1)

N−1∑

i=0

|xi|2 − 2
∑

0≤i<j≤N−1

|xi xj |

=
∑

0≤i<j≤N−1

(|xi| − |xj|)2 ≥ 0.

(ii) If there exists v ∈ V such that ‖v‖a < ∞ and ‖v‖b = ∞, then ‖ · ‖a and ‖ · ‖b are
not equivalent. We give a counterexample in CZ, the infinite-dimensional space of
complex sequences.

(a) The sequence v with all vn = 1 has a bounded ∞ norm, ‖v‖∞ = 1, and
unbounded 1 norm and 2 norm. Hence the ∞ norm is not equivalent to the
1 norm and 2 norm on CZ.

(b) The sequence v with

vn =

{
1/n, n > 0;

0, otherwise,

has an unbounded 1 norm

‖v‖1 =

( ∞∑

n=1

1

n

)1/2

>

(
1 +

∞∑

n=2

2−⌈log2 n⌉
)1/2

=
(
1 + 1

2
+ 1

2
+ · · ·

)1/2
= ∞,

and a bounded 2 norm

‖v‖2 =

( ∞∑

n=1

1

n2

)1/2

=
π√
6
.

Hence the 1 norm is not equivalent to the 2 norm on CZ.

2.18. Nesting of ℓp spaces
We prove the nesting property by induction.

(i) Let x ∈ ℓ1(Z), so ‖x‖1 <∞. Then

‖x‖22 =
∑

i∈Z

|xi|2 ≤



∑

i∈Z

|xi|




2

= ‖x‖21 < ∞.

Hence, x ∈ ℓ2(Z), implying that ℓ1(Z) ⊂ ℓ2(Z).
(ii) Let x ∈ ℓp(Z), and for any n = 1, 2, . . . , p its n-norm ‖x‖n <∞. Then

‖x‖p+1
p+1 =

∑

i∈Z

|xi|p+1 ≤
∑

i∈Z

|xi|p
∑

i∈Z

|xi| = ‖x‖pp ‖x‖1 < ∞.

Hence, x ∈ ℓp+1(Z), implying that ℓp(Z) ⊂ ℓp+1(Z).

2.19. Lp([0, 1]) spaces

(i) We first show that the parallelogram law holds in L2([0, 1]), which follows directly
from the linearity of the integral. In fact,

‖x+ y‖22 + ‖x− y‖22 =

∫ 1

0
|x(t) + y(t)|2 dt +

∫ 1

0
|x(t) − y(t)|2 dt

= 2

(∫ 1

0
|x(t)|2 dt +

∫ 1

0
|y(t)|2 dt

)

= 2(‖x‖22 + ‖y‖22).



Solutions to Exercises in Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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(ii) We now show that the parallelogram law does not hold in Lp([0, 1]) for p 6= 2. Take
x(t) = t and y(t) = 1− t. Then

‖x‖p =

(∫ 1

0
|t|p dt

)1/p

=
1

(p + 1)1/p
,

‖y‖p =

(∫ 1

0
|1− t|p dt

)1/p

=

(∫ 1

0
|u|p du

)1/p

= ‖x‖p,

‖x− y‖p =

(∫ 1

0
|2t− 1|p dt

)1/p

=

(
1

2

∫ 1

−1
|u|p du

)1/p

= ‖x‖p,

‖x+ y‖p =

(∫ 1

0
|1|p dt

)1/p

= 1.

Thus

‖x+ y‖2p + ‖x− y‖2p = 1 +
1

(p + 1)2/p
=

(p + 1)2/p + 1

(p + 1)2/p
,

2(‖x‖2p + ‖y‖2p) =
4

(p + 1)2/p
.

The two are equal only when p = 2.

2.20. Closed subspaces and ℓ0(Z)

(i) For any v ∈ ℓ0(Z), define I = {i | vi 6= 0} to be the finite set of indices of nonzero
elements of v. Let |I| = n <∞ be the number of such elements in v. Then,

‖v‖2 =



∑

i∈Z

|vi|2



1/2

=



∑

i∈I

|vi|2



1/2

≤
(
n max

i∈I
|vi|2

)1/2

=
√
n max

i∈I
|vi| < ∞.

Hence, v ∈ ℓ2(Z), which implies that ℓ0(Z) ⊂ ℓ2(Z).
(ii) Consider a sequence v(n) =

[
. . . 0 1 1

2
. . . 1

n
0 . . .

]
∈ ℓ0(Z). Let also

limn→∞ v(n) = v. Since v has infinitely many nonzero elements, v /∈ ℓ0(Z). How-
ever, v ∈ ℓ2(Z), since

‖v‖2 =


∑

i∈Z

|vi|2



1/2

=

( ∞∑

i=1

1

i2

)1/2

=
π√
6
< ∞.

Hence, ℓ0(Z) is not a closed subspace of ℓ2(Z).

2.21. Infinite sequences and completeness
For the set {ϕk}k∈Z to be a basis for ℓ2(Z), it would have to be possible to express any
vector in ℓ2(Z) uniquely with respect to the set. In this case, uniqueness is satisfied in that
every vector in span({ϕk}k∈Z) has a unique expansion with respect to the set. However,
span({ϕk}k∈Z) does not include every vector in ℓ2(Z). For example, let

ψ0 =

[
. . . 0 0 1√

2
− 1√

2
0 0 . . .

]⊤
.

This vector is in ℓ2(Z) but not in span({ϕk}k∈Z). To see why it is not, note that the
support of ψ0 is {0, 1}, which overlaps with the support of only one vector in {ϕk}k∈Z,
namely the sequence with no shift (k = 0). Since ψ0 is not a scalar multiple of ϕ0 and
none of the shifted versions of ϕ0 in the set has support overlapping with {0, 1}, there is
no way to write ψ0 as an expansion with respect to {ϕk}k∈Z.

(The choice of ψ0 and its notation are suggestive. If we define ψk for nonzero k ∈ Z

through
ψk,n = ψ0,n−2k , n ∈ Z,

then {ϕk}k∈Z ∪ {ψk}k∈Z is an orthonormal basis for ℓ2(Z).)



Solutions to Exercises in Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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2.22. Completeness
We have that

lim
k→∞

pk(t) = p(t),

where

p(t) =
1

1− 1
2
t
, 0 ≤ t ≤ 1.

While (pk) is a Cauchy sequence in P, it does not converge to a vector in P since p(t) is
not a polynomial. Therefore, P is an inner product space, but since it is not complete, it
is not a Hilbert space.

2.23. Completeness of CN

A vector space is complete if every Cauchy sequence in it converges to an element of that
vector space. Hence, given any Cauchy sequence (vn)n≥0 ⊂ CN , we must show that

limn→∞ vn = v ∈ CN .

Let (v
(i)
n )n ⊂ C such that each v

(i)
n is the ith element of the vector vn. Since for any

ε > 0, ‖v(i)n − v(i)m ‖p ≤ ‖vn − vm‖p ≤ ε, (v
(i)
n ) is a Cauchy sequence in C. Since C is

complete, then limn→∞ v
(i)
n = v(i) ∈ C.

Hence, the sequence (vn) converges elementwise to

lim
n→∞

vn =
[
v(0) v(1) . . . v(N−1)

]⊤
= v ∈ CN .

This implies that CN is a complete vector space.

2.24. Cauchy sequences
Let (xn) be a convergent sequence in a normed vector space V and denote its limit by x.
Then

lim
n,m→∞

‖xn − xm‖ = lim
n,m→∞

‖xn − x+ x− xm‖

≤ lim
n→∞

‖x− xn‖+ lim
m→∞

‖x− xm‖ = 0.

Every convergent sequence is thus a Cauchy sequence.

2.25. Norms of operators

(i) The eigenvalues of the matrix A are λ0 = 4 and λ1 = −2. The corresponding

orthonormal eigenvectors are v0 = (1/
√
2)
[
−1 1

]⊤
and v1 = (1/

√
2)
[
1 1

]⊤
.

Any vector x can be decomposed as

x = α0 v0 + α1 v1. (S2.25-1)

Because of the orthogonality of Av0 and Av1,

‖Ax‖2 = ‖Aα0v0‖2 + ‖Aα1v1‖2 = α2
0λ

2
0‖v0‖2 + α2

1λ
2
1‖v1‖2 = α2

0λ
2
0 + α2

1λ
2
1.

From (S2.25-1), and for ‖x‖ = 1, we have α2
0 + α2

1 = 1. Therefore, we can write the
norm of A as

‖A‖2 = sup
‖x‖=1

‖Ax‖2 = sup
‖x‖=1

λ20α
2
0 + λ21(1− α2

0).

For ‖x‖ = 1, 0 ≤ α2
0 ≤ 1. The above is maximized for α2

0 being either 0 or 1; the
choice is made by choosing the option with the maximum eigenvalue of A. Thus,
‖A‖ = 4.

The eigenvalues of the matrix A−1 are λ−1
0 and λ−1

1 . Therefore, the same
analysis can be applied and the norm of the matrix A−1 is the absolute value of the
maximum eigenvalue of the matrix A−1. Thus, ‖A−1‖ = 1

2
.

(ii) For any x ∈ ℓ2(Z),

‖Ax‖2 =
∑

n

|(Ax)n|2 =
∑

n

|ejΘnxn|2
(a)
=
∑

n

|xn|2 = ‖x‖2 = 1,

where (a) follows from |ejΘn | = 1, for all n. Thus, ‖A‖ = 1.
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(iii) Let x ∈ ℓ2(Z) and y = Ax. We can write
[
y2n
y2n+1

]
=

[
1 1
1 −1

] [
x2n
x2n+1

]
.

We see that

|y2n|2 + |y2n+1|2 = |x2n + x2n+1|2 + |x2n − x2n+1|2 = 2(|x2n|2 + |x2n+1|2).
From this it is clear that ‖y‖2 = 2‖x‖2. Therefore, ‖A‖ =

√
2.

2.26. Relation between operator norm and eigenvalues

‖A‖ (a)
= max

‖x‖=1
‖Ax‖ (b)

= max
‖x‖=1

(x∗A∗Ax)1/2

(c)
= max

‖x‖=1
(x∗UΛU∗x)1/2 = max

‖x‖=1
((U∗x)∗Λ(U∗x))1/2

(d)
= max

‖y‖=1
(y∗Λy)1/2

(e)
= max

‖y‖=1

(∑N−1
i=0 λi|yi|2

)1/2
,

where (a) follows from the definition of operator norm, (2.45); (b) from the definition of
2 norm, (2.26a); (c) from the unitary diagonalization A∗A = UΛU∗, (2.241a); (d) from
using y = U∗x and ‖y‖ = ‖x‖ since U is unitary; and (e) from Λ being a diagonal
matrix. In the diagonalization in step (c), we may assume without loss of generality
that the diagonal matrix Λ has nonincreasing diagonal entries. The solution to the final

maximization problem is achieved by y =
[
1 0 . . . 0

]⊤
, yielding ‖A‖ =

√
λmax(A∗A)

as desired.

2.27. Adjoint operators

(iv) For any x and y in H1,

〈AA∗x, y〉 = 〈A(A∗x), y〉 (a)
= 〈A∗x, A∗y〉 (b)

= 〈x, AA∗y〉,
where (a) follows from A∗ being the adjoint of A; and (b) from A being the adjoint
of A∗. Hence, the adjoint of AA∗ is AA∗. A similar computation shows that A∗A
is self-adjoint.

(vi) For any x and y in H1,

〈x, y〉 (a)
= 〈AA−1x, y〉 = 〈A(A−1x), y〉 (b)

= 〈A−1x, A∗y〉 (c)
= 〈x, ((A−1)∗A∗y〉,

where (a) follows from the definition of inverse; and (b) and (c) from the definition
of the adjoint. Since this holds for every x and y in H1, we have shown that (A−1)∗

is a left inverse of A∗. A similar computation shows that (A−1)∗ is a right inverse
of A∗. Thus invertibility of A implies the invertibility of A∗ and (A∗)−1 = (A−1)∗.

(vii) For any x in H0 and y in H1,

〈(A+B)x, y〉 (a)
= 〈Ax, y〉+ 〈Bx, y〉 (b)

= 〈x, A∗y〉+ 〈x, B∗y〉 (c)
= 〈x, (A∗ +B∗)y〉,

where (a) follows from additivity; (b) from A∗ and B∗ being the adjoints of A and
B; and (c) from additivity. Since the adjoint is unique, we have (A+B)∗ = A∗+B∗.

(viii) For any x in H0 and y in H2,

〈BAx, y〉 (a)
= 〈Ax, B∗y〉 (b)

= 〈x, A∗B∗y〉,
where (a) follows from B∗ being the adjoint of B; and (b) from A∗ being the adjoint
of A. Since the adjoint is unique, we have (BA)∗ = A∗B∗.

2.28. Eigenvalues of definite operators
Let (λ, v) be an eigenpair of a self-adjoint operator A, that is, Av = λv, v 6= 0. Thus:

v∗Av = v∗λv = λ ‖v‖22︸ ︷︷ ︸
>0

.
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(i) A positive semidefinite (x∗Ax ≥ 0 for all x) implies that λ ≥ 0.
A positive definite (x∗Ax > 0 for all x 6= 0) implies that λ > 0.

(ii) From (i), the statement holds by contraposition.

2.29. Operator expansion

(i) I − A is not invertible if and only if there exists x 6= 0 such that

(I − A)x = 0.

This amounts to 1 being an eigenvalue of A, impossible by definition (‖A‖ < 1).

(ii)

(I −A)
∞∑

k=0

Aky =
∞∑

k=0

Aky −
∞∑

k=1

Aky = A0y +
∞∑

k=1

Aky −
∞∑

k=1

Aky = y.

Since (I−A) is invertible, multiplying both sides of the equation by (I−A)−1 proves
the identity.

(iii) For ‖y‖ = 1, the task is to bound the error,

εK =

∥∥∥∥∥(I − A)
−1y −

K−1∑

k=0

Aky

∥∥∥∥∥ =

∥∥∥∥∥

∞∑

k=0

Ak −
K−1∑

k=0

Ak

∥∥∥∥∥ =

∥∥∥∥∥

∞∑

k=K

Ak

∥∥∥∥∥

≤
∞∑

k=K

|λmax|k =
|λmax|K
1− |λmax|

,

where λmax is the maximum eigenvalue of A. The error decays as λKmax (because
‖A‖ < 1 and thus |λmax| < 1), whereK is the number of terms in the approximation.

2.30. Projection via domain restriction

(i) To show that 1I is an orthogonal projection operator, we can either directly show
that the error is orthogonal to the projection operator, or we can show that it is
idempotent and self-adjoint, and thus an orthogonal projection operator.

The first approach yields

〈x− 1Ix, 1Ix〉 =

∫ ∞

−∞
(x(t) − (1Ix)(t)) (1Ix)(t) dt

=

∫ ∞

−∞
(x(t) − x(t)1I (t)) x(t)1I (t) dt

=

∫ ∞

−∞
(x2(t)1I (t) − x2(t) 1I(t)1I (t)︸ ︷︷ ︸

=1I(t)

) dt = 0.

Thus, 1I is an orthogonal projection operator by Theorem 2.26.
The second approach yields,

(1I1Ix)(t) = 1I(t)1I (t)x(t)

= 1I(t)x(t) = (1Ix)(t),

so 1I is an idempotent operator. Furthermore,

〈1Ix, y〉 =

∫ ∞

−∞
(1Ix)(t) y(t) dt

=

∫ ∞

−∞
x(t)1I (t) y(t) dt

=

∫ ∞

−∞
x(t) (1Iy)(t) dt = 〈x, 1Iy〉,

so 1I is also self-adjoint. An idempotent, self-adjoint operator is an orthogonal
projection operator.
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(ii) Let y1 ∈ R(I1), y2 ∈ R(I2). In other words, there exist x1, x2 such that y1 = 1I1
x1

and y2 = 1I2
x2. Then,

〈y1, y2〉 =

∫ ∞

−∞
(1I1

x1)(t) (1I2
x2)(t) dt

=

∫ ∞

−∞
x1(t)x2(t)1I1

(t)1I2
(t) dt

(a)
= 0,

where (a) follows from 1I1∩I2
(t) = 1∅(t). Since this holds for all y1 ∈ R(I1), y2 ∈

R(I2), the ranges of the associated operators, R(1I1
) and R(1I2

), are orthogonal.

(iii) I1 ∪ I2 = R.

2.31. Inverses, adjoints, and projections
A : H0 → H1 being a left inverse of B : H1 → H0 means that AB is the identity on the
Hilbert space H1. Thus, for all x ∈ H0,

BABAx = BIAx = BAx.

Hence BA is a bounded linear operator (by composition of bounded linear operators) that
is idempotent, so it is a projection operator from H0 onto H1. Moreover if B = A∗, then

(BA)∗ = A∗A = BA.

This projection operator is also self-adjoint, so it is an orthogonal projection operator.

2.32. Projection operators
From Theorem 2.29, we know that for B : R2 → R3 and A : R3 → R2 that is a left inverse
of B, BA is a projection operator. Moreover, if (BA)∗ = BA, then BA is an orthogonal
projection operator. We use this to solve the exercise.

To find all left inverses of B, we write

AB =

[
a0,0 a0,1 a0,2
a1,0 a1,1 a1,2

]

1 0
1 1
0 1


 = I.

From this,

a0,0 + a0,1 = 1, a0,1 + a0,2 = 0, a1,0 + a1,1 = 0, a1,1 + a1,2 = 1.

Calling a0,1 = α and a1,1 = β, we get

A =

[
1− α α −α
−β β 1− β

]
.

Thus, projection operators BA are

BA =




1− α α −α
1− (α+ β) α+ β 1− (α+ β)
−β β 1− β


 .

We find orthogonal projection operators as those for which (BA)∗ = BA, leading to
β = α = 1

3
,

A =
1

3

[
2 1 −1
−1 1 2

]
, and BA =

1

3




1 1 −1
1 2 1
−1 1 2


 .

2.33. Riesz bases

(i) The standard basis {ek}k∈Z in ℓ2(Z) is a basis. To find whether this basis is a Riesz
basis, we need to try to bound

∑
k∈Z
|〈x, ek〉|2. Since

∑

k∈Z

|〈x, ek〉|2 =
∑

k∈Z

|xk|2 = ‖x‖2,

it is a Riesz basis with optimal stability constants λmin = λmax = 1.
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(ii) Scaling each basis vector by a finite nonzero scalar does not change the basis property
because the basis vectors are still linearly independent, and, for any x ∈ ℓ2(Z),

x =
∑

k∈Z

xkek =
∑

k∈Z

xk2
−kϕk =

∑

k∈Z

αkϕk,

and thus, there is an expansion using {ϕk}k∈Z, with αk = 2−kxk.
To find whether this basis is a Riesz basis, we need to try to bound

∑
k∈Z
|αk|2.

Let x = en for some n ∈ Z. Then, the expansion of x with respect to {ϕk}k∈Z has
one term only: x = αnϕn with αn = 2−n. Thus,

∑
k∈Z
|αk|2 = 2−2n. Since n is

an arbitrary integer, taking n → ∞ shows that there is no positive λmin such that
(2.89) holds, and taking n→ −∞ shows that there is no finite λmax such that (2.89)
holds.

(iii) Since 0 < |cos k| ≤ 1, for all k ∈ Z, the argument used in (ii) holds, and {ψk}k∈Z is
a basis for ℓ2(Z), with

x =
∑

k∈Z

xkek =
∑

k∈Z

xk
1

cos k
ψk =

∑

k∈Z

βkψk,

that is, there is an expansion using {ψk}k∈Z, with βk = (1/cos k)xk.
To find whether this basis is a Riesz basis, we need to try to bound

∑
k∈Z
|βk|2.

Since 0 < cos2 k ≤ 1,

∑

k∈Z

|βk|2 =
∑

k∈Z

∣∣∣∣
1

cos k
xk

∣∣∣∣
2

=
∑

k∈Z

1

cos2 k
|xk|2 ≥

∑

k∈Z

|xk|2 = ‖x‖2,

so the optimal lower stability constant is λmin = 1. However, no finite λmax satisfies
(2.89) because cos k can be arbitrarily close to zero.

2.34. Basis that is not a Riesz basis
The basis vectors {ϕk}k∈N are still linearly independent, and, for any x ∈ ℓ2(N),

x =
∑

k∈N

xkek
(a)
= x0 ϕ0 +

∞∑

k=1

xk
√
k + 1 (ϕk − ϕk−1)

=
∞∑

k=0

xk
√
k + 1ϕk −

∞∑

k=1

xk
√
k + 1ϕk−1

=
∑

k∈N

(
√
k + 1xk −

√
k + 2xk+1)ϕk =

∑

k∈Z

αkϕk,

where (a) follows from

ϕk =
k∑

i=0

(i+ 1)−1/2ei = ϕk−1 + (k + 1)−1/2ek.

Thus, there is an expansion using {ϕk}k∈Z, with αk =
√
k + 1xk −

√
k + 2xk+1.

To find whether this basis is a Riesz basis, we need to try to bound
∑

k∈N
|αk|2.

Let x = en for some n ∈ N. Then the expansion of x with respect to {ϕk}k∈N has two
terms only: x = αn−1ϕn−1 + αnϕn with αn−1 = −

√
n+ 1 and αn =

√
n+ 1. Thus,∑

k∈N
|αk|2 = 2(n+ 1). Since n is an arbitrary integer, taking n→∞ shows that there is

no finite λmax such that (2.89) holds.

2.35. p norms in different bases

(i) Under the 2 norm, R2 is a Hilbert space. Thus, ‖x‖2 = ‖α‖2 is a case of the Parseval
equality (2.96).

(ii) Let the basis be any orthonormal basis other than the standard basis and let x = ϕ0.
Then (α0, α1) = (1, 0), so ‖α‖p = 1 for any p. On the other hand, since the basis
is orthonormal and not the standard basis, |x0|2 + |x1|2 = 1 with both of |x0| and
|x1| in (0, 1). For p ∈ [1, 2),

|x0|p > |x0|2 and |x1|p > |x1|2,
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so
‖x‖p > ‖x‖2 = 1 = ‖α‖p.

Also, for p ∈ (2,∞],

|x0|p < |x0|2 and |x1|p < |x1|2,
so

‖x‖p < ‖x‖2 = 1 = ‖α‖p.
(iii) Let {ϕ0, ϕ1} and {ϕ̃0, ϕ̃1} be a biorthogonal pair of bases for R2, where {ϕ0, ϕ1} is

not an orthonormal basis. Let x = ϕ̃0 and y = ϕ̃1. These have expansion coefficient
vectors with respect to {ϕ0, ϕ1} of α = (1, 0) and β = (0, 1). Furthermore x + y
has expansion coefficient vector with respect to {ϕ0, ϕ1} of α+β = (1, 1). Suppose
invariance of the 2 norm holds, so

‖x‖22 = ‖α‖22 = 1, (S2.35-1a)

‖y‖22 = ‖β‖22 = 1, (S2.35-1b)

‖x+ y‖22 = ‖α+ β‖22 = 2. (S2.35-1c)

Since the vector space is real, expanding through linearity gives

‖x+ y‖22 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉 + 〈y, x〉+ 〈y, y〉
= ‖x‖22 + ‖y‖22 + 2〈x, y〉. (S2.35-2)

Substituting equations (S2.35-1) into (S2.35-2) gives 〈x, y〉 = 0. This contradicts
the bases not being orthogonal. Therefore, invariance of the 2 norm must not hold.

2.36. Even and odd functions

(i) We can express any x(t) ∈ L2([−π, π]) as

x(t) = x(t) +
1

2
x(−t) − 1

2
x(−t) =

1

2
(x(t) + x(−t)) + 1

2
(x(t) − x(−t))

= xeven(t) + xodd(t).

Because

xeven(t) = xeven(−t) and xodd(t) = −xodd(−t),
xeven(t) ∈ Seven and xodd(t) ∈ Sodd.

(ii) An orthonormal basis for Seven is
{

1√
2π
,

1√
π
cos(kt)

}∞

k=1

while an orthonormal basis for Sodd is
{

1√
π
sin(kt)

}∞

k=1

.

(iii) This follows directly from (i) and (ii).

2.37. Least-squares approximation with an orthonormal basis
We write the error as

x− x̂ =

k−1∑

i=0

(αi − βi)ϕi +

N−1∑

i=k

αiϕi.

Its norm squared is

‖x− x̂‖2 = 〈x− x̂, x− x̂〉

=
〈k−1∑

i=0

(αi − βi)ϕi +

N−1∑

i=k

αiϕi,

k−1∑

ℓ=0

(αℓ − βℓ)ϕℓ +

N−1∑

ℓ=k

αℓϕℓ

〉
.
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In the above, the two cross products are both 0 since they involve disjoint subsets of
orthonormal vectors. What is left is

‖x− x̂‖2 =
〈k−1∑

i=0

(αi − βi)ϕi,

k−1∑

ℓ=0

(αℓ − βℓ)ϕℓ

〉
+
〈N−1∑

i=k

αiϕi,

N−1∑

ℓ=k

αℓϕℓ

〉

(a)
=

k−1∑

i,ℓ=0

(αi − βi)(αℓ − βℓ)〈ϕi, ϕℓ〉 +
N−1∑

i,ℓ=k

αiαℓ〈ϕi, ϕℓ〉

(b)
=

k−1∑

i,ℓ=0

(αi − βi)(αℓ − βℓ)δi−ℓ +

N−1∑

i,ℓ=k

αiαℓδi−ℓ

=

k−1∑

i=0

|αi − βi|2 +

N−1∑

i=k

|αi|2,

where (a) follows from the linearity of the inner product; and (b) from the orthonormality of
the set {ϕ1, ϕ2, . . . , ϕN}. The last expression is minimized by βi = αi for i = 0, 1, . . . , k.

2.38. Biorthogonal pair of bases of cosine functions

(i) To show that Ψ and Ψ̃ satisfy the biorthogonality condition (2.111), we use how
these sets are related to Φ, whose orthonormality has already been established in
Example 2.34.

Clearly 〈ψ0, ψ̃0〉 = 1. Next,

〈ψ0, ψ̃k〉 = 0, k = 1, 2, . . . ,

since each ψ̃k is a linear combination of {ϕm}km=1 and each element of {ϕm}km=1
is orthogonal to ϕ0. Similarly,

〈ψk , ψ̃0〉 = 0, k = 1, 2, . . . ,

since each ψk is a linear combination of ϕk and ϕk+1, each of which is orthogonal

to ψ̃0 = ϕ0. Only the key case of

〈ψk, ψ̃ℓ〉, k = 1, 2, . . . , ℓ = 1, 2, . . .

remains. For k and ℓ both positive integers, we have

〈ψk , ψ̃ℓ〉 =
〈
ϕk + 1

2
ϕk+1, ψ̃ℓ

〉
=
〈
ϕk + 1

2
ϕk+1,

ℓ∑

m=1

(− 1
2
)ℓ−mϕm

〉

=
ℓ∑

m=1

(− 1
2
)ℓ−m

〈
ϕk + 1

2
ϕk+1, ϕm

〉

=
ℓ∑

m=1

(− 1
2
)ℓ−m

(
〈ϕk, ϕm〉+ 1

2
〈ϕk+1, ϕm〉

)
.

When ℓ > k > 0,

〈ψk , ψ̃ℓ〉 =
ℓ∑

m=1

(− 1
2
)ℓ−m

(
δk−m + 1

2
δk+1−m

)

= (− 1
2
)ℓ−k + 1

2
(− 1

2
)ℓ−(k+1) = (− 1

2
)ℓ−k

[
1 + 1

2
(− 1

2
)−1
]

= 0;

when ℓ = k > 0,
〈ψk, ψ̃ℓ〉 = 〈ϕk , (− 1

2
)0ϕk〉 = 1;

and when ℓ < k, the inner product is zero. This shows that Ψ and Ψ̃ satisfy the
biorthogonality conditions (2.111).
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(ii) Since the basis functions of Ψ and Ψ̃ are linear combinations of basis functions of
Φ, it follows from the definition of the closure of a span that span(Ψ) ⊆ span(Φ)

and span(Ψ̃) ⊆ span(Φ). Therefore, we need to show span(Φ) ⊆ span(Ψ) and

span(Φ) ⊆ span(Ψ̃) to prove the equality. We have

ϕk =
∞∑

ℓ=k

(
− 1

2

)ℓ−k
ψℓ =

k∑

ℓ=1

ψ̃k − 1
2
ψ̃k−1,

for k > 0. Since ϕ0 = ψ0 = ψ̃0, we conclude that span(Φ) = span(Ψ) = span(Ψ̃).

2.39. Dual bases

(i) According to Theorem 2.46, given Φ, its unique dual is

Φ̃ = Φ(Φ∗Φ)−1.

Its dual is then

˜̃
Φ = Φ̃(Φ̃∗Φ̃)−1 = Φ(Φ∗Φ)−1((Φ(Φ∗Φ)−1)∗(Φ(Φ∗Φ)−1))−1

= Φ(Φ∗Φ)−1(((Φ∗Φ)−1)∗Φ∗Φ(Φ∗Φ)−1)−1

= Φ(Φ∗Φ)−1(((Φ∗Φ)∗)−1)−1 = Φ(Φ∗Φ)−1Φ∗Φ = Φ.

(ii) We can express the statement that the dual of Φ is Φ as

Φ(Φ∗Φ)−1 = Φ.

Since Φ is a basis by assumption, we can multiply both sides by the inverse of Φ,

Φ∗Φ = I,

or, in other words, Φ is unitary (orthonormal basis).

(iii) We use (2.113b) to write (2.89) as follows:

λmin x
∗x ≤ (Φ̃∗ x)∗(Φ̃∗ x) = x∗Φ̃Φ̃∗x ≤ λmax x

∗x.

Similarly, for the dual basis, we want to bound x∗ΦΦ∗x. Since ΦΦ∗ is a positive
definite matrix, according to (2.243), it can be bounded from below and above by
its minimum and maximum eigenvalues. Because

ΦΦ∗ = (Φ̃∗)−1Φ̃−1 = (Φ̃Φ̃∗)−1,

and the eigenvalues of ΦΦ∗ and its inverse are inverses of each other,

1

λmax
x∗x ≤ x∗ΦΦ∗x ≤ 1

λmin
x∗x.

2.40. Oblique projection property
PI is clearly a linear operator on H with range contained in SI . The idempotency of PI
can be proven with a computation closely following the proof of Theorem 2.39: For any
x ∈ H,

PI(PI x)
(a)
= ΦI Φ̃∗

I (ΦI Φ̃∗
I x)

(b)
= ΦI (Φ̃∗

I ΦI) Φ̃∗
I x

(c)
= ΦI (I) Φ̃∗

I x = ΦI Φ̃∗
I x

(d)
= PI x,

where (a) follows from (2.134b); (b) from associativity; (c) from the analogue of (2.123)
for sequences in ℓ2(I); and (d) from (2.134b). This shows that PI is a projection operator.
Note that, unlike in Theorem 2.39, we do not expect PI to be self-adjoint.

The desired orthogonality relation for the residual follows from (2.111), (2.114a), and
(2.134a). Specifically, since (2.114a) and (2.134a) give

x− PI x =
∑

k∈K\I
〈x, ϕ̃k〉ϕk

and (2.111) gives {ϕk}k∈K\I ⊥ {ϕ̃k}k∈I , we must have x− PI x ⊥ S̃I .
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2.41. Orthogonal projection in coefficient space

(i) Since Ψ is a basis for H, we have

α̂ = Ψ̃∗x̂. (S2.41-1)

On the other hand, x̂ is the orthogonal projection of x onto span({ϕk}k∈I), and
thus, we can use (2.139) to write

x̂ = Φ(Φ∗Φ)−1Φ∗x. (S2.41-2)

Combining (S2.41-1), (S2.41-2) and x = Ψα, we have

α̂ = Ψ̃∗x̂ = Ψ̃∗Φ(Φ∗Φ)−1Φ∗x = Ψ̃∗Φ(Φ∗Φ)−1Φ∗Ψα = P α.

(ii) To show that P is a projection operator, we check idempotency,

P 2 = Ψ̃∗Φ(Φ∗Φ)−1Φ∗ΨΨ̃∗Φ(Φ∗Φ)−1Φ∗Ψ
(a)
= Ψ̃∗Φ(Φ∗Φ)−1Φ∗Φ(Φ∗Φ)−1Φ∗Ψ
(b)
= Ψ̃∗Φ(Φ∗Φ)−1Φ∗Ψ = P,

where (a) follows because Ψ is a basis; and (b) from Φ∗Φ(Φ∗Φ)−1 = I.

(iii) If {ψk}k∈K is an orthonormal basis, then Ψ̃ = Ψ, P = Ψ∗Φ(Φ∗Φ)−1Φ∗Ψ, and thus

P ∗ = (Ψ∗Φ(Φ∗Φ)−1Φ∗Ψ)∗ = P,

implying that P is an orthogonal projection operator.
If P is an orthogonal projection operator, then from P ∗ = P we must have

Ψ̃ = Ψ, and thus, {ψk}k∈K is an orthonormal basis.

2.42. Successive approximation with nonorthogonal basis
Normal equations (2.138a) state that

Φ∗x̂ = Φ∗x.

We use induction to prove the statement:

(i) For k = 1,

Φ(1) =
[
ϕ0
]
, v0 = 0, ψ0 =

ϕ0

‖ϕ0‖
,

x̂(1) = x̂(0) + 〈x, ϕ0〉
ϕ0

‖ϕ0‖2
= 〈x, ϕ0〉

ϕ0

‖ϕ0‖2
,

and thus

(Φ(1))∗ x̂(1) = 〈ϕ0, x̂
(1)〉 = 〈ϕ0, 〈x, ϕ0〉

ϕ0

‖ϕ0‖2
〉

=
1

‖ϕ0‖2
〈x, ϕ0〉〈ϕ0, ϕ0〉 = 〈x, ϕ0〉 = Φ(1)∗ x.

(ii) For k = n, we assume that the normal equations are satisfied,

(Φ(n))∗ x̂(n) = (Φ(n))∗ x,

with
Φ(n) =

[
ϕ0 ϕ1 . . . ϕn−1

]
.

For k = n+ 1,
x̂(n+1) = x̂n + 〈x, ψn〉ψn,

and thus,

(Φ(n+1))∗ x̂(n+1) =

[
(Φ(n))∗

ϕ∗
n

](
x̂(n) + 〈x, ψn〉ψn

)

=

[
(Φ(n))∗ x̂(n) + 〈x, ψn〉 (Φ(n))∗ ψn

〈ϕn, x̂(n)〉 + 〈x, ψn〉〈ϕn, ψn〉

]
.
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By construction, (Φ(n))∗ψn = 0, and thus, the first element of the vector is

(Φ(n))∗ x̂(n) = (Φ(n))∗ x,

where the equality follows from the assumption.
For the second element of the vector, we decompose ϕn as

ϕn = vn + γn,

where vn is the orthogonal projection of ϕn onto span{ϕ0, ϕ1, . . . , ϕn−1} and γn
is orthogonal to span{ϕ0, ϕ1, . . . , ϕn−1}. Moreover, γn = ‖ϕn − vn‖ψn. Thus
the second element of the vector is

〈ϕn, x̂
(n)〉+ 〈x, ψn〉〈ϕn, ψn〉

= 〈vn + γn, x̂
(n)〉 + 〈x, ψn〉〈vn + γn, ψn〉

= 〈vn, x̂(n)〉+ 〈γn, x̂(n)〉 + 〈x, ψn〉〈vn, ψn〉+ 〈x, ψn〉〈γn, ψn〉
(a)
= 〈vn, x̂(n)〉+ 〈γn, x〉
(b)
= 〈vn, Φ(n)(Φ(n))∗x̂(n)〉+ 〈γn, x〉
(c)
= 〈vn, Φ(n)(Φ(n))∗x〉+ 〈γn, x〉
(d)
= 〈vn, x〉+ 〈γn, x〉
= 〈vn + γn, x〉 = ϕnx,

where (a) follows from x̂(n), vn ∈ span{ϕ0, ϕ1, . . . , ϕn−1} and γn orthogonal to
span{ϕ0, ϕ1, . . . , ϕn−1} implies that γn is orthogonal to x̂(n); (b) from x̂(n) belongs
to span{ϕ0, ϕ1, . . . , ϕn−1} implies that x̂(n) = Φ(n)(Φ(n))∗ x̂(n); (c) from the as-
sumption on k = n; and (d) from vn ∈ span{Φ(n)} implies that v∗nΦ

(n)(Φ(n))∗x =
v∗nx.

Finally, we have

(Φ(n+1))∗ x̂(n+1) =

[
(Φ(n))∗

ϕ∗
n

]
x = (Φ(n+1))∗ x.

2.43. Exploring the definition of a frame

(i) We have

ϕj =
∑

k∈J\{j}
βkϕk, (S2.43-1)

for some β ∈ ℓ2(J ) with βj = 0. Let x be any vector in H. Since {ϕk}k∈J is a
frame, there exists an expansion

x =
∑

k∈J
αkϕk, (S2.43-2)

for some α ∈ ℓ2(J ). Then, for any c ∈ R,

x
(a)
=

∑

k∈J
αkϕk = c 0+

∑

k∈J
αkϕk

(b)
= c


ϕj −

∑

k∈J\{j}
βkϕk


+

∑

k∈J
αkϕk

(c)
= (c+ αj)ϕj +

∑

k∈J\{j}
(αk − cβk)ϕk ,

where (a) follows from (S2.43-2); (b) from using (S2.43-1) to substitute for 0; and
(c) from grouping terms. Since the sum of squared magnitudes of the expansion
coefficients is at least |c+ αj |2 and c is arbitrary, there is no finite λmax such that
(2.89) always holds.
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(ii) In (i) we showed that not all expansion coefficient sequences with respect to a frame
have a bounded ℓ2 norm; we now show that an expansion coefficient sequence with
a bounded ℓ2 norm always exists.

Let Φ have optimal frame bounds λmin and λmax, and let Φ̃ be the canonical
dual frame defined in (2.160). Since Φ and Φ̃ are a dual pair of frames, an expansion

with respect to Φ is given by analysis with Φ̃:

αk = 〈x, ϕ̃k〉, k ∈ J .

We will show that this expansion satisfies (2.89).
First,

∑

k∈J
|αk|2 =

∑

k∈J
|〈x, ϕ̃k〉|2

(a)
=

∑

k∈J

∣∣〈x, (ΦΦ∗)−1ϕk〉
∣∣2

(b)
=

∑

k∈J

∣∣〈(ΦΦ∗)−1x, ϕk〉
∣∣2 ,

where (a) follows from (2.160b); and (b) from (ΦΦ∗)−1 being self-adjoint. Now from
the frame definition (2.142),

λmin‖(ΦΦ∗)−1x‖2 ≤
∑

k∈J
|αk|2 ≤ λmax‖(ΦΦ∗)−1x‖2, (S2.43-3)

which is close to the desired form, but must be adjusted to have upper and lower
bounds in terms of ‖x‖2.

From (2.147),
λ−1
max I ≤ (ΦΦ∗)−1 ≤ λ−1

min I.

Thus,
λ−2
max ‖x‖2 ≤ ‖(ΦΦ∗)−1x‖2 ≤ λ−2

min ‖x‖2.
Combining this with (S2.43-3) gives

λminλ
−2
max‖x‖2 ≤

∑

k∈J
|αk|2 ≤ λmaxλ

−2
min‖x‖2,

which is of the desired form.

2.44. Frame of cosine functions
Since the frame elements are {ϕk}k∈Z ∪ {ϕ+

k }k∈Z, we seek the largest λmin and smallest
λmax such that

λmin ‖x‖2 ≤
∑

k∈N

(
|〈x, ϕk〉|2 + |〈x, ϕ+

k 〉|
2
)
≤ λmax ‖x‖2,

for every x in span(Φ ∪ Φ+). Since Φ is an orthonormal basis,

∑

k∈N

|〈x, ϕk〉|2 = ‖x‖2, for every x in span(Φ ∪ Φ+). (S2.44-1)

Thus what remains is to find the greatest lower bound and least upper bound for

1

‖x‖2
∑

k∈N

|〈x, ϕ+
k 〉|

2, for every x in span(Φ ∪Φ+).

Since Φ is an orthonormal basis for span(Φ ∪ Φ+), any x ∈ span(Φ ∪ Φ+) can be
written as

x =
∑

m∈N

αmϕm, (S2.44-2)

where ∑

m∈N

|αm|2 = ‖x‖2. (S2.44-3)
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The quantity to be minimized and maximized is

∑

k∈N

|〈x, ϕ+
k 〉|

2 (a)
=

∑

k∈N

∣∣∣∣
〈∑

m∈N

αmϕm, ϕ
+
k

〉∣∣∣∣
2

(b)
=

∑

k∈N

∣∣∣∣
∑

m∈N

αm〈ϕm, ϕ
+
k 〉
∣∣∣∣
2

, (S2.44-4)

where (a) follows from (S2.44-2); and (b) from the linearity in the first argument of the
inner product. So we compute 〈ϕm, ϕ

+
k 〉 for all (m, k) ∈ N2:

〈ϕm, ϕ
+
0 〉

(a)
= 〈ϕm, ϕ1〉

(b)
= δm−1, (S2.44-5a)

〈ϕm, ϕ
+
1 〉

(c)
= 〈ϕm, ϕ0 + 1√

2
ϕ2〉

(b)
= δm + 1√

2
δm−2, (S2.44-5b)

〈ϕm, ϕ
+
k 〉

(c)
= 〈ϕm,

1√
2
ϕk−1 + 1√

2
ϕk+1〉

(b)
= 1√

2
δm−k+1 + 1√

2
δm−k−1, for k = 2, 3, . . . , (S2.44-5c)

where (a) follows from (2.144a); (b) from orthonormality of Φ; and (c) from (2.144b).
Thus, substituting (S2.44-5) into (S2.44-4) yields

∑

k∈N

|〈x, ϕ+
k 〉|2 = |α1|2 +

∣∣∣α0 + 1√
2
α2

∣∣∣
2
+

∞∑

k=2

∣∣∣ 1√
2
αk−1 + 1√

2
αk+1

∣∣∣
2
.

= |α0|2 +
3

2
|α1|2 + |α2|2 + |α3|2 + · · ·

+
√
2 |α0α2|+

∞∑

k=2

|αk−1αk+1|

(a)
= ‖x‖2 +

1

2
|α1|2 +

√
2 |α0α2|+

∞∑

k=2

|αk−1αk+1|, (S2.44-6)

where (a) follows from (S2.44-3).
Finding the greatest lower bound is now simple. The expression in (S2.44-6) is

bounded below by ‖x‖2, and this lower bound is achieved by α0 = 1, α1 = α2 = · · · = 0.
Combining this with (S2.44-1), we have shown λmin = 2.

Finding the least upper bound is more difficult. Introducing the Lagrange multiplier
λ, define the Lagrange function

J(α, λ) =
∑

k∈N

α2
k +

1

2
α2
1 +
√
2α0α2 +

∞∑

k=2

αk−1αk+1 − λ
∑

k∈N

α2
k,

where we have removed the absolute values since a maximizing α will have nonnegative
entries. We can optimize by finding stationary points of J . Thus, we compute the following
partial derivatives:

∂J

∂α0
=
√
2α2 − 2(λ − 1)α0,

∂J

∂α1
= α1 + α3 − 2(λ − 1)α1,

∂J

∂α2
=
√
2α0 + α4 − 2(λ − 1)α2,

∂J

∂αℓ
= αℓ−2 + αℓ+2 − 2(λ− 1)αℓ, ℓ = 3, 4, . . . .

By setting the partial derivatives to zero, we can parameterize all the candidate max-
imizing vectors by α1/α0, and λ. Making further computations analytically is difficult.
Numerically, one can verify that J(α, λ) is maximized under constraint (S2.44-3) by setting
α1/α0 = 0 The result is for J(α, λ) to approach 2 from below as λ→ 2−. Combining this
with (S2.44-1), we have λmax = 3.



Solutions to Exercises in Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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2.45. Dual frame

(i) For Ψ to be a basis, it must be linearly independent. This is not the case because the
components of each element of Ψ sum up to 0. Thus, all x ∈ R4 whose components
do not sum up to 0 will not be in span(Ψ).

Φ is not linearly independent because the sum of the first and third elements
in Φ is equal to the sum of the second and fourth.

(ii) Since F1 contains the basis E, it is a frame. F2 is a frame because it contains a
linearly-independent set of four vectors. Call S1 the synthesis operator associated
with F1 and S2 the synthesis operator associated with F2. We can compute the
optimal frame bounds of F1 and F2 as the minimum and maximum eigenvalues
of S1S∗

1 and S2S∗
2 , respectively. They are λmin = 1 and λmax = 5 for F1 and

λmin = λmax = 4 for F2. So F2 is a tight frame.

(iii) We can use (2.160a) to find canonical dual frames to F1 and F2. The corresponding
synthesis operators are

S̃1 = (S1S
∗
1 )

−1 S1 =
1

15




7 1 2 1 4 1 −1 −4
1 7 1 2 −4 4 1 −1
2 1 7 1 −1 −4 4 1
1 2 1 7 1 −1 −4 4


 ,

S̃2 = (S2S
∗
2 )

−1 S2 =
1

4
S2.

2.46. Properties of dual pair of frames

(i) Assume that

Φ =
[
ϕ1 ϕ2 · · · ϕK

]
n×K

, rank(Φ) = m, m < K,n,

and

ΦΦ̃∗x = x x ∈ H.
Thus, for all α ∈ Rm

ΦΦ̃∗Qα
(a)
= Qα,

Q∗ΦΦ̃∗Q = Im,

(Q∗ΦΦ̃∗Q)∗ = Im,

Q∗Φ̃Φ∗Q = Im,

Φ̃Φ∗Q = Q,

Φ̃Φ∗Qα = Qα, α ∈ Rm,

Φ̃Φ∗x = x, x ∈ H,

where in (a) Q =
[
q1 q2 · · · qm

]
n×m

is a orthonormal basis for H.

(ii) We have that

〈α̃, β〉 = 〈Φ∗x, Φ̃∗y〉 (a)
= 〈x, ΦΦ̃∗y〉 (b)

= 〈x, y〉,

where (a) follows from (Φ∗)∗ = Φ; and (b) from the fact that for all y ∈ H we have

ΦΦ̃∗y = y.

(iii) Call P = ΦIΦ̃∗
I . To have a projection operator, we need P 2 = P . Choose Φ̃I to
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be the canonical dual of ΦI , as in (2.160a). Then

P 2 = ΦIΦ̃
∗
IΦIΦ̃

∗
I

= ΦI
(
(ΦIΦ

∗
I)

−1 ΦI
)∗

ΦI
(
(ΦIΦ

∗
I)

−1 ΦI
)∗

= ΦIΦ
∗
I
(
(ΦIΦ

∗
I)

−1
)∗

ΦIΦ
∗
I
(
(ΦIΦ

∗
I)

−1
)∗

(a)
= ΦIΦ

∗
I (ΦIΦ

∗
I)

−1 (ΦIΦ
∗
I)
(
(ΦIΦ

∗
I)

−1
)∗

(b)
= ΦIΦ

∗
I
(
(ΦIΦ

∗
I)

−1
)∗

(c)
= ΦIΦ̃

∗
I = P,

where (a) follows because the inverse and Hermitian conjugation commute; (b) from(
ΦIΦ∗

I
)−1 (

ΦIΦ∗
I
)
= I; and (c) from the definition for the canonical dual, (2.160a).

Thus, a sufficient condition is for Φ̃I to be the canonical dual of ΦI .

2.47. Tight frame with nonequal-norm vectors
The frame matrix corresponding to the given set of vectors is

Φ =

[
0 cos θ −cos θ
α sin θ sin θ

]
. (S2.47-1)

For Φ to be a tight frame, the following must hold:

ΦΦ⊤ = c I, c 6= 0. (S2.47-2)

Substituting (S2.47-1) into (S2.47-2), we get

ΦΦ⊤ =

[
2 cos2 θ 0

0 α2 + 2 sin2 θ

]
=

[
c 0
0 c

]
.

From this,

2 cos2 θ = c, (S2.47-3a)

α2 + 2 sin2 θ = c. (S2.47-3b)

Combining the two equations we get

2 cos2 θ − 2 sin2 θ = α2 ⇒ cos(2θ) =
α2

2
⇒ |α| =

√
2 cos(2θ), (S2.47-4a)

where we have used the double-angle formula for cosine. Moreover,

0
(a)
< cos(2θ)

(b)

≤ 1, (S2.47-4b)

where in (a) cosine is positive because of (S2.47-4a) and cannot be 0 because α 6= 0; and
(b) follows from the definition of a cosine. From here, we get

0 < cos(2θ) ⇒ 2kπ−π
2
< 2θ < 2kπ+

π

2
⇒ kπ−π

4
< θ < kπ+

π

4
, (S2.47-4c)

for k ∈ Z. In terms of α, substituting (S2.47-4a) into (S2.47-4b), we get

0 < |α| ≤
√
2. (S2.47-4d)

In summary, combining (S2.47-4), we get

|α| =
√

2 cos(2θ), α 6= 0,

0 < |α| ≤
√
2,

kπ − π

4
< θ < kπ +

π

4
, k ∈ Z.

For a given θ in the allowed range, α is fixed, leading to a tight frame. If α is chosen first,
it must be smaller than or equal to

√
2, because for α >

√
2, the frame stops being tight.
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2.48. Tight frame of affine functions
We use the Gram–Schmidt orthogonalization (see Table 2.1) on {ϕ0(t), ϕ1(t)} twice; the
first time we start from ϕ0(t), and the second from ϕ1(t). This way, we obtain two
orthonormal bases that together form a tight frame.

(i) Call ψ0(t) = ϕ0(t) = 1.

(ii) Use the Gram–Schmidt orthogonalization to get ψ1(t) from ϕ1(t)

ψ1(t) =
ϕ1(t) − 〈ϕ1(t), ψ0(t)〉ψ0(t)

‖ϕ1(t) − 〈ϕ1(t), ψ0(t)〉ψ0(t)‖
=

√
3t− 〈

√
3t, 1〉

‖
√
3t− 〈

√
3t, 1〉‖

=
√
3(2t − 1).

(iii) Call ψ2(t) = ϕ1(t) =
√
3t.

(iv) Use the Gram–Schmidt orthogonalization to get ψ3(t) from ϕ0(t)

ψ3(t) =
ϕ0(t) − 〈ϕ0(t), ψ2(t)〉ψ2(t)

‖ϕ0(t) − 〈ϕ0(t), ψ2(t)〉ψ2(t)‖
=

1− 〈1,
√
3t〉
√
3t

‖1− 〈1,
√
3t〉
√
3t‖

= 2− 3t.

The following is then a tight frame:

Φ =
[
1
√
3(2t − 1)

√
3t 2− 3t

]
.

As this tight frame is a union of two orthonormal bases, we expect the optimal frame
bounds to be 2. To confirm this, we construct the Gram matrix (2.121),

G = Φ∗Φ =




1 0
√

3
2

1
2

0 1 1
2

−
√

3
2√

3
2

1
2

1 0
1
2

√
3
2

0 1




The largest eigenvalue of the Gram matrix is in fact equal to 2. Thus, λ = 2.
Since this frame is a tight frame, its canonical dual frame will be by definition

Φ̃ =
1

λ
Φ =

1

2

[
1
√
3(2t − 1)

√
3t 2− 3t

]
.

2.49. Complex multiplication
The following computation

α = a(d − c), β = b(c+ d), γ = c(a+ b),

requires 3 multiplications and 3 additions. With 2 more additions,

e = γ − β and f = γ + α,

we achieve the desired result.
Note that, if one of the terms in the complex multiplication is a constant fixed ahead

of time (as will be the case in the FFT computation in Chapter 3), 2 additions can be
precomputed, leading to a complex multiplication with 3 real multiplications and additions,
or 6 operations.

2.50. Gaussian elimination

(i) The system has a unique solution since y belongs to the range of A and the columns
of A are linearly independent. We use (2.199) to get




10
20
−45


 = B(2)B(1)Ax =



1 0 3
0 −5 10
0 0 −15


 x,

with

B(1) =




1 0 0
4 −1 0
−1 0 −1


 , B(2) =



1 0 0
0 1 0
0 1 5


 .

By back substitution, we solve x2 = 3, x1 = 2, and x0 = 1.
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(ii) This system has infinitely many solutions since y belongs to the range of A and the
columns of A are not linearly independent (det(A) = 0).

(iii) The system has no solution since y does not belong to the range of A (we cannot
express y =

∑2
k=0 αkak, where ak is the kth column of A).

2.51. Kaczmarz’s algorithm

(i) The point x belongs to the hyperplane Si if and only if 〈ri, x〉 = yi, where ri are

the rows of A. Thus, x belongs to
⋂N−1

i=0 Si if and only if 〈ri, x〉 = yi, for all
i = 0, 1, . . . , N − 1, or, Ax = y. The matrix A is square and of full rank (its rows
are linearly independent), and thus Ax = y has a unique solution. This means that
the N hyperplanes intersect at a single point.

(ii) The key is to notice each step makes a correction that is orthogonal to past and
future corrections,

x(0) = x(−1) + (y′0 − 〈x(−1), γ0〉)γ0
x(1) = x(−1) + (y′0 − 〈x(−1), γ0〉)γ0 + (y′1 − 〈x(−1), γ1〉)γ1

...

x(N−1) = x(−1) +

N−1∑

i=0

(y′i − 〈x(−1), γi〉)γi.

After one sweep, x(N−1) verifies all the constraints. For j = 1, 2, . . . , N − 1,

〈x(N−1) , rj〉 = 〈x(−1), rj〉+
N−1∑

i=0

(y′i − 〈x(−1), γi〉)〈γi, rj〉,

(a)
= 〈x(−1), rj〉+

N−1∑

i=0

(y′i − 〈x(−1), γi〉) ‖rj‖δi−j

= 〈x(−1), rj〉+ yj − 〈x(−1), ‖rj‖γj 〉 = yj ,

where (a) follows from γn = rn/‖rn‖.
2.52. Convergence of sequences

The convergence of (ak)
∞
k=0 and (bk)

∞
k=0 to a and b, respectively, means that for any ε > 0

there exist numbers Aε and Bε such that

|ak − a| < ε for every k > Aε and |bℓ − b| < ε for every ℓ > Bε. (S2.52-1)

(i) Assume that c 6= 0; if not, the statement trivially holds. Let ε > 0. Then, from
(S2.52-1), we know that there exists a number Aε/|c| such that |ak − a| < ε/|c| for
every k > Aε/|c|. Then,

|cak − ca| = |c| |ak − a| < |c|
ε

|c| = ε.

In other words,

for any ε > 0, there exists a number Kε = Aε/|c| such that

|cak − ca| < ε for every k > Kε.

(ii) Let ε > 0. Then, from (S2.52-1), we know that there exist numbers Aε/2 and Bε/2

such that |ak − a| < ε/2 and |bk − b| < ε/2, for every k > max(Aε/2, Bε/2). Then,

|ak + bk − (a + b)| < |ak − a|+ |bk − b| <
ε

2
+
ε

2
= ε.

In other words,

for any ε > 0, there exists a number Kε = max(Aε/2, Bε/2) such that

|ak + bk − (a + b)| < ε for every k > Kε.
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Redistribution is strictly prohibited Comments to book-errata@FourierAndWavelets.org

(iii) Let ε > 0 and

δ = −|a|+ |b|
2

+

√( |a|+ |b|
2

)2

+ ε.

Then, from (S2.52-1), we know that there exist numbers Aδ and Bδ such that
|ak − a| < δ and |bk − b| < δ, for every k > max(Aδ, Bδ). Then,

|akbk − ab| = |(ak − a)(bk − b) + a(bk − b) + b(ak − a)|
< |ak − a| |bk − b|+ |a| |bk − b|+ |b| |ak − a|
< δ(|a|+ |b|+ δ) = ε.

In other words,

for any ε > 0, there exists a number Kε = max(Aδ, Bδ) such that

|akbk − ab| < ε for every k > Kε.

(iv) Let ε > 0,

γ =
|a|
2
, and c =

|a|+ |b|
|a|γ .

Then, from (S2.52-1), we know that there exist numbers Aε/c and Bε/c such that
|ak − a| < ε/c and |bk − b| < ε/c, for every k > max(Aε/c, Bε/c). Similarly, there
exists a number Aγ such that |ak| > γ for all k > Aγ . Then,

∣∣∣∣
bk

ak
− b

a

∣∣∣∣ =
|abk − bak |
|aak |

=
|abk − bak + ab− ab|

|aak |

<
|abk − ab|+ |bak − ab|

|aak|
=
|a| |bk − b|+ |b| |ak − a|

|aak |

<
|a|(ε/c) + |b|(ε/c)

|a|γ < c
ε

c
= ε.

In other words,

for any ε > 0, there exists a number Kε = max(Aε/c, Aγ , Bε/c) such that
∣∣∣∣
bk

ak
− b

a

∣∣∣∣ < ε for every k > Kε.

What we have done in (i)–(iv) can be generalized as follows: To study the convergence
of (f(ak , bk))

∞
k=0, where f is some continuous function, we find g such that limδ→0 g(δ) = 0,

and for which
|f(ak, bk)− f(a, b)| < g(δ).

Choose ℓ such that |aℓ − a| < δ, |bℓ − b| < δ, for every ℓ ≥ max(Aδ, Bδ). Then,

for any ε > 0, there exists a number Kε = max(Ag−1(ε), Bg−1(ε)) such that

|f(ak, bk)− f(a, b)| < ε for every k > Kε,

proving the convergence of (f(ak , bk))
∞
k=0 to f(a, b).

2.53. Convergence tests

(i) Since for any k ≥ 2,

ck =
k2

2k4 − 3
=

k2

k4 + (k4 − 3)
<

k2

k4
=

1

k2
= ak,

and the series
∑∞

k=1 ak converges,

∞∑

k=1

ak =
∞∑

k=1

1

k2
=

π2

12
,

the series
∑∞

k=1 ck converges as well.
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Redistribution is strictly prohibited Comments to book-errata@FourierAndWavelets.org

(ii) Since for any k ≥ 1,

ck =
log k

k
>

1

k
= ak ,

and the series
∑∞

k=1 ak diverges,

∞∑

k=1

ak =
∞∑

k=1

1

k
,

the series
∑∞

k=1 ck diverges as well.

(iii) Since

ck =
kk

k!
=

k · k · · · · · k
1 · 2 · · · · · k ≥ 1 = ak ,

and the series
∑∞

k=1 ak diverges,

∞∑

k=1

ak =
∞∑

k=1

1,

the series
∑∞

k=1 ck diverges as well.

(iv) Using the ratio test for convergence,

lim
k→∞

∣∣∣∣
ck+1

ck

∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣

ak+1

(k+1)!

ak

k!

∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣
a

k + 1

∣∣∣∣ = 0,

and thus, the series
∑∞

k=1 ck converges absolutely.

2.54. Useful series

(i) Finite Geometric Series: The proof is straightforward:

1− tN
1− t =

(1− t)(1 + t + · · ·+ tN−1)

1− t =

N−1∑

k=0

tk.

(ii) Geometric Series: As N →∞, the series

SN =
N∑

n=1

tn =
1− tN+1

1− t − 1

converges for |t| < 1 to t/(1 − t).
(iii) Power Series: The power series

∑∞
k=1 akt

k converges if

lim
k→∞

∣∣∣∣
ak+1 t

k+1

ak tk

∣∣∣∣ = lim
k→∞

∣∣∣∣
ak+1

ak
t

∣∣∣∣ < 1.

Hence, the series converges for

|t| < lim
k→∞

∣∣∣∣
ak

ak+1

∣∣∣∣.

(iv) Taylor Series: The kth derivative of x(t) = 1/(1 − t) is

x(k)(t) =
k!

(1 − t)k+1
.

Hence, the Taylor series expansion of x(t) is

x(t) =
n∑

k=0

(t − t0)k
k!

k!

(1− t0)k+1
+ Rn =

n∑

k=0

(t − t0)k
(1− t0)k+1

+
(t− t0)n+1

(1 − ξ)n+2
.
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Redistribution is strictly prohibited Comments to book-errata@FourierAndWavelets.org

(v) MacLaurin Series: From the above Taylor series expansion of x(t), we derive the
MacLaurin series expansion:

x(t) =
n∑

k=0

tk +
tn+1

(1 − ξ)n+2
.

2.55. Eigenvalues and eigenvectors

(i) The characteristic polynomial of A is

det (λI − A) = det

[
λ− 1 −2
−2 λ− 1

]
= (λ− 1)2 − 4 = (λ− 3)(λ + 1).

The eigenvalues of A are λ0 = −1 and λ1 = 3.
For λ0 = −1, we solve Ax = −x,

x0 + 2x1 = −x0,
2x0 + x1 = −x1,

yielding x1 = −x0. We choose x0 = 1, x1 = −1 and normalize. The eigenvector

associated with λ0 is thus v0 = 1/
√
2
[
1 −1

]⊤
.

Similarly, for λ1 = 3, we solve Ax = 3x,

x0 + 2x1 = 3x0,

2x0 + x1 = 3x1,

yielding x0 = x1. We choose x0 = x1 = 1 and normalize. The eigenvector associated

with λ1 is thus v1 = 1/
√
2
[
1 1

]⊤
.

The characteristic polynomial of B is

det (λI −B) = (λ − α)2 − β2 = (λ− (α + β))(λ − (α − β)).

The eigenvalues of B are λ0 = α− β and λ1 = α+ β.
For λ0 = α− β, we solve Bx = (α − β)x, β 6= 0,

αx0 + βx1 = (α − β)x0,
βx0 + αx1 = (α − β)x1,

yielding x1 = −x0. The eigenvector associated with λ0 is thus v0 = 1/
√
2
[
1 −1

]⊤
.

Similarly, for λ1 = α+ β, β 6= 0, we solve Bx = (α+ β)x, β 6= 0,

αx0 + βx1 = (α + β)x0,

βx0 + αx1 = (α + β)x1,

yielding x0 = x1. The eigenvector associated with λ1 is thus v1 = 1/
√
2
[
1 1

]⊤
.

If β = 0 (and α 6= 0), then B has a single eigenvalue λ = 1 with multiplicity 2

and two associated eigenvectors:
[
1 0

]⊤
and

[
0 1

]⊤
.

(ii) V =
[
v0 v1

]
, and thus

V ΛV ⊤ = 1
2

[
1 1
−1 1

][
−1 0
0 3

][
1 −1
1 1

]
= 1

2

[
2 4
4 2

]
= A.

It is also true that

V

[
α− β 0

0 α+ β

]
V ⊤ = B.

V is a unitary matrix since V V ⊤ = V ⊤V = I; it is formed from two orthonormal
vectors.
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(iii) Knowing the eigenvalues, it is easy to compute the determinant as the product of
those eigenvalues:

det(A) = −3.
A is thus an invertible matrix, and its inverse is

A−1 = − 1
3

[
1 −2
−2 1

]
.

This inverse could have been computed easily as

A−1 = (V ΛV ⊤)−1 = (V ⊤)−1Λ−1V −1 = V Λ−1V ⊤

= 1
2

[
1 1
−1 1

] [−1 0
0 1

3

] [
1 −1
1 1

]
.

(iv) We again compute the determinant as the product of the eigenvalues,

det(B) = (α− β)(α + β).

B is not invertible if and only if α = β or α = −β. The inverse is

B−1 =
1

(α − β)(α + β)

[
α −β
−β α

]
, α 6= ±β.

As a sanity check, when α = 1, β = 2, then B = A and B−1 = A−1.

2.56. Operator norm, singular values, and eigenvalues

(i) If the matrix A is Hermitian, that is, A = A∗, then AA∗ = A2, and the eigenvalues
of A and A∗ coincide. Furthermore, if λk is an eigenvalue of A that corresponds to
an eigenvector vk , then

AA∗vk = A(λkvk) = λk(Avk) = λ2kvk.

Hence, λ2k is an eigenvalue of AA∗, and by definition, σk =
√
λ2k = |λk| is a singular

value of A.

(ii) This result follows immediately from (i) and (iii).

(iii) Let the singular value decomposition of the matrix A be UΣV ∗, where U and V
are unitary matrices, and Σ = diag(σ0, σ1, . . .) is a diagonal matrix of the singular
values of A such that σ0 ≥ σ1 ≥ . . .. Then

‖A‖2 = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

‖UΣV ∗x‖ (a)
= sup

‖y‖=1
‖Σy‖

= sup
‖y‖=1

√∑
|σkyk|2 = σ0 sup

‖y‖=1

√
∑∣∣∣∣

σk

σ0
yk

∣∣∣∣
2

≤ σ0 sup
‖y‖=1

√∑
|yk|2 = σ0 sup

‖y‖=1
‖y‖ = σ0,

where (a) follows from the fact that multiplication by a unitary matrix does not

change the norm. The upper bound σ0 can be achieved with y =
[
1 0 0 . . .

]⊤
.

Hence, ‖A‖ = σ0 = max {σk}.
2.57. Least-squares solution to a system of linear equations

(i) If y belongs to the range (column space) of A, then there exists x such that Ax = y,

ŷ = Ax̂
(a)
= A(A⊤A)−1A⊤y

(b)
= A(A⊤A)−1(A⊤A)x = Ax = y,

where (a) follows from (2.225b); and (b) from (2.224).

(ii) If y is orthogonal to the column space of A, then y ∈ N (A⊤), the null space of A⊤.
That is, A⊤y = 0, and so

ŷ = A(A⊤A)−1A⊤y = 0.



Solutions to Exercises in Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovačević, and V. K. Goyal
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(iii) Let A ∈ RM×N with M > N . The problem is that of “solving” y = Ax in the sense
of finding x̂ to minimize ‖y −Ax̂‖. We found the solution (2.225b) and (2.225c) by
starting from

A⊤(y − Ax̂) = 0. (S2.57-1)

Considering (S2.57-1) elementwise gives

a⊤i (y − Ax̂) = 0, for i = 0, 1, . . . , N − 1, (S2.57-2)

where ai is the ith column of A.
Now let ε = ‖y − ŷ‖2 = (y −Ax̂)⊤(y − Ax̂). Then

∂ε

∂x̂i
= a⊤i (y − Ax̂) + (y − Ax̂)⊤ai = 2a⊤i (y − Ax̂) (a)

= 0,

where (a) follows from (S2.57-2).

2.58. Power of a matrix
Since A is full rank, it is diagonalizable. Define V =

[
v0 v1 . . . vN−1

]
as the matrix

containing the eigenvectors vi of A, and define Λ = diag(λ0, λ1, . . . , λN−1), a diagonal
matrix containing the eigenvalues of A. We can thus write

Ak (a)
= (V ΛV −1)k = (V ΛV −1)(V ΛV −1) · · · (V ΛV −1)

= V Λ(V −1V )Λ · · · (V −1V )ΛV −1 = V ΛkV −1,

where (a) follows from (2.227a); and Λk = diag(λk0 , λ
k
1 , . . . , λ

k
N−1).

2.59. Properties of jointly Gaussian vectors

(i) The more general definition of a jointly Gaussian random variable simplifies this
problem greatly. Let w = Ax. Any linear combination of components of w is a
linear combination of components of x and hence is a Gaussian random variable.
Thus, w is a jointly Gaussian random vector. The expressions for the mean and the
covariance matrix follow from the linearity of the expectation:

µw = E[w ] = E[Ax ] = AE[ x ] = Aµx,

Σw = E
[
(w − µw)(w − µw)⊤

]
= E

[
(Ax− Aµx)(Ax −Aµx)⊤

]

= E
[
A(x− µx)(x − µx)⊤A⊤

]
= AE

[
(x− µx)(x − µx)⊤

]
A⊤ = AΣxA

⊤.

(ii) The definition of a jointly Gaussian vector x requires the covariance matrix Σx to
be symmetric and positive semidefinite. (This extends to any random vector since
(x−µx)(x−µx)⊤ is a quadratic form and the expectation is linear.) The symmetry
condition Σx = Σ⊤

x ,
[
Σy Σy,z

Σz,y Σz

]
= Σx = Σ⊤

x =

[
Σ⊤

y Σ⊤
z,y

Σ⊤
y,z Σ⊤

z

]

implies all the specified symmetries: Σy = Σ⊤
y , Σz = Σ⊤

z , and Σy,z = Σ⊤
z,y.

(iii) As in (i), y is jointly Gaussian because any linear combination of its entries is a
linear combination of the entries of x. The mean and covariance matrix follow from
(i) by choosing

A =

[
I 0
0 0

]

with dimensions matching the decomposition of x into y and z.

(iv) Since x has a joint PDF, its subvectors y and z have joint PDFs as well. Thus, we
can show the result through an equality of PDFs. To simplify our expressions, we
provide a solution only for the case of µx = 0.

Using (2.262), we want to show that the conditional PDF of y given z = t is

fy|z(s | t) = c1 exp

(
−1

2
(s− µy|z)⊤Σ−1

y|z(s− µy|z)
)
, (S2.59-1)
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with

µy|z = µy + Σy,zΣ
−1
z (t − µz) and Σy|z = Σy −Σy,zΣ

−1
z Σz,y,

where the scalar constant c1 could be written explicitly but is fixed implicitly by
the normalization property of the conditional PDF. Applying the multidimensional
analogue of (2.257a) with the joint PDF expression from (2.262) gives

fy|z(s | t) =
fy,z(s, t)

fz(t)

= c2

exp

(
− 1

2

([
s
t

]
−
[
µy
µz

])⊤
Σ−1

x

([
s
t

]
−
[
µy
µz

]))

exp
(
− 1

2
(t − µz)⊤Σ−1

z (t− µz)
) (S2.59-2)

= c2 exp

(
−1

2

([
s
t

]
−
[
µy
µz

])⊤
Σ−1

x

([
s
t

]
−
[
µy
µz

])
+

1

2
(t − µz)⊤Σ−1

z (t− µz)
)
,

where again the scalar constant c2 could be written explicitly but is fixed implicitly.
We thus need for (S2.59-1) and (S2.59-2) to be equal. We can prove it by using the
partitioned matrix inverse

Σ−1
x =

[
Σy Σy,z

Σz,y Σz

]−1

=

[
Ξ −ΞΣy,zΣ

−1
y

−Σ−1
z Σz,yΞ Σ−1

z +Σ−1
z Σz,yΞΣy,zΣ

−1
z

]
,

where Ξ = (Σy −Σy,zΣ
−1
z Σz,y)−1, and expanding the products.

2.60. Bayesian linear MMSE estimation via the orthogonality principle
The form of the optimal linear estimator of one vector from another was derived from
the projection theorem in Section 2.4.4. Thus, we can derive the LMMSE estimator from
(2.85).

Let

z =

[
y
1

]

so that the desired estimator is a linear function of z:

x̂ = Ay + b =
[
A b

] [y
1

]
= Bz. (S2.60-1)

Using (2.85), the optimal B is given by

B = E[ xz∗ ] (E[ zz∗ ])−1 . (S2.60-2)

We need to find the factors in this expression.
The first factor is

E[ xz∗ ] = E
[
x
[
y∗ 1

] ]
= E

[ [
xy∗ x

] ]
=
[
Σx,y + µxµ∗y µx

]
. (S2.60-3)

Since

E[ zz∗ ] = E

[ [
y
1

] [
y∗ 1

] ]
= E

[ [
yy∗ y
y∗ 1

] ]
=

[
Σy + µyµ∗y µy

µ∗y 1

]
,

matrix inversion gives

(E[ zz∗ ])−1 =

[
Σ−1

y −Σ−1
y µy

−µ∗yΣ−1
y 1 + µ∗yΣ

−1
y µy

]
(S2.60-4)

for the second factor. Substituting (S2.60-3) and (S2.60-4) into (S2.60-2) gives

B =
[
Σx,yΣ

−1
y µx − Σx,yΣ

−1
y µy

]
.

Substituting into (S2.60-1), we find that the desired LMMSE estimator is

x̂ = Σx,yΣ
−1
y y + µx −Σx,yΣ

−1
y µy = µx +Σx,yΣ

−1
y (y − µy),

matching the result in (2.266a).
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2.61. An inner product on random vectors

(i) Given the following assumptions

〈x, y〉 =

N−1∑

k=0

E[ xky
∗
k ] , var(xk) ≤ ∞ for all k,

let us verify the inner product properties from Definition 2.7:

1. Distributivity:

〈x + y, z〉 =

N−1∑

k=0

E[ (xk + yk) z
∗
k ] =

N−1∑

k=0

E[ xkz
∗
k ] +

N−1∑

k=0

E[ ykz
∗
k ]

= 〈x, z〉+ 〈y, z〉.
2. Linearity in the first argument:

〈αx, y〉 =

N−1∑

k=0

E[αxky
∗
k ] = α

N−1∑

k=0

E[ xky
∗
k ] = α〈x, y〉.

3. Hermitian symmetry:

〈x, y〉∗ =

(
N−1∑

k=0

E[ xky
∗
k ]

)∗

=

N−1∑

k=0

E[ x∗kyk ] = 〈y, x〉.

4. Positive definiteness:

〈x, x〉 =

N−1∑

k=0

E[ xkx
∗
k ] =

N−1∑

k=0

E
[
|xk|2

]
≥ 0.

We have equality if and only if E
[
|xk|2

]
= 0 for all k.

(ii) Two vectors x and y are orthogonal under this inner product if on average they are
geometrically orthogonal. This does not mean, however, that all components are
orthogonal.

(iii) As seen in (ii), all orthogonal vectors are not necessarily uncorrelated. However,
uncorrelated vectors are orthogonal since

〈x, y〉 =
∑

k

= E[ xky
∗
k ]

(a)
=

∑

k

0 = 0,

where (a) follows from the assumption.

(iv) As we have seen, if the vectors are orthogonal, they are not necessarily uncorrelated,
and thus not necessarily independent. Uncorrelated Gaussian random vectors are
independent.
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Chapter 3

Solutions to exercises

3.1. Sinusoidal sequence

(i) The three sketches are given in Figure S3.1-1.
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(a) N = 8. (b) N = 12. (c) N = 16.

Figure S3.1-1 Sequences y from (P3.1-1).

(ii) This is true only for N = 16 because x is periodic with period 16, as shown in
Figure S3.1-2.
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Figure S3.1-2 Sequence zn =
∑

k∈Z
yn−Nk. For N = 16, zn = xn.

3.2. Deterministic autocorrelation and crosscorrelation

(i) Use the definition of the deterministic autocorrelation (3.17) and write

an =
∑

k∈Z

xk x
∗
k−n

(a)
=



∑

k∈Z

xk−n x
∗
k




∗
(b)
=



∑

m∈Z

xm x∗m+n




∗

= a∗−n,

where (a) follows from conjugating the expression twice; and (b) from the change of
variable m = k + n.

(ii) Fix any n ∈ Z, and define sequence y by yk = xk−n for all k ∈ Z. Then, ‖y‖ = ‖x‖,
and

|an| =

∣∣∣∣∣∣

∑

k∈Z

xkx
∗
k−n

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

k∈Z

xky
∗
k

∣∣∣∣∣∣
= |〈x, y〉|

(a)

≤ ‖x‖ ‖y‖ = ‖x‖2 (b)
= a0,

where (a) follows from the Cauchy–Schwarz inequality; and (b) from (3.18b).

(iii) To show that the deterministic crosscorrelation is not symmetric, we give a coun-
terexample. Let xn = δn and yn = δn−1. Then

cx,y,−1 =
∑

k∈Z

xk y
∗
k+1 = x0 y1 = 1
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but
cx,y,1 =

∑

k∈Z

xk y
∗
k−1 = 0.

While the deterministic crosscorrelation is not symmetric in general, the following
holds

cx,y,−1 = cy,x,1 = 1.

(iv) We write

C(ejω) =
∑

n∈Z

cne
−jωn (a)

=
∑

n∈Z

∑

k∈Z

xky
∗
k−ne

−jωn

(b)
=

∑

n∈Z

∑

m∈Z

xky
∗
me

−jω(k−m) =
∑

k∈Z

xke
−jωk



∑

m∈Z

yme
−jωm




∗

= X(ejω)Y ∗(ejω),

where (a) follows from the definition of deterministic crosscorrelation (3.20); and (b)
from the change of variable m = k − n.

3.3. Discrete Laplacian operator
Denote by T the operator that describes the system y = T (x).

(i) T is linear because

T (αx0,n + βx1,n) = (αx0,n−1 + βx1,n−1)− 2(αx0,n + βx1,n) + (x0,n+1 + x1,n+1)

= α(x0,n−1 − 2x0,n + x0,n+1) + β(x1,n−1 − 2x1,n + x1,n+1)

= αT (x0,n) + βT (x1,n).

T is shift-invariant because

T (xn−k) = xn−k−1 − 2xn−k + xn−k+1 = yn−k,

that is, a shifted input produces a shifted output.
T is not causal because yn depends on xn+1, which is a future value of x.
T is not memoryless because yn does not depend only on xn.
T is BIBO-stable because

|xn| ≤M ⇒ |yn| ≤ 4M.

(ii) Because the system is linear, it has a matrix representation,




...
y−2

y−1

y0
y1
x2
...




=




...
...

...
...

...
· · · −2 1 0 0 0 · · ·
· · · 1 −2 1 0 0 · · ·
· · · 0 1 −2 1 0 · · ·
· · · 0 0 1 −2 1 · · ·
· · · 0 0 0 1 −2 · · ·

...
...

...
...

...







...
x−2

x−1

x0
x1
x2
...




.

(iii) The system acts as a discrete differentiator, so constant and linear terms get anni-
hilated (see Figure S3.3-1).

3.4. Linear and shift-invariant difference equations

(i) Consider the following difference equation:

yn = xn − yn−1,

with the initial condition y−1 = 2. Take the input signal to be xn = δn. The
output signal is then yn = (−1)n+1, for n ≥ 0. For x′n = 2xn, the output is
y′n = 0 6= 2yn; thus, the system is not linear. For x′n = xn−1 the output is y′0 = −2,
y′n = 3 (−1)n+1. Since y′n 6= yn−1, the system is not shift-invariant.
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(a) x0,n = c. (b) x1,n = δn. (c) x2,n = un.

Figure S3.3-1 The output of the system for different inputs x.

(ii) If initial conditions are zero, then:

(a) By induction, the solution of the homogeneous equation

yn = −
N∑

k=1

akyn−k

is yn = 0.

(b) If input signals x′n and x′′n produce outputs y′n and y′′n, respectively, then xn =
αx′n + βx′′n produces the output yn = αy′n + βy′′n:

yn = αy′n + βy′′n

= α

(
M∑

k=0

bkx
′
n−k −

N∑

k=1

aky
′
n−k

)
+ β

(
M∑

k=0

bkx
′′
n−k −

N∑

k=1

aky
′′
n−k

)

=
M∑

k=0

bk(αx
′
n−k + βx′′n−k)−

N∑

k=1

ak(αy
′
n−k + βy′′n−k)

=
M∑

k=0

bkxn−k −
N∑

k=1

akyn−k.

Hence, the system is linear.

(c) If the input signals xn produces the output yn, then x′n = xn−m produces the
output y′n = yn−m:

y′n = yn−m =
M∑

k=0

bkxn−m−k −
N∑

k=1

akyn−m−k

=
M∑

k=0

bkx
′
n−k −

N∑

k=1

aky
′
n−k ;

thus, the system is shift-invariant.

3.5. Geometric sequences and their properties

(i) The norm of x is

‖x‖22 =
∞∑

n=0

(√
1− α2

)2
α2n =

(
1− α2

) ∞∑

n=0

α2n (a)
=
(
1− α2

) 1

1− α2
= 1,

where (a) follows from (P2.54-3).

(ii) For n < 0, the autocorrelation of x is

an =
∑

k∈Z

xkxk−n =
∞∑

k=0

(1− α2)αkαk−n

= α−n
∞∑

k=0

(1− α2)α2k = α−n‖x‖22 = α−n;
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and for n ≥ 0,

an =
∑

k∈Z

xkxk−n =
∞∑

k=n

(1− α2)αkαk−n = α−n
∞∑

k=n

(1 − α2)α2k

(a)
= αn

∞∑

ℓ=0

(1− α2)α2ℓ = αn‖x‖22 = αn,

where (a) follows from change of variable ℓ = k − n. We thus get

an = α|n|;
the autocorrelation of a geometric sequence is a symmetric, two-sided geometric
sequence.

(iii) For n < 0, the convolution of x with itself is

(x ∗ x)n =
∑

k∈Z

xkxn−k = 0;

and for n ≥ 0,

(x ∗ x)n =
∑

k∈Z

xkxn−k = (1− α2)
n∑

k=0

αkαn−k = (1− α2)αn(n+ 1).

(iv) We define two geometric series, characterized by parameters α and β, with |α| < 1
and |β| < 1.

For n < 0, the crosscorrelation of x and y is

cn =
∑

k∈Z

xkyk−n =
∞∑

k=0

√
1− α2

√
1− β2 αkβk−n

= β−n
√

(1 − α2)(1 − β2)
∞∑

k=0

(αβ)k =

√
(1 − α2)(1 − β2)

1− αβ β−n;

and for n ≥ 0,

cn =
∑

k∈Z

xkyk−n =
∞∑

k=m

√
1− α2

√
1− β2 αkβk−n

= β−n
√

(1 − α2)(1 − β2)
∞∑

k=m

(αβ)k

(a)
= αn

√
(1− α2)(1 − β2)

∞∑

ℓ=0

(αβ)ℓ =

√
(1− α2)(1− β2)

1− αβ αn,

where (a) follows from change of variable ℓ = k − n. We thus get

cn =

{
γ β−n, n < 0;
γ αn, n ≥ 0,

with γ =
√

(1 − α2)(1 − β2)/(1 − αβ); the crosscorrelation of two geometric se-
quences is an asymmetric, two-sided geometric sequence. Note that for α = β we
obtain the previous result.

For n < 0, the convolution of x and y is

(x ∗ y)n =
∑

k∈Z

xkyn−k = 0;

and for n ≥ 0,

(x ∗ y)n =
∑

k∈Z

xkyn−k =
√

(1− α2)(1 − β2)
n∑

k=0

αkβn−k

= βn
√

(1 − α2)(1 − β2)
n∑

k=0

(
α

β

)k

=
√

(1− α2)(1 − β2)
βn+1 − αn+1

β − α ,
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Figure S3.7-1 The DTFT of the output of the system y = h∗x, with xn = 1
2
(δn+δn−1)

and hn a third-band lowpass filter.

where (a) follows from the formula for the finite geometric series, (P2.54-1).

3.6. Circular convolution in frequency property of the DTFT
Let y = h x. Then, its DTFT is

Y (ejω) =
∑

n∈Z

yne
−jωn =

∑

n∈Z

xnhn e
−jωn

=
∑

n∈Z

(
1

2π

∫ π

−π
X(ejν) ejνn dν

)
hn e

−jωn

=
1

2π

∑

n∈Z

∫ π

−π
X(ejν )hn e

−j(ω−ν)n dν

=
1

2π

∫ π

−π
X(ejν )



∑

n∈Z

hn e
−j(ω−ν)n


 dν

=
1

2π

∫ π

−π
X(ejν )H(ej(ω−ν)) dν =

1

2π
H ⊛X,

where we used the fact that h ∈ ℓ1(Z).
3.7. Third-band filter

(i) We can rewrite hn as

hn =

√
ω0

2π
sinc

(
1

2
ω0n

)
, ω0 =

2π

3
.

Thus, from Tables 3.4 or 3.5,

H
(
ejω
)

=

{√
3, for |ω| ≤ 1

3
π;

0, otherwise.

The filter is lowpass because it lets through low frequencies |ω| ≤ 1
3
π and blocks all

others.

(ii) Using the convolution property of the DTFT,

X(ejω) =
1

2

(
1 + e−jω

)
,

Y (ejω) = H(ejω)X(ejω) =

{
(
√
3/2)

(
1 + e−jω

)
, for |ω| ≤ 1

3
π;

0, otherwise;

|Y (ejω)| =

{√
3/2
√

1 + cos(ω), for |ω| ≤ 1
3
π;

0, otherwise.

Figure S3.7-1 shows the plot of |Y (ejω)|.
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3.8. ROC of z-transform

(i) For xn = δn,

X(z) =
∑

n∈Z

δn z
−n = z0 = 1;

ROC = {z | z ∈ C}.
(ii) For xn = δn−k ,

X(z) =
∑

n∈Z

δn−k z
−n = z−k;

ROC =

{
{z | z ∈ C}, for k ≤ 0;
{z | |z| 6= 0}, for k > 0.

(iii) For xn = αn un,

X(z) =
∑

n∈Z

αn un z
−n =

∞∑

n=0

(α z−1)n =
1

1− αz−1
;

ROC = {z | |z| > |α|}.
(iv) For xn = −αn u−n−1,

X(z) =
∑

n∈Z

−αn u−n−1 z
−n = −

−1∑

n=−∞
(αz−1)n

(a)
= −

∞∑

m=1

(α−1 z)m

(b)
= −

∞∑

m=0

(α−1 z)m + 1 = − 1

1− α−1 z
+ 1 =

1

1− αz−1
;

ROC = {z | |z| < |α|},
where (a) follows from the change of variable m = −n; and in (b) we added and
subtracted the zeroth term to be able to apply (P2.54-2).

(v) For xn = nαn un,

X(z) =
∑

n∈Z

nαn un z
−n =

∞∑

n=0

n (αz−1)n = αz−1
∞∑

n=0

n (α z−1)n−1

(a)
= αz−1 d(

∑∞
n=0 (α z

−1)n)

d(α z−1)

(b)
= αz−1 d(1/1 − α z−1)

d(α z−1)
=

αz−1

(1 − α z−1)2
;

ROC = {z | |z| > |α|},
where (a) follows from recognizing

∑∞
n=0 n (α z−1)n−1 as the derivative of∑∞

n=0 (α z
−1)n with respect to (α z−1); and (b) from the solution to (iii).

(vi) For xn = −nαn u−n−1,

X(z) =
∑

n∈Z

−nαn u−n−1 z
−n = −

−1∑

n=−∞
n (α z−1)n

= −αz−1
−1∑

n=−∞
n (α z−1)n−1

(a)
= αz−1

d(−∑−1
n=−∞ (α z−1)n)

d(α z−1)

(b)
= αz−1 d(1/1 − α z−1)

d(α z−1)
=

αz−1

(1 − α z−1)2
;

ROC = {z | |z| < |α|},
where (a) follows from recognizing

∑−1
n=−∞ n (α z−1)n−1 as the derivative of∑−1

n=−∞ (αz−1)n with respect to (αz−1); and (b) from the solution to (iv).
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(vii) For xn = cos(ω0n)un,

X(z) =
∑

n∈Z

cos(ω0n)un z
−n =

∞∑

n=0

cos (ω0n) z
−n

= 1 +
1

2

∞∑

n=1

(ejω0n + e−jω0n) z−n

= 1 +
1

2

∞∑

n=1

(ejω0z−1)n +
1

2

∞∑

n=1

(e−jω0z−1)n

= 1 +
1

2

ejω0z−1

1− ejω0z−1
+

1

2

e−jω0z−1

1− e−jω0z−1
=

1− cosω0z−1

1− 2 cosω0z−1 + z−2
;

ROC = {z | |z| > 1}.
(viii) For xn = sin(ω0n)un,

X(z) =
∑

n∈Z

sin(ω0n)un z
−n =

∞∑

n=0

sin (ω0n) z
−n

= 1 +
1

2j

∞∑

n=1

(ejω0n − e−jω0n) z−n

= 1 +
1

2j

∞∑

n=1

(ejω0z−1)n − 1

2j

∞∑

n=1

(e−jω0z−1)n

= 1 +
1

2j

ejω0z−1

1− ejω0z−1
− 1

2j

e−jω0z−1

1− e−jω0z−1
=

1− sinω0z−1

1− 2 cosω0z−1 + z−2
;

ROC = {z | |z| > 1}.
(ix) For xn = αn for 0 ≤ n ≤ N , and 0 otherwise,

X(z) =

N−1∑

n=0

αn z−n =

N−1∑

n=0

(α z−1)n =
1− (αz−1)N

1− αz−1
;

ROC = {z | z ∈ C, z 6= 0}.
3.9. Orthogonality

(i) If P (z) is a polynomial, then P (z−1) is not, and thus, for (P3.9-1) to hold, P (z)
must be a monomial, P (z) = ±z−ℓ.

(ii) The proposed solution satisfies the orthogonality constraint (P3.9-1),

P (z)P (z−1) =
A(z)

Ã(z)

A(z−1)

Ã(z−1)
=

A(z)

z−L+1A(z−1)

A(z−1)

zL−1A(z)
= 1.

3.10. Linear and circular convolution as polynomial products
Call C(z) the result of the multiplication

C(z) = A(z)B(z) =

2N−2∑

n=0

cnz
n

since A(z) and B(z) are polynomials of degree N − 1. The coefficients cn can be found
from the linear convolution of the sequences a and b,



a0 0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

. . .
...

aN−1 aN−2 aN−3 · · · a0
0 aN−1 aN−2 · · · a1
0 0 aN−1 · · · a2
...

...
...

. . .
...

0 0 0 · · · aN−1







b0
b1
b2
...

bN−1




=




c0
c1
c2
...

cN−1

cN
...

c2N−2




. (S3.10-1)
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With D(z) = C(z) mod (zN −1), and because for n = 0, 1, . . . , N−1, the coefficients
cN+n z

N+n mod (zN − 1) = cN+n z
n, we have that dn = cn + cN+n, or,




d0
d1
d2
...

dN−1




=
[
IN IN×N−1

]




c0
c1
c2
...

cN−1

cN
...

c2N−2




, (S3.10-2)

where IN is an identity matrix and IN×N−1 is a matrix with an identity matrix IN−1

followed by an all-0 row. Combining (S3.10-1) and (S3.10-2), we can write



d0
d1
d2
...

dN−1




= A




b0
b1
b2
...

bN−1



,

with

A =
[
IN IN×N−1

]




a0 0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

. . .
...

aN−1 aN−2 aN−3 · · · a0
0 aN−1 aN−2 · · · a1
0 0 aN−1 · · · a2
...

...
...

. . .
...

0 0 0 · · · aN−1




=




a0 0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

. . .
...

aN−1 aN−2 aN−3 · · · a0



+




0 aN−1 aN−2 · · · a1
0 0 aN−1 · · · a2
...

...
...

. . .
...

0 0 0 · · · aN−1

0 0 0 · · · 0



.

Thus, 


d0
d1
d2
...

dN−1




=




a0 aN−1 aN−2 · · · a1
a1 a0 aN−1 · · · a2
a2 a1 aN−0 · · · a3
...

...
...

. . .
...

aN−1 aN−2 aN−3 · · · a0







b0
b1
b2
...

bN−1



,

exactly the representation for the circular convolution of sequences a and b.

3.11. Deterministic autocorrelation

(i) The deterministic autocorrelation is the convolution of the sequence with its time-
reversed version, (3.62d),

an =
∑

k∈Z

xk xk−n = xn ∗n x−n.

From Table 3.6, the z-transform of x−n is X(z−1), and thus, A(z) = X(z)X(z−1).
If X(z) has the ROC {z | m < |z| < M}, then X(z−1) has the ROC {z |

1/M < |z| < 1/m}. The ROC of A(z) is the intersection of these two ROCs, that
is, {z | max{m, 1/M} < |z| < min{M, 1/m}}.
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(ii) For xn to be stable, |α| < 1. From Table 3.6, we then have,

X(z) =
1

1− αz−1
for |z| > |α|,

and

X(z−1) =
1

1− αz for |z| < |α−1|.

Therefore,

A(z) =
1

1− αz−1

1

1− αz

=
1

1− α2

(
1

1− αz−1
− 1

1− α−1z−1

)
|α| < |z| < |α−1|.

From Table 3.6 we thus have an = (αnun + α−nu−n−1)/(1 − α2). For this deter-
ministic autocorrelation sequence, the poles are α,α−1, the zeros are 0,∞, and the
ROC is {z | |α| < |z| < |α−1|}.

(iii) Let yn = x−n, then Y (z) = X(z−1), and thus Ay(z) = Y (z)Y (z−1) =X(z−1)X(z) =
A(z), that is, their deterministic autocorrelations are the same. In other words, time
reversal does not change deterministic autocorrelation.

(iv) Take vn = xn−n0 , then V (z) = z−n0X(z), and thus Av(z) = z−n0X(z) zn0X(z−1) =
A(z), that is, their deterministic autorcorrelations are the same. In other words, shift
in time does not change deterministic autocorrelation.

3.12. Block circulant matrices
A block-circulant matrix C has block C(i−j) mod N in its (i, j)th position. We want to
show that the matrix

Λ = F C F−1

is block diagonal. The (k, j)th block of Λ is given by

Λk,j =
1

N

N−1∑

i=0

N−1∑

j=0

W ki
N C(i−j) mod NW

−jℓ
N

(a)
=

1

N

N−1∑

i=0

N−1∑

j=0

W
(k−ℓ)i
N C(i−j) mod NW

(i−j)ℓ
N

(b)
=

1

N

N−1∑

i=0

N−1∑

m=0

W
(k−ℓ)i
N CmW

mℓ
N =

1

N

N−1∑

i=0

W
(k−ℓ)i
N

N−1∑

m=0

CmW
mℓ
N

(c)
= δk−ℓ

∑

m

CmW
mℓ
N ,

where in (a) we multiplied and divided by W ℓi
N ; (b) follows from the change of variable

m = (i − j) mod N ; and (c) from the orthogonality of the the roots of unity, (3.288c).
From this we see that Λ is block diagonal.

3.13. Pattern recognition

(i) A sequence x ∈ RN can be written as a linear combination of {ϕk}N−1
K=0 only if they

form a basis for RN . Because the basis sequences are circular shifts of p, the matrix
Φ corresponding to {ϕk}N−1

K=0 is circulant. We know from (3.181a) that the DFT
diagonalizes the circular convolution operator

Φ = F−1ΛF,

where Λ is a diagonal matrix of DFT coefficients of p. Thus, Φ is full rank if and
only if all these DFT coefficients are nonzero.

(ii) Assuming that the condition from (i) is satisfied, that is, ϕk, k = 0, 1, . . . , N − 1
form a basis for RN , we can expand x as

x = Φα,
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with α the vector of expansion coefficients. Since Φ is full rank, it is invertible, and
thus

α = Φ−1x = F−1Λ−1F x.

3.14. Computing linear convolution with the DFT
The equivalence of linear and circular convolution for N ≥ M + L− 1 has been shown in
Theorem 3.10, and the computation of circular convolution using the DFT was shown in
Section 3.6. These two results together answer the question.

The algorithm is as follows: Take N ≥ M + L− 1, and compute the DFTs of x and
h extended to a length-N sequence each by appending zeroes. The result is

X = F x, H = F h,

with X and H vectors of DFT coefficients. From (3.171), the circular convolution in the
time domain has the DFT pair

Yk = HkXk, k = 0, 1, . . . , N − 1.

Taking the inverse DFT,
y = F−1 Y.

Note that even if N ≫M +L− 1 (that is, taking a much longer DFT than required), the
sequence y will be zero for n > M + L− 1, because of the equivalence between linear and
circular convolutions.

3.15. DFT properties
Some of these DFT pairs are explicitly given in Table 3.7.

(i) For yn = x−n mod N = xN−n, its DFT is

Yk =

N−1∑

n=0

ynW
kn
N =

N−1∑

n=0

xN−nW
kn
N

(a)
=

N−1∑

m=0

xmW
k(N−m)
N

=

N−1∑

m=0

xmW kN
N︸ ︷︷ ︸
=1

W−km
N =

N−1∑

m=0

xmW
(−k)m
N =

N−1∑

m=0

xmW
(N−k)m
N

=

N−1∑

m=0

xmW
(−k mod N)m
N = X−k mod N ,

where (a) follows from the change of variable m = N −n. For a real x, Yk = X−k =
X∗

k is also true.

(ii) For y = h⊛ x, we find the DFT pair from

yn = (h ⊛ x)n =

N−1∑

n=0

hnx(k−n) mod N

(a)
=

1

N2

N−1∑

n=0

N−1∑

ℓ=0

HℓW
−ℓn
N

N−1∑

m=0

XmW
−m(k−n)
N

=
1

N

N−1∑

ℓ=0

N−1∑

m=0

HℓXmW
−mk
N

1

N

N−1∑

n=0

W
(m−ℓ)n
N

(b)
=

1

N

N−1∑

m=0

HmXmW
−mk
N ,

exactly the inverse DFT of HX. In the above, (a) follows from the inverse DFT
(3.163b); and (b) from the orthogonality of the roots of unity (3.288c).

(iii) For Y = (1/N) (H ⊛X), we find the DFT pair from

Yk =
1

N
(H ⊛X)k =

1

N

N−1∑

n=0

HnX(k−n) mod N

(a)
=

1

N

N−1∑

n=0

N−1∑

ℓ=0

hℓW
nℓ
N

N−1∑

m=0

xmW
(k−n)m
N

=

N−1∑

ℓ=0

N−1∑

m=0

hℓxmW
km
N

1

N

N−1∑

n=0

W
n(ℓ−m)
N

(b)
=

N−1∑

m=0

hmxmW
km
N .
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exactly the DFT of hx. In the above, (a) follows from the DFT (3.163a); and (b)
from the orthogonality of the roots of unity (3.288c).

(iv) When xn = x−n mod N = xN−n, its DFT is

Xk = 1
2
(Xk +Xk)

=
1

2

(
N−1∑

n=0

xnW
kn
N +

N−1∑

n=0

xN−nW
kn
N

)
=

1

2

(
N−1∑

n=0

xnW
kn
N +

N−1∑

n=0

xnW
−kn
N

)

=

N−1∑

n=0

xn
1
2
(W kn

N +W−kn
N ) =

N−1∑

n=0

xn cos

(
2π

N
kn

)
,

and is real.

(v) When xn = −x−n mod N = −xN−n, its DFT is

Xk = 1
2
(Xk +Xk)

=
1

2

(
N−1∑

n=0

xnW
kn
N −

N−1∑

n=0

xN−nW
kn
N

)
=

1

2

(
N−1∑

n=0

xnW
kn
N −

N−1∑

n=0

xnW
−kn
N

)

=

N−1∑

n=0

xn
1
2
(W kn

N −W−kn
N ) = j

N−1∑

n=0

xn sin

(
2π

N
kn

)
,

and is purely imaginary.

3.16. Tight frames as projections from orthonormal bases

(i) Figure S3.16-1 shows the frame vectors for N = 3, 4, 5.

(a) For N = 3, consecutive frame vectors are separated by 2π/3.

(b) For N = 4, consecutive frame vectors are separated by 2π/4.

(c) For N = 5, consecutive frame vectors are separated by 2π/5.

(a) N = 3. (b) N = 4. (c) N = 5.

Figure S3.16-1 Frame vectors.

(ii) Call rk the column vectors of the DFT matrix. We know these vectors are orthog-
onal, but not orthonormal,

〈rk, rn〉 = Nδk−n.

Since these column vectors are the row vectors of Φ normalized by 1/
√
M ,

〈 1√
M
rk,

1√
M
rn
〉

=
1

M
〈rk , rn〉 =

N

M
δk−n.

The result then follows directly.
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X 3 F (z) 2 G(z) 4 H(z) Y

Figure S3.19-1 Multirate system.

3.17. Downsampling by N
We have

Y (z) =
∑

k∈Z

xkNz
−k =

∑

m=kN

xmz
−m/N (a)

=
∑

m∈Z

xmz
−m/N

(
1

N

N−1∑

n=0

W−nm
N

)

=
1

N

∑

m∈Z

N−1∑

n=0

xm
(
Wn

Nz
1/N

)−m
=

1

N

N−1∑

n=0

∑

m∈Z

xm
(
Wn

Nz
1/N

)−m

=
1

N

N−1∑

n=0

X
(
Wn

Nz
1/N

)
,

where (a) follows from the orthogonality of the roots of unity, (3.288c).

3.18. Downsampling

(i) For k = 0, 1, . . . , N/2− 1,

1

2

(
Xk +Xk+N/2

)
=

1

2

(
N−1∑

n=0

xnW
kn
N +

N−1∑

n=0

xnW
(k+N/2)n
N

)

(a)
=

1

2

N−1∑

n=0

(1 + (−1)n)xnW kn
N

(b)
=

N/2−1∑

ℓ=0

x2ℓW
k2ℓ
N

(c)
=

N/2−1∑

ℓ=0

yℓW
kℓ
N/2 = Yk,

where (a) follows from W
N/2
N = −1; (b) from (3.288c); and (c) from W 2

N =WN/2.

(ii) For k = 0, 1, . . . , N/M − 1,

1

M

M−1∑

i=0

Xk+iN/M =
1

M

M−1∑

i=0

N−1∑

n=0

xnW
(k+iN/M)n
N

=
1

M

N−1∑

n=0

(
M−1∑

i=0

W
iN/Mn
N

)
xnW

kn
N

(a)
=

1

M

N−1∑

n=0

(
M−1∑

i=0

W in
M

)
xnW

kn
N

(b)
=

N/M−1∑

ℓ=0

xMℓW
kMℓ
N

(c)
=

N/M−1∑

ℓ=0

yℓW
kℓ
N/M = Yk,

where (a) follows from W
N/M
N = WM ; (b) from (3.288c); and (c) from WM

N =
WN/M .

3.19. Multirate system with different sampling rates

(i) See Figure S3.19-1.
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X(z) 2H2(z) 2 2H1(z) 2 Y (z)

Figure S3.20-1 Equivalent multirate system.

(ii) The equivalent filter is
F (z3)G(z6)H(z24),

followed by downsampling by 24,

Y (z) =
1

24

23∑

k=0

F (W−k
24 z1/8)G(W−k

24 z1/4)H(W−k
24 z)X(W−k

24 z1/24).

3.20. Multirate identities

(i) Using the fact that filtering followed by upsampling is equivalent to upsampling fol-
lowed by upsampled filtering, we move both H2 and H1 across upsamplers to get the
system in Figure S3.20-1. We also know that upsampling followed by downsampling
by the same factor is identity. Therefore the transfer function of this system is:

Y (z)

X(z)
= H1(z)H2(z).

(ii) Using again the interchange of filtering and upsampling, we can redraw the system
as in Figure S3.20-2. The lower branch contains an upsampler followed by a delay
and a downsampler. The output of such a system is 0. Therefore only the upper
branch remains and the final transfer function of the system is:

Y (z)

X(z)
= H0(z).

X(z) H0(z) 2 2

H1(z) 2 2z−1

+ Y (z)

Figure S3.20-2 Equivalent multirate system.

(iii) For the first system, the input/output relationship is

Y (z)

X(z)
=

1

2

[
H(z1/2)G(z1/2) +H(−z1/2)G(−z1/2)

]
(a)
= 1,

where (a) follows from (P3.20-1a).
For the second system, the input/output relationship is

Y (z)

X(z)
=

1

2

[
H(z1/2)F (z1/2) +H(−z1/2)F (−z1/2)

]
(a)
= 0,

where (a) follows from (P3.20-1b).
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3.21. Interchange of multirate operations and filtering

(i) Using multirate identities, Dn = D8 and H(z) = A(z)A(z2)A(z4) to yield y =
D8Hx.

(ii) H(z) is an ideal lowpass filter, see Figure S3.21-1.

(iii) H(z) is an ideal bandpass filter, see Figure S3.21-1. Despite A being an ideal high-
pass filter, the highest frequencies will get filtered out in the second iteration of the
filter-downsample block, and thus, this system will not keep the highest frequency
content of the input.

3.22. Commutativity of upsampling and downsampling
In (3.186a), D2 is the downsampling-by-2 operator, an identity matrix with odd rows taken
out. Similarly, in (3.192a), U2 is the upsampling-by-2 operator, an identity matrix with
zero rows inserted between every two rows. Similarly, DM is the downsampling-by-M
operator, an identity matrix with rows kM + j, j = 1, 2, . . . , M − 1, taken out, and UN is
the upsampling-by-N operator, an identity matrix with (N−1) zero rows inserted between
every two rows. Then,

(DMUN )ij =

{
1, for Mi = Nj;
0, otherwise,

(UNDM )ij =

{
1, for i/N = j/M ∈ Z;
0, otherwise.

For the above to hold, it must hold element-by-element, and thus, Mi = Nj, or i/N =
j/M = k ∈ Z must hold for all i, j ∈ Z. We now show that this is possible if and only if
gcd (M,N) = 1.

If gcd (M,N) = 1, then

i

N
=

j

M
= k ⇒ Mi = Nj = MNk,

and

Mi = Nj ⇒ i = Nq, j = Mq ⇒ i

N
= q =

j

M
.

We prove necessity by contradiction. Let gcd (M,N) = L. Then, M = M ′L and
N = N ′L, where gcd (M ′, N ′) = 1. Further, Mi = Nj implies that i = N ′q, j =M ′q, and
i/N = q/L = j/M = k ∈ Z must hold for any q ∈ Z, possible only for L = 1 and q = k.
Hence, L = gcd (M,N) = 1.

3.23. Combinations of upsampling and downsampling
We solve the problem using matrix notation for U3, U4 and D2:

U3 =




...
...

...
· · · 1 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 1 · · ·

...
...

...




, U4 =




...
...

...
· · · 1 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 1 · · ·

...
...

...




,

and

D2 =




...
...

...
...

...
· · · 1 0 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...



.
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(i) For the first comparison, compute

U3D2 =




...
...

...
...

...
· · · 1 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...




, D2U3 =




...
...

...
...

...
· · · 1 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...




.

Thus U3D2 x and D2U3 x are identical since U3D2 = D2U3.

(ii) For the second comparison, compute

U4D2 =




...
...

...
...

...
· · · 1 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...




, D2U4 =




...
...

...
...

...
· · · 0 1 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 1 0 · · ·

...
...

...
...

...




,

which are evidently not the same, and thus U4D2 x 6= D2U4 x.

The results of the two comparisons are different because in the first case, 3 and 2 are
coprime and thus D2 and U3 commute, while in the second, 4 and 2 are not coprime and
thus D2 and U4 do not commute (see Exercise 3.22).

3.24. Interchange of filtering and sampling rate change

(i) Denote the input to the system by x. Using (3.188), the z-transform of the sequence
after downsampling by 2 is

1

2

[
X(z1/2) +X(−z1/2)

]
.

Filtering with G̃(z) then results in a sequence with z-transform

1

2

[
X(z1/2) +X(−z1/2)

]
G̃(z).

Alternatively, first filtering with G̃(z2) results in a sequence with z-transform

X(z)G̃(z2). Using (3.188), downsampling by 2 now results in a sequence with z-
transform

1

2

[
X(z1/2)G̃((z1/2)2) +X(−z1/2)G̃((−z1/2)2)

]

=
1

2

[
X(z1/2)G̃(z) +X(−z1/2)G̃(z)

]
=

1

2

[
X(z1/2) +X(−z1/2)

]
G̃(z),

matching the previous expression.

(ii) Denote the input to the system by x. Filtering with G(z) results in a sequence with
z-transform X(z)G(z). Using (3.193), upsampling by 2 then results in a sequence
with z-transform

X(z2)G(z2).
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Alternatively, using (3.193), first upsampling results in a sequence with z-transform
X(z2). Filtering with G(z2) then results in a sequence with z-transform

X(z2)G(z2),

matching the previous expression.

3.25. Periodically shift-varying systems
A linear, shift-varying system is characterized by a two-variable impulse response hk,n,
the response of the system to the input xn = δn−k . Since the input can be written as
xn =

∑
k xkδn−k , the output is given by yn =

∑
k xkhk,n.

When hk,n is periodic in k with period N , we define the polyphase components xk as
in (3.230), to yield

xk,n = xnN+k , xk =
[
. . . x−2N+k x−N+k xk xN+k x2N+k . . .

]⊤
,

for k ∈ {0, 1, . . . , N − 1}. Denote the upsampled version of xk,n by x
(N)
k,n , so

x
(N)
k,n =

{
xk,n/N , for n/N ∈ Z;

0, otherwise;
=

{
xn+k, for n/N ∈ Z;

0, otherwise.

x
(N)
k = = [. . . 0 xk 0 0 . . . 0︸ ︷︷ ︸

N−1

xN+k 0 . . .]⊤.

Take the above upsampled components, delay each by k, and sum them up; we get x back:

xn =

N−1∑

k=0

x
(N)
k,n−k.

As this is a linear system, we can find the output as

yn =
∑

k∈Z

hk,n

N−1∑

i=0

x
(N)
i,n−i =

N−1∑

i=0

∑

k∈Z

hk,n x
(N)
i,n−i

(a)
=

N−1∑

i=0

∑

(k−i)/N∈Z

hk,n x
(N)
i,n−i

(b)
=

N−1∑

i=0

∑

(k−i)/N∈Z

hin x
(N)
i,n−i

(c)
=

N−1∑

i=0

∑

k∈Z

hk,n x
(N)
i,n−i,

where (a) follows from the excluded terms being zero; (b) from the periodicity of h; and
(c) because the added terms are zero. The final expression shows the output as a sum
of N terms. The ith term is the ith polyphase component, upsampled and filtered by an
i-sample delayed version of hk,n.

3.26. Sequence with a zero-polyphase component
A sequence with all odd-indexed samples x equal to 0 is the upsampled-by-2 version of its
first polyphase component, x0. Using (3.92), its DTFT is given by

X(ejω) = X0(e
j2ω),

so X is π-periodic since X0 is 2π-periodic. Thus, if X(ejω) is nonzero at ω = 0, it is
nonzero at ω = π as well.

3.27. Convolution and sum of discrete random variables
Since x and y are integer-valued, for any integer k, the event {z = k} is

⋃

m∈Z

{x = m, y = k −m}

as a union of disjoint events. Thus,

pz(k) =
∑

m∈Z

P(x = m, y = k −m)
(a)
=

∑

m∈Z

P(x = m) P(y = k −m)

(b)
=

∑

m∈Z

px(m) py(k −m)
(c)
= (px ∗ py)(k),

where (a) follows from the independence of x and y; (b) from the definition of PMF; and
(c) from the definition of convolution.
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3.28. Autocorrelation and crosscorrelation
We have

Cx,y(e
jω) =

∑

k∈Z

E
[
xn y∗n−k

]
e−jωk =

∑

k∈Z

E[ xn (xn−k +wn−k)
∗ ] e−jωk

=
∑

k∈Z

(E
[
xn x∗n−k

]
+ E

[
xn w∗

n−k

]
) e−jωk (a)

= Ax(e
jω),

where (a) follows from x and w being uncorrelated. Also,

Ay(e
jω) =

∑

k∈Z

E
[
yn y∗n−k

]
e−jωk =

∑

k∈Z

E[ (xn + wn) (xn−k + wn−k)
∗ ] e−jωk

=
∑

k∈Z

(E
[
xn x∗n−k

]
+ E

[
wn w∗

n−k

]
+E

[
xn w∗

n−k

]
+ E

[
wn x∗n−k

]
) e−jωk

(a)
= Ax(e

jω) +Aw(ejω),

where (a) again follows from x and w being uncorrelated.

3.29. Toeplitz matrix–vector products
A size-(N ×N) Toeplitz matrix has 1 + 2(N − 1) = 2N − 1 parameters, while a same-size
circulant matrix has N parameters. Thus, the minimal extension of a size-(N×N) Toeplitz
matrix to a circulant matrix needs N − 1 columns and rows.

The corresponding numbers of parameters for symmetric Toeplitz and circulant ma-
trices are N and ⌊N + 2/2⌋, respectively. So the minimal extension is by N − 2 columns
and rows.

For example, a Toeplitz matrix T extended to a circulant matrix C is as follows:

T =



a b c
d a b
e d a


 C =




a b c e d
d a b c e
e d a b c
c e d a b
b c e d a


 ,

while a symmetric Toeplitz matrix T extended to a symmetric circulant matrix C is as
follows:

T =



a b c
b a b
c b a


 C =




a b c b
b a b c
c b a b
b c b a


 .

Because we know that the DFT diagonalizes a circulant matrix, we can use that fact to
estimate the cost of computing the product of a circulant matrix with a vector, and thus,
the cost of computing the product of a Toeplitz matrix with a vector. Since the cost of
computing the DFT is given by (3.271), the cost of computing the product of a Toeplitz
matrix with a vector is O(N log2N).

3.30. Overlap–save convolution algorithm
In the factored form, three matrices are used, A, E and H as in Example 3.46,

A⊤ =




. . .

I2 0 0
0 I2 0
0 0 I2

I2 0 0
0 I2 0
0 0 I2

. . .




, E⊤ =




. . .

0 I2 0
0 0 I2

0 I2 0
0 0 I2

. . .




,
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and H is given in (3.274). Multiplication by A⊤ will concatenate the following input blocks:

x(0) =




x0
x1
x2
x3
x4
x5



, x(1) =




x4
x5
x6
x7
x8
x9



.

After multiplication by H6, the output blocks will be

H6 x
(0) =




h0x0 + h2x4 + h1x5
h1x0 + h0x1 + h2x5
h2x0 + h1x1 + h0x2
h2x1 + h1x2 + h0x3
h2x2 + h1x3 + h0x4
h2x3 + h1x4 + h0x5



, H6 x

(1) =




h0x4 + h2x8 + h1x9
h1x4 + h0x5 + h2x9
h2x4 + h1x5 + h0x6
h2x5 + h1x6 + h0x7
h2x6 + h1x7 + h0x8
h2x7 + h1x8 + h0x9



.

We see that the first two elements of each block are incorrect while the last 4 are correct.
Thus, the effect of E⊤ is to discard those incorrect elements. This is why this method
is sometimes also called overlap-discard. In general, we keep the last M elements of each
block.

3.31. Sums and products

(i)
∞∏

k=1

exp

(
j2π

k(k + 1)

)
= exp

(
j2π

∞∑

k=1

1

k(k + 1)

)
(a)
= exp(j2π) = 1,

where (a) follows from

∞∑

k=1

1

k(k + 1)
= lim

n→∞

n∑

k=1

(
1

k
− 1

k + 1

)
= lim

n→∞

(
1− 1

n+ 1

)
= 1.

(ii)

1023∑

k=0

W k
16 =

63∑

k=0

15∑

n=0

W 16k+n
16 =

63∑

k=0

W 16k
16

15∑

n=0

Wn
16 = 64

15∑

n=0

Wn
16

(a)
= 0,

where (a) follows from the orthogonality of the the roots of unity (3.288c).
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Ideal lowpass filter. Ideal highpass filter.
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Equivalent filters.

Figure S3.21-1 Iterated ideal filters.


