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Chapter 2

Solutions to exercises

2.1. Multiplication by an orthogonal matrix
We are given an orthogonal matrix U.

(i) To prove that multiplication by an orthogonal matrix preserves lengths, we write

(@)

Uz||? = Uz)T(Uz) = 2"U U=z Tz = || (S2.1-1)

where (a) follows from (2.237).

(ii) To prove that multiplication by an orthogonal matrix preserves angles, we write

Uz, Uy) = (U)T(Uy) = 2700y @ o7y = (,9),

where (a) again follows from (2.237).
(iii) Let X and v be an eigenvalue/eigenvector pair of U, that is, Uv = Av. Then

(a)
ol & Ul = Aol

where (a) follows from (S2.1-1). Hence |A| = 1 for any eigenvalue A of U.

2.2. Bases and frames in R?

(i) The four matrices are

V3

1 0 1 3 1 0
P, = 2 Py = 2v/2 2v/2 V2
V3|’ 3 1 9 |’
22 22 V2
1 V3 1 L o0
b3 = 2 2 s oy = |: \{ﬁ :|
E !

(ii) Finding the dual basis or a dual frame is easiest using matrices. As long as each ma-
trix above is of full rank (rank 2), we will be able to find the inverse (for bases/square
matrices) or a right inverse (for frames/rectangular matrices),

b = I.
To specifically find the canonical dual frame, use (2.160a),
® = (PP*) " .

The synthesis operators for the four duals are

q”_{o ﬂ ®2

-

53
o o

g o

2v/2 2v/2
1 V3 31 1
= 3 T3 = 1 1
® = | 2 2 b4 = {_1 i E]
7 2 vz

The elements of the duals can be read off as columns of these matrices.

(iii) @4 is a basis, and it is not orthonormal because it is not equal to its dual. (Alter-
natively, its two elements are not orthogonal.) ®3 is a frame, and it is tight because
it is a scalar multiple of its canonical dual; it is furthermore 1-tight and equal to
its canonical dual. (Alternatively, ®2®5 = I.) ®3 is a basis, and it is orthonormal
because it is equal to its dual. (Alternatively, its two elements are orthogonal and
have unit norm.) ®4 is a frame, and it is not tight because it is not a scalar multiple
of its canonical dual. (Alternatively, ®4®} # cl2 for a scalar c.)
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(iv) These projection coefficients can be computed as
a; = 5?:&

and thus

Sl S

3
o= [Lyyg] e = | o = [_ba] o :
1= ) 2 = ) 3 = ) 4 = |5
—2\/§ \/5 —\/3 \/?
0 2
(v) We do this in more detail for the first representation than the others.

For &1 : =

1
§ Q1 kP1,e = @1,001,0 +Q1,101,1
k=0

1
3 0 2 0 2
j— 2 — e —
= 1 a] 2] = b+ [0 = ]
_1_ V3 1
1 [wm] vE[-3% EAPN
For®2: z = — |5 | ——%= 2y2 +V2 | V2 40|, | = .
V2 | V2 | 55 0 7 0
e P
. - _ 2 | —
For 3: x =1 V3 V3 i 0
2 2
1
3|1 1 |5 110 2
For &4 : r = — + — \{E]—[:|:|::|
2|0 \/5 v 2|1 0
vi) We have already done this by computing duals in (ii).
(vi)
(vii) The norm of z is ||z|| = 2. The norms of the expansion vectors are
leill = 2v7, o2l = 2, flasll = 2, [laa] = V3.

The orthonormal basis preserves the norm, as predicted by the Parseval equality
(2.96). The tight frame also preserves the norm because it is a 1-tight frame (see
(2.154)). The other two sets do not preserve the norm.

(viii) The expansions that produce more coefficients than the dimension of the signal are
redundant. Thus, expansions with respect to ®5 and ®4 are redundant, while those
with respect to ®; and ®3 are not.

2.3. Best approzimation in R3
The set {eo, e1, ez} forms an orthonormal basis in R3. Thus, the difference between the
vector  and its approximation g1 onto the (eg, e1)-plane is
e = Zotll> = [z, eo) — a0)eo + ({z, e1) — a1)er + (z, ez)ez?

D (2, eo) — aol? + [(, e1) — a1 2 + (@, e2)[?,

where (a) follows from the Pythagorean theorem. This difference is the smallest possible
and equal to (z, ea)es when ag = (z, eg) and a1 = (z, e1), that is, when Zp; is an
orthogonal projection.

2.4. Matrices representing bases and frames

(i) We check norms and linear independence of the vectors in the set:

leoll = llerll = llw2ll = 1,
2 1 1
<5007501> = ( g) (_%)“Fg = 0,
<5007502> = <\/§> (_%)“Fé = 07
111
(w1, p2) = 6 3273 = 0.
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Since all the ¢ vectors are orthogonal (and thus linearly independent), and there
are exactly as many vectors as dimensions, ® is a basis. Moreover, all ¢ are of unit
norm, and thus ® is represents an orthonormal basis.

(ii) The resulting matrix after projection is
1
o = 3 Vo
V2

Since the matrix is of full rank 2, and there are 3 vectors, ®’ represents a frame.
Moreover, since

\/E 1 1
3 /6 /6
0 1 1

V2 V2

@’ is also tight.

2.5. Linear independence
For U to be an independent set, it is necessary and sufficient that

,\0[8 ‘ﬂ M {‘1) ail} + e L.O ﬂ — 0 for Ao, A, N €C,
has the unique solution A\g = A1 = A2 = 0. This equation is equivalent to the system

a®Xo+ X2 = 0,

A1+ jadz = 0,

Jo + (a — 1))\1 + Ay = 0.
Thus, a’?Xg = —A\1 = ja)2. By multiplying the last equation by a? and substituting for
Ao and A1 from the first two, we get
ja%xo + (a — 1)a? A1 + a® )Xo j(Gar2) — (a — 1)a?(jara) + a® X2

(—a —j(a—1)a® + a®) g
a(l —ja®)(a — Ao
a(1 — ay)(1 + ay)(a — s =0,
where y = (1 + j)/+/2 is the square root of j. Assuming that a ¢ {0,1,—1/y,1/y}
means that Ao = 0. We also have a?)\g = —\1 = jal2 = 0 with a # 0 which ensures
that Ao = A1 = 0. Hence, U is an independent set if and only if the complex number

ag{0,1,(1-35)/v2,-(1-35)/V2}.

For a = j, we see that

0 -1 0 1 0 0 0 5
S (O R R R I PR
2.6. Continuity of the inner product
We have

[{z + h1, y + ha) — (z, y)| [(z, h2) + (h1, y) + (h1, h2)]|

< e, ha)l + [(ha, )| + [(ha, h2)l

a)

< llzltlihzll + Nzl b2l + (TR 1hz]l,
where (a) follows from the Cauchy—Schwarz inequality (2.29). Since the limit of the right-
hand side is 0, so is the limit of the left-hand side, leading to the desired result.

2.7. Inner product on CN

Definition 2.7(i)—(ii) hold by the form of y* Az, regardless of any condition on A. For (iii)
to hold,

z*A%y = (yFAz)" = (z,9)" = (y,7) = a"Ay = " Ay,
implying A = A*, that is, A must be a Hermitian operator. For (iv) to hold,
0 < (z,z) = z" Az

for all nonzero x, which is precisely the definition of A being positive definite.
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2.8. Norms on CN
To prove that v is a norm on a vector space, we use Definition 2.9.
For v1:

(i) Positive definiteness: vi(x) = Zg;01|xk\ is always positive for any = € CV since it
is a finite sum of positive terms (|zg| > 0, for all z € C). Moreover,

N-1
2)=0 & Y |ox|=0
k=0

& Jrg|=0,ke{0,1,..., N -1}
& 2, =0,k€{0,1,..., N-1} & z=0.
(ii) Positive scalability:

N-1 N-1 N-1
vi(ez) = > lazp] = Y loflze] = laf D |z = |afvi(2).
k=0 k=0 k=0

(ili) Triangle inequality:

a

N-1 N-1
vi(+y) = Y | +ul < Z(ka\-f'\ykl)

T
|
L3

ka|+ Z|yk| vi(z) + vi(y),

HM

where (a) follows from the trianglc inequality on C.
For wvo:

(i) Positive definiteness: va(x) is always positive for any 2 € CN since it is a the square
root of a finite sum of positive terms (|zx|? > 0, for all z;, € C). Moreover,

va(r) =0 & (Zmﬁ) =0

s Jzp?=0,ke{0,1,..., N-1}
& 2,=0,ke{0,1,..., N-1} & z=0.
(ii) Positive scalability:
1/2

N-1 1/2 N-1
va(ax) = (Z |Oéxk2> = (Z |af? Ik2> = |a|va(z).
k=0 k=0

(iii) Triangle inequality:
N—1 1/2
s (Zwr)
k=0

N—1 /2 /N1
va(z+y) = <Zﬂﬁk+yk|2> < (lek2>

k=0 k=0
= v2(z) +v2(y),
where (a) follows from Minkowski’s inequality with p = 2.
2.9. Norms on C(]0, 1])

To prove that v is a norm on a vector space, we use Definition 2.9.
For v1:

1/2

NE

(i) Positive definiteness: vi(x fO |z(t)| dt is nonnegative for any € V because the
integrand is nonnegative. Morcover

1
vi(z) =0 & /(; |z(t)|dt =0
& Jz(t))=0,te€0,1] & z=0.
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(ii) Positive scalability:

1 1 1
wee) = [slde = [allawlar = jo [ el = jo o).

(iii) Triangle inequality:

vi(z +y)

1 1
/ |z(t) +y(®)[dt < / (lz®)] + [y(®)]) dt
0 0

1 1
[le@lde+ [woldt = v+ 0w
0 0

For va:

(i) Positive definiteness: vZ(z) = fol |()|? dt is nonnegative for any « € V because the

integrand is nonnegative. Moreover,
1

v2(z) =0 & / lz(t)|2dt =0
0

s |z@®))?=0,te0,1] & x=0.

(ii) Positive scalability:

wlea) = ([ lwa:c@)th)l/z - (/ 1|a\2\x<t>|2dt)1/2

1 1/2
ol ([le@Par) " = falua(e)
(iii) Triangle inequality:

n@ty) = ( / 1|m(t>+y(t>|2dt)1/2

< ([ e dt)m ([ wtor dt)m

= v2(z) +v2(y),

where (a) follows from Minkowski’s inequality with p = 2.

2.10. Orthogonal transforms and co norm

(i) We can find the bounds a2 and b2 by considering rotations/rotoinversions of vectors
on the unit circle. By the definition of the co-norm, the upper bound bz is clearly 1
since there is no vector on the unit circle whose maximum element is greater than

1. The lower bound is achieved when both components of the vector are equal, and
thus

75 < Il < 1

(ii) By the same arguments we conclude that the upper bound is again 1 since there is
no vector on the unit sphere whose maximum element is greater than 1. Similarly,
the lower bound is achieved when all components of the vector are equal, and thus

1
N < ITnzllo < 1.

2.11. Cauchy—Schwarz inequality, triangle inequality, and parallelogram law

(i) If one of the vectors is a zero vector, the result trivially holds. Suppose now that
[|z]] # 0. Then, for any o € R, we have

b
0 < (ax+vy, ax+vy) (:) (az, az + y) + (y, ax + y)
(o, ax) + (ax, y) + (y, az) + (y, y)

la?llz|? + oz, y) +a*(y, @) + |yl
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where (a) follows from the positive definiteness of the inner product; (b) and (c) from
distributivity; and (d) from the linearity in the first argument and the conjugate-
linearity in the second argument. Choosing o = —(y, z)/||z||?, so a* = (z, y)/||z|?
and |a|? = [(z, y)|?/||=[|*, we get

2
0 < I(w,ygl _2|<w,yg|
(Ed] (Ed]

(=, y)I?

W + [lyl1?.

2 2
+lyll® = -

Multiplying through by ||z||2, rearranging, and taking the square root gives |(x, y)| <
[|lz] ly|| as desired.

Note that the Cauchy—Schwarz inequality holds with equality if and only if in-
equality (a) above holds with equality. By positive definiteness of the inner product,
that occurs if and only if ax + y = 0, meaning that x is a scalar multiple of y.

(i) We use the Cauchy—Schwarz inequality we just proved:

lz+yl? = @ty z+y) = |zl + (2, 9) + @y, 2) + |yl
(a)

IN

2 2
=" + 2l [yl + [yl
2
= (ll=ll +llwlD,
where (a) follows from the Cauchy—Schwarz inequality, with equality if and only if
x is a scalar multiple of y. Taking square roots gives the desired triangle inequality.

(iii) A simple proof is as follows:

Iz +yl? +lle—yl? = (@+y, a+y) + (@ -y, z—y)
21 + [lylI* + (=, v) + (v, @) + |z]* + |ylI* = (=, y) — (y, z)
= 2(llz[1* + [lylI*)-
(iv) Let the inner product be given by the real polarization identity (P2.11-1). We verify
some properties of an inner product in Definition 2.7.
(i) Distributivity:

(@ 1
(@+y, 2) = Z(|Ix+y+2||2—le+y—2||2i||x+y+2||2)

1 1
2 Slle+ 2l = 5 (lo+y+20® + o +y—2I°)

D ety 2l - 5 (o + l + 1=12)

D 2 oy + 2502+ llz 4+ 9l = 2020) = 3 (e + I + [211)

= ey 2] = e+ ol — l=)

QD e+ 2l + Sy + 21 - glle —yl = Flle+yll? — [1=]?

D e 2l + Ll + 27 = Sl - Syl = =12

= gl el = (Glel + 01 ) + G+ =12 = (P + 31417
@ e+ 21 =l = #12) + § (ly+ 217 =y = =)

Y (e 2+ w2,

where (a) follows from the polarization identity; (b) from adding and subtract-
ing ||z +y + 2||2/4; (c) from the parallelogram law applied to the summand
in parentheses with (z + y) and z as vectors; (d) from the parallelogram law
applied to ||z +y + z||? with (z + y + 2) and z as vectors; (e) from the par-
allelogram law applied to ||z + y + 22|/ with (z + z) and (y + 2) as vectors;
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(f) from the parallelogram law applied to the third and fourth summands; (g)
from the parallelogram law applied to the terms in parentheses; and (h) from
the polarization identity.

(ii) Hermitian symmetry: The arguments in the polarization identity commute
in the real case, hence: (y, z) = (x, y).

(iii) Positive definiteness:
1
(@, z) = (lz +a)® = |z —|?) = (|290||2 —-0) = |z|I?,
so the positive definiteness of the inner product follows from the positive

definiteness of the norm.

2.12. Norm induced by an inner product
To prove that v is a norm on a vector space, we use Definition 2.9.

(i) Positive definiteness: v2(x) is always positive since a square root is a nonnegative
function. Moreover,

v(r)=0 & {z,z)=0 & z=0.

(ii) Positive scalability:

v(az) = {ax, az) = Voo (z, z) = |a|/(z, ) = |afv(z).

(iii) Triangle inequality:

(z+y, z+y)
(x,z+y)+{y, z+y)
(e+y, o) +{x+y, y)*
z, ) + (2, y) + (y, y) + (2, y)”
= v () + v*(y) + 2R{(=, v)}.

Using the Cauchy—Schwarz inequality, we further have that

R{(z, 1)} < [z, v)| < Viw, )y, y) = v(z)v(y).

v (@ +y)

Hence,
V(z+y) < 0P(z) + 0% (y) + 20(@)u(y) = (v(z) +0(y))*
Taking the square root of both sides yields the desired property.
2.13. Distances not necessarily induced by norms
To show that such a discrete metric is a valid distance, we verify that it satisfies the four
properties:
(i) Nonnegativity: For any z,y € V, d(z,y) > 0.
(ii) Symmetry: For any z,y € V, if x # y then d(z,y) = 1 = d(y,z); if x = y then
d(z,y) = 0 = d(y, z).
(iii) Triangle inequality: For any z,y,z € V that are not all equal, d(z,y) + d(y,2z) >
1>d(z,z). Incase z =y = z, d(z,y) + d(y, z) = 0 =d(z, 2).
(iv) Identity of Indiscernibles: For any x,y € V, by the definition of d(x,y) we have
d(z,z) =0 and d(z,y) =0 =z =y.

Hence, the defined discrete metric is a distance.

A simple example shows that d(z,y) is not induced by any norm. Consider two
vectors: x = 2ep has 2 in the first position and zeros elsewhere; y = —2e; has —2 in the
second position and zeros elsewhere. Then, for any p,

lz—ylp, = (2p+2p)1/p 2etD/p 5 9 5 1

while d(z,y) = 1.
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2.14. Conwvergence of the inner product in £2(Z)
Let  and y be sequences in ¢2(Z). Define ' and y’ by

’
T, = |on]

and Y lynl, for all n € Z.

It is clear that ||z’|| = ||z|| and ||y’|| = ||y||, so 2’ and y are in £2(Z). To check the absolute
convergence of (2.22b), first note

Dolznynl = D an (vn)"

ne”

ne”

The latter sum is of nonnegative terms and thus must converge or diverge to co. However,
divergence to infinity is not possible because the sum is bounded by ||z’|| ||y’|| through the
Cauchy—Schwarz inequality applied to (z/, y).

2.15. Definition of oo norm

Following the hint, it suffices to consider z = [1

a1 a2 aNfl]T with Ja;| < 1

fori=1,2,..., N—1. (Why? All the norms we are considering satisfy Definition 2.9(ii).
Hence, multiplying by any scalar does not change whether the condition of interest holds.
In addition, changing the order of elements in a vector does not change its norm.) We need

to show that limp_ o ||z]lp = 1.

Because of the first entry of x, we have ||z||, > 1. We also have

llll5

1+a11’+a12’+~-~+a7\,71 < N,

since |a;| < 1 for each i. Thus limp—eo ||zl < limp—y0o N/P = 1. Combining the upper
and lower bounds completes the proof.

2.16. Quasinorms with p < 1

(i) Let & = [1 O]T and y = [0 l]T. Then

le+yllhye = (1+1)?

=4 > 2 =

1+1 = |lzlli/2 +llylli/2,

violating Definition 2.9(iii).

(i)

Let z € RN, ||z||b is a sum of N terms: Zf\r:1|mi|p. Since a finite sum is always

interchangeable with a limit, we have

In this sum, each nonzero z; contributes 1 because lim,_,o|z;|P

N—-1
li p > dim P
p%Hpr 2 p%lm

Each zero

x; contributes 0. This proves that limp—o||z|5 gives the count of the number of
nonzero components in z.

2.17. Equivalence of norms on finite-dimensional spaces

(i)

(I3

(a) flzlls > flel2 because

(®) |lz|l2 > ||z|lcc because

2
llll2

N-1 2 N—1
(Z'“O = w2 3wl
o =0 0<i<j<N-1
0<i<j<N-1
—1
2 ) )
= ;) |zi]* > i:0’$§§N71|x,—| = |=|%.

(¢) Nl|z|loco > V' N|z||2 because

(Nllzllo0)?

Y
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max
i=0,1,...,N

N-1
N D el
i=0

max
i=0,1,...,N—

EAR
—1

v (w

(VR llall2)”.

w)
1
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(d) VN ||z||2 > ||lz||1 because

N-1 N-1
2
(VNliall2)” = el = NS Jail? = [ 3" il +2 > iyl
i=0 i=0

0<i<j<N-—1

N-1
(N=D> |zl?=2 > |zl
=0

0<i<j<N-—1
= > (al—lz)* > 0.
0<i<j<N-—1
(ii) If there exists v € V such that |[v|le < oo and [|v||; = oo, then ||-|q and || - ||, are

not equivalent. We give a counterexample in C%, the infinite-dimensional space of
complex sequences.

(a) The sequence v with all v, = 1 has a bounded co norm, [|v]|cc = 1, and
unbounded 1 norm and 2 norm. Hence the co norm is not equivalent to the
1 norm and 2 norm on CZ%.

(b) The sequence v with

_ [1/n, n>0
vn = 0, otherwise,

has an unbounded 1 norm

~ 1\/? oo 1/2
- 1 9~ [loga n]

n=1 n=2

llvllx
1,1 /2 _
A+5+5+-)7" = oo,

and a bounded 2 norm

> 1 1/2 ™
[[v]l2 = <Z E) = %

n=1

Hence the 1 norm is not equivalent to the 2 norm on CZ.

2.18. Nesting of ¢P spaces
We prove the nesting property by induction.

(i) Let = € £1(Z), so ||z|l1 < co. Then

2
2 2 2
lll3 = > leal® < [ D lwil | = llzllf < oo
i€Z i€z
Hence, = € ¢2(Z), implying that ¢'(Z) C ¢2(Z).
(ii) Let € ¢P(Z), and for any n =1, 2, ..., p its n-norm ||z||» < co. Then
+1 1
lellpis = Dl < D lal® D lwil = el llelln < oo
€L 1€EZL 1€EZL

Hence, = € (P11(Z), implying that ¢P(Z) C ¢PT1(Z).
2.19. £P([0, 1]) spaces

(i) We first show that the parallelogram law holds in £2([0, 1]), which follows directly
from the linearity of the integral. In fact,

1 1
[ o)+ v de+ [ et -y at
0 0

2 (/01|x<t>\2dt+/Olwymﬁdt)

2(l113 + llyl13)-

llz +ylI3 + llz — I3
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(i) We now show that the parallelogram law does not hold in £P([0, 1]) for p # 2. Take
z(t) =t and y(t) =1 —t. Then

1 1/p 1
T = t|P dt = —
el (/OH ) 7
1 1/p 1 1/p
lolly = ( \1—tv’dt) - ( / |u\ﬂdu) = Jallp,
0 0
1 1/p 1 1 1/p
o=y = ([ e-apar) = (5[ wpa) " = .
0 —1
1 1/p
e+l = (/O \1|pdt) -1
Thus
1 (p+1)%/P 41
2 T _
o+l +lle =l = 1+ o = I
4
2 2 _
200l + 1) = 57

The two are equal only when p = 2.
2.20. Closed subspaces and £°(Z)

(i) For any v € £9(Z), define I = {i | wv; # 0} to be the finite set of indices of nonzero
elements of v. Let |I| = n < oo be the number of such elements in v. Then,

1/2 1/2 1/2
Sl = [Tk < (nmaxm\?)
N N 1€l

Vvn max |v;| < oo.
i€l

llvll2

Hence, v € £2(Z), which implies that £0(Z) C €2(Z).

(ii) Consider a sequence v(") = [.. 01 % % 0 ...] € £9(Z). Let also
limy—00 v(™ = v. Since v has infinitely many nonzero elements, v ¢ ZO(Z). How-
ever, v € £2(Z), since

1/2

oo 1/2
ol = {3 il :<Z}2> -

i€EZ i=1

< 00.

Sl

Hence, £°(Z) is not a closed subspace of £2(Z).

2.21. Infinite sequences and completeness
For the set {prrez to be a basis for £2(Z), it would have to be possible to express any
vector in £2(Z) uniquely with respect to the set. In this case, uniqueness is satisfied in that
every vector in span({yx }xez) has a unique expansion with respect to the set. However,
span({¢x trez) does not include every vector in £2(Z). For example, let

T

Yo = [ 0 0 || - 0 0

V2

S

This vector is in ¢2(Z) but not in span({yx}recz). To see why it is not, note that the
support of 1o is {0, 1}, which overlaps with the support of only one vector in {¢k}kez,
namely the sequence with no shift (k = 0). Since 1 is not a scalar multiple of pg and
none of the shifted versions of ¢g in the set has support overlapping with {0, 1}, there is
no way to write ¢ as an expansion with respect to {¢x }kez-

(The choice of 9o and its notation are suggestive. If we define vy, for nonzero k € Z
through

wk,n = 7/’0,n—2k7 n € Z,

then {¢g Yrez U {¥x }rez is an orthonormal basis for £2(Z).)
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2.22. Completeness
We have that

lim pi(t) = p(b),
k—oo

where

While (pg) is a Cauchy sequence in P, it does not converge to a vector in P since p(t) is
not a polynomial. Therefore, P is an inner product space, but since it is not complete, it
is not a Hilbert space.

2.23. Completeness of CV
A vector space is complete if every Cauchy sequence in it converges to an element of that
vector space. Hence, given any Cauchy sequence (vn)p>0 C CYN, we must show that
limy 500 Un =vE CN. )

Let (U,Ef) )n C C such that each vgf) is the ith element of the vector v,. Since for any
€ >0, ||U»£f) - U»E:;I)”p < |lvn —vmllp < &, (vgf)) is a Cauchy sequence in C. Since C is
complete, then limp_s 0o oW = o e,

Hence, the sequence (vy) converges elementwise to

lim v, = [© o0 . oO-D]T = yec.
n— oo

This implies that C is a complete vector space.

2.24. Cauchy sequences
Let (zn) be a convergent sequence in a normed vector space V and denote its limit by «.
Then

lim  ||zn — Zm|| lim ||zn —2+ 2z — zm||
n,Mm—00 n,Mm—00

IA

lim ||z — zn| + lim ||z —2m]| = 0.
n— oo m—r 00

Every convergent sequence is thus a Cauchy sequence.
2.25. Norms of operators
(i) The eigenvalues of the matrix A are A\g = 4 and Ay = —2. The corresponding

orthonormal eigenvectors are vo = (1/v/2) [—1 1]T and v1 = (1/v2)[1 1]T.
Any vector x can be decomposed as

T = qpuo+ a1 1. (S2.25-1)
Because of the orthogonality of Avg and Awvg,

[Az[* = ||[Aagvoll® + [[Aarv1|? = afAdllvoll® +afAT|lvr]|® = oA +afAl.
From (S2.25-1), and for ||z|| = 1, we have a2 + a2 = 1. Therefore, we can write the
norm of A as

[AI? = sup [|[Az]|* = sup Ajad +A{(1—ad).
[lz]|=1 [lz]|=1
For |lz|| = 1, 0 < a2 < 1. The above is maximized for a2 being either 0 or 1; the
choice is made by choosing the option with the maximum eigenvalue of A. Thus,

Al = 4.

The eigenvalues of the matrix A~! are )\al and )\;l. Therefore, the same
analysis can be applied and the norm of the matrix A~ is the absolute value of the
maximum eigenvalue of the matrix A~!. Thus, |[A~1|| = %

(ii) For any z € £%(Z),
Az = STl(Aa)al> = S1e®ran> Y Slaal2 = Jlall2 = 1,

where (a) follows from |e/©n| = 1, for all n. Thus, ||A| = 1.
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(iii) Let z € £2(Z) and y = Az. We can write
!
T -1

ly2n|? + ly2nt1)® = |z2n + z2nt1]® + |z2n — 22041 = 2(Jz20)® + |z2041]?).
From this it is clear that ||y||2 = 2||z||2. Therefore, ||A|| = /2.

2.26. Relation between operator norm and eigenvalues

il € max Azl 2 max (A% Ax) /2

Z2n
T2n+1

Y2n
Yan+1

We see that

—~

2 max (@*UAU*2)Y? = max (U*z)*A(U*z))Y/?

llz[[=1 llz[[=1

(d) * 172 (¢) N—-1 2\1/2
=  max A = max Y Ny ,
Ilyllzl(y v) llyll=1 <ZZ*O lvil )

N>

where (a) follows from the definition of operator norm, (2.45); (b) from the definition of
2 norm, (2.26a); (c) from the unitary diagonalization A*A = UAU*, (2.241a); (d) from
using y = U*xz and |ly|]| = ||z| since U is unitary; and (e) from A being a diagonal
matrix. In the diagonalization in step (c), we may assume without loss of generality
that the diagonal matrix A has nonincreasing diagonal entries. The solution to the final
maximization problem is achieved by y=[1 0 ... 0] T, yielding || A]| = v/ Amax(A*A)
as desired.

2.27. Adjoint operators
(iv) For any x and y in Hi,

(A4%s,y) = (A(A"2),y) @ (a%a, a7y) © (@, Aa7y),
where (a) follows from A* being the adjoint of A; and (b) from A being the adjoint
of A*. Hence, the adjoint of AA* is AA*. A similar computation shows that A*A
is self-adjoint.
(vi) For any « and y in Hi,

(@)

@) @ (Aa71a, ) = (A4 e),y) 2

(A7tz, Ay (@, (A1) Ary),

where (a) follows from the definition of inverse; and (b) and (c) from the definition

of the adjoint. Since this holds for every « and y in Hy, we have shown that (A~1)*

is a left inverse of A*. A similar computation shows that (A~1)* is a right inverse

of A*. Thus invertibility of A implies the invertibility of A* and (A*)~1 = (A~1)*.
(vii) For any x in Hg and y in Hi,

(a) ®) * w,y (©) * *

(A4 Bz, y) = (Az,y) +(Bz,y) = (2, A"y)+ (2, B'y) = (z, (A" +B")y),

where (a) follows from additivity; (b) from A* and B* being the adjoints of A and

B; and (c) from additivity. Since the adjoint is unique, we have (A4 B)* = A* 4 B*.
(viii) For any x in Ho and y in Ha,

(BAz, y) @ (Az, Bry) © (2, 4By,
where (a) follows from B* being the adjoint of B; and (b) from A* being the adjoint
of A. Since the adjoint is unique, we have (BA)* = A*B*.

2.28. Eigenvalues of definite operators
Let (A, v) be an eigenpair of a self-adjoint operator A, that is, Av = Av, v # 0. Thus:
vP Ay = v A = M|v|3.

——
>0
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(i) A positive semidefinite (z* Az > 0 for all ) implies that A > 0.
A positive definite (* Az > 0 for all  # 0) implies that A > 0.

(ii) From (i), the statement holds by contraposition.
2.29. Operator expansion

(i) I — A is not invertible if and only if there exists = # 0 such that

[I-A)z = 0.
This amounts to 1 being an eigenvalue of A, impossible by definition (||A]| < 1).
(i)
oo oo oo oo oo
(I—A)ZAky = ZAky—ZAky = Aoy—l-ZAky—ZAky = y.
k=0 k=0 k=1 k=1 k=1

Since (I — A) is invertible, multiplying both sides of the equation by (I —A)~! proves
the identity.
(iii) For |ly|]| =1, the task is to bound the error,

€K

oo K—-1
d_ A= A
k=0 k=0

K—-1
(I—A)ly— > Aky
k=0

[eS)
D> 4
k=K

o k | Amax| %
S Z ‘)\max‘ = ﬁv
=K max

where Amax is the maximum eigenvalue of A. The error decays as )\ff,ax (because
[JA|l < 1 and thus |Amax| < 1), where K is the number of terms in the approximation.

2.30. Projection via domain restriction

(i) To show that 17 is an orthogonal projection operator, we can either directly show
that the error is orthogonal to the projection operator, or we can show that it is
idempotent and self-adjoint, and thus an orthogonal projection operator.

The first approach yields

(x — 1zz, 1z2) = /OO (z(t) — (1zx)(t)) (1zx)(¢) dt

—o0

[~ 6o -1z 010 @

— [T @z - 20 12010) @ = o
— oo N—_——
=1z(t)

Thus, 17 is an orthogonal projection operator by Theorem 2.26.
The second approach yields,

(Iz1lzx)(t)

Lz (t)1z (t)x(t)
1z(t)z(t) = (1zz)(t),

so 17 is an idempotent operator. Furthermore,

zay) = [ (1)) (t) db

—o0

- /oo 212 () y(t) dt

= [T a0 a0 d = (@120,

so 17 is also self-adjoint. An idempotent, self-adjoint operator is an orthogonal
projection operator.
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(ii) Let y1 € R(Z1), y2 € R(Z2). In other words, there exist x1, x2 such that y1 = 17, z1

and y2 = 1z, z2. Then,

(y1, y2)

(1z, 21)(¢) (1zy z2)(t) dt

@ 4

z1(t)z2(t)1z, (H)1z, (1) dt = 0,

where (a) follows from 17,1z, (t) = 1p(t). Since this holds for all y1 € R(Z1), y2 €
R(Z2), the ranges of the associated operators, R(1z,) and R(1lz,), are orthogonal.

(iﬁ) ThUuZy = R.

2.31. Inverses, adjoints, and projections

A : Hy — Hj being a left inverse of B : Hy — Hp means that AB is the identity on the

Hilbert space Hy. Thus, for all x € Hy,
BABAx

BIAx = BAx.

Hence BA is a bounded linear operator (by composition of bounded linear operators) that
is idempotent, so it is a projection operator from Hgy onto Hi. Moreover if B = A*, then

(BA)*

= AYA = BA.

This projection operator is also self-adjoint, so it is an orthogonal projection operator.

2.32. Projection operators

From Theorem 2.29, we know that for B : R2 — R3 and A : R3 — R2 that is a left inverse
of B, BA is a projection operator. Moreover, if (BA)* = BA, then BA is an orthogonal
projection operator. We use this to solve the exercise.

To find all left inverses of B, we write

a
AB — |00
a1,0
From this,
ao,0 +ao1 = 1, ap1+ao2 = 0,

Calling ap,1 = a and a1,1 = 3, we get

A =

Thus, projection operators BA are

11—«
BA = |1—(a+p)

1 0
“0*2} 1 1] = 1.
“2l 1o 1

ai0+ai,1 = 0, ai1+aie = 1.

(0% —CM:|
B 1-p1"

« —Q

atpf 1—(a+p)

B 1-5

We find orthogonal projection operators as those for which (BA)* = BA, leading to

1
B:a:§7

2.33. Riesz bases

1
i|, and BA = — 1 2 1
3ot 1 2

(i) The standard basis {eg }rez in £2(Z) is a basis. To find whether this basis is a Riesz
basis, we need to try to bound >, ., |(z, ex)|?. Since

> e, el

kEZ

D lel? = lell?,

kEZ

it is a Riesz basis with optimal stability constants Amin = Amax = 1.
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(ii) Scaling each basis vector by a finite nonzero scalar does not change the basis property
because the basis vectors are still linearly independent, and, for any z € ¢2 (Z),

z = Zxkek = Zxk27k<ﬁk = Z%Wm

keZ keZ keZ

and thus, there is an expansion using {¢y }rez, with oy, = 27 Fay,.
To find whether this basis is a Riesz basis, we need to try to bound 3}, ., lag ).

Let = en for some n € Z. Then, the expansion of x with respect to {¢g }xez has
one term only: = = anpp with oy, = 27", Thus, ZkeZ \ak|2 = 2727 Since n is
an arbitrary integer, taking n — oo shows that there is no positive Ay such that
(2.89) holds, and taking n — —oo shows that there is no finite Amax such that (2.89)
holds.

(iii) Since 0 < |cosk| < 1, for all k € Z, the argument used in (ii) holds, and {9y }rez is
a basis for £2(Z), with

1
T =Y wpep = Igzxkcoskd}k = > Bt

ke€Z kEZ

that is, there is an expansion using {9k }rez, with B = (1/cos k) zy.
To find whether this basis is a Riesz basis, we need to try to bound 3, ., 1Bk |2

Since 0 < cos?k < 1,

Z 1Bk = Z

kEZ keZ

2
1 2 2 2
o = 3l = Yl = o,

kez €08 kez

os k

so the optimal lower stability constant is Ay, = 1. However, no finite Amax satisfies
(2.89) because cos k can be arbitrarily close to zero.

2.34. Basis that is not a Riesz basis
The basis vectors {py }ren are still linearly independent, and, for any z € ¢2(N),

(@) o
=Y wrer = wopo+ P wpVE+ (P8 — Pr1)
k=1

kEN
oo oo
= kavk-i-lsok—zwkvk-i-lwkﬂ
k=0 k=1
= Z(Vk+1mk—vk+2$k+1)¢k = Zak%ﬁm
keN kez

where (a) follows from
k
e = D (+1D)7 2% = gp_1 + (k+1)71 e
i=0

Thus, there is an expansion using {¢y }rez, with o, = VE+ 1ok — Vk +2z541.
To find whether this basis is a Riesz basis, we need to try to bound 7, -y | |2
Let © = ey for some n € N. Then the expansion of x with respect to {¢r}ren has two
terms only: © = an—1¢9n—1 + anpn with ap_1 = —v/n+1 and an = vV/n+ 1. Thus,
> kenlow]? = 2(n 4 1). Since n is an arbitrary integer, taking n — co shows that there is
no finite Amax such that (2.89) holds.
2.35. p norms in different bases

(i) Under the 2 norm, R? is a Hilbert space. Thus, ||z||2 = ||c||2 is a case of the Parseval
equality (2.96).

(ii) Let the basis be any orthonormal basis other than the standard basis and let x = ¢g.
Then (ao, a1) = (1, 0), so ||a|lp = 1 for any p. On the other hand, since the basis
is orthonormal and not the standard basis, |zo|2 + |z1|?> = 1 with both of |zg| and
|z1] in (0,1). For p € [1,2),

lzo|? > |xol? and lz1|P > |z1]?,
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Also, for p € (2, o],
|zol

SO

(i)
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lzllp > llzllz = 1 = [lallp.
P < zol? and lz1]P < |z1]?,
lzllp < llzllz = 1 = [lallp.

Let {¢0, ¢1} and {0, @1} be a biorthogonal pair of bases for R?, where {¢o, 1} is

not an orthonormal basis. Let z = @ and y = @1. These have expansion coefficient
vectors with respect to {¢o, ¢1} of & = (1, 0) and 8 = (0, 1). Furthermore = + y
has expansion coefficient vector with respect to {¢o, p1} of a4+ 8 = (1, 1). Suppose
invariance of the 2 norm holds, so

Il = lledl3 = 1, (S2.35-1a)
lul3 = 1813 = 1, (S2.35-1b)
Iz +yl3 = lla+813 = 2 (82.35-1c)
Since the vector space is real, expanding through linearity gives
lz+yl3 = (z+y, z+y)
= (&, 2) + (2, 9) + (y, ) + (y, v)
= llzlI3 + llyll3 + 2(z, v)- (S2.35-2)

Substituting equations (S2.35-1) into (S2.35-2) gives (z, y) = 0. This contradicts
the bases not being orthogonal. Therefore, invariance of the 2 norm must not hold.

2.36. Even and odd functions
®

x(t)

Because

Zeven (t) =

(1) + %m(—t) - %x(—t)

a'Jeven(t) + Todd (t)

We can express any z(t) € L2([—m,7]) as

1 1
5 (@) + a(—1) + 5 (@(t) — 2(~)

-'Ecvcn(_t) and modd(t) = _modd(_t)7

-'Ecvcn(t) € Seven and xodd(t) S Sodd~

(i)

An orthonormal basis for Seven is

(oo}

1
\/27r7

1

—= COS

NG

(i o}

k=1

while an orthonormal basis for Syqq is

{ % sin(kt) } -

k=1

(iii) This follows directly from (i) and (ii).

2.37. Least-squares approrimation with an orthonormal basis

We write the error as

Its norm squared is

|l — 2|

k—1
(X e
=0
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(r —Z,x —T)

k-1 N-1
= > (ai—Bpi+ Y cupi.
i=0 imk
N-1 k—1 N—-1
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In the above, the two cross products are both 0 since they involve disjoint subsets of
orthonormal vectors. What is left is

k—1 k—1 N—-1 N-1
e -2 = <Z(C“i —Bi)eir Y (e — 5z)w> + < > i Y azsoz>
i=0 =0 i=k =k
@ k= N-1
= (i = Bi)(ae = Be)(pis 0) + D, cicu(pi, o)
i0=0 it=k
o N-1
= (i = Bi)(aw — Be)Si—o + ) cicudi g
i0=0 it=Fk

1 N-1
= i = Bil* + > |ail?,
i=k

N

where (a) follows from the linearity of the inner product; and (b) from the orthonormality of
the set {¢1, @2, ..., ¢n}. The last expression is minimized by 8; = a; fori =0, 1, ..., k.

2.38. Biorthogonal pair of bases of cosine functions

(i) To show that W and U satisfy the biorthogonality condition (2.111), we use how
these sets are related to ®, whose orthonormality has already been established in
Example 2.34. ~

Clearly (o, o) = 1. Next,

(¢07"Z’€>:07 k=12, ...,

since each 1, is a linear combination of {pm}E _, and each element of {xm}~ _,
is orthogonal to ¢g. Similarly,

¥k, o) = 0, k=1,2,...,

since each 9 is a linear combination of ¢}, and ¢y1, each of which is orthogonal
to Yo = ¢o. Only the key case of

W’kﬂl[% k:1y27"'7 Z:1y2y
remains. For k and £ both positive integers, we have

L

Wi B0) = (or+eone1 Be) = (or+3orsn, D (=3 "om)

m=1

(=)™ (pr + 3rt1, om)

Il
M-~

3
[}

(_%)eim (<4Pk7 Pm) + %<¢k+1, 4pm>) .

I
M~

1

m

When ¢ > k > 0,

¢

(¢k7 Je>

(=)™ (ke + 30k41-m)
1

= DT LEDTE - R DT = o

when ¢ =k > 0, _
<¢k7 ¢Z> = <§0k7 (_%)050k> =1

and when ¢ < k, the inner product is zero. This shows that ¥ and T satisfy the
biorthogonality conditions (2.111).
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(ii) Since the basis functions of ¥ and U are linear combinations of basis functions of
®, it follows from the definition of the closure of a span that span(¥) C span(®)

and span(¥) C span(®). Therefore, we need to show span(®) C span(¥) and

span(®) C span(¥) to prove the equality. We have
o ok k _ .
ek = > (=3) "t = D vk —3¥k1,
=k =1

for k > 0. Since pg = Yo = 1;0, we conclude that span(®) = span(¥) = spﬁ(\fl)
2.39. Dual bases
(i) According to Theorem 2.46, given ®, its unique dual is

= (@ P)".

Its dual is then

= @) = (@) ((@(@"P) ) (®(e* D))
= (") H(((P* ) ) e p(e*R) ) !
= ®(@*®)"H((®*®)") )Tl = d(@*P) "D = P.
(i) We can express the statement that the dual of ® is ® as
(D)L = .
Since ® is a basis by assumption, we can multiply both sides by the inverse of ®,
P*P = 1],
or, in other words, ® is unitary (orthonormal basis).
(iii) We use (2.113b) to write (2.89) as follows:
Amin T52 < (5* x)*(@* z) = ¥ 3D < Amax T T.

Similarly, for the dual basis, we want to bound z*®®*z. Since ®P* is a positive
definite matrix, according to (2.243), it can be bounded from below and above by
its minimum and maximum eigenvalues. Because

PH* — (&;*)71&;71 — (55*)717
and the eigenvalues of ®®* and its inverse are inverses of each other,

1 1
z¥r < ¥PP*x <

Amax min

z¥x.

2.40. Oblique projection property
Pz is clearly a linear operator on H with range contained in Sz. The idempotency of Pr
can be proven with a computation closely following the proof of Theorem 2.39: For any
r € H,
(ﬂ) H* H* (ﬁ) H* H*
Pr(Prz) = o797 (P P7x) = &7 (97 P7) Pz
© o, Nz = ¢rd52 2 Pra,
where (a) follows from (2.134b); (b) from associativity; (c) from the analogue of (2.123)
for sequences in £2(Z); and (d) from (2.134b). This shows that Pr is a projection operator.
Note that, unlike in Theorem 2.39, we do not expect Pz to be self-adjoint.
The desired orthogonality relation for the residual follows from (2.111), (2.114a), and
(2.134a). Specifically, since (2.114a) and (2.134a) give

c—Prz = Y (2, Pk)ek
KER\T

and (2.111) gives {¢r}rex\z L {Pr}rer, we must have z — Prx L St.
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2.41. Orthogonal projection in coefficient space

(i) Since ¥ is a basis for H, we have
a = Uz (S2.41-1)

On the other hand, Z is the orthogonal projection of x onto Span({yk}rez), and
thus, we can use (2.139) to write

z = &) 'ora. (82.41-2)
Combining (S2.41-1), (S2.41-2) and z = ¥a, we have
a = U7 = Ue@* ) 1o*r = U e d) 1 Vo = Po.
(ii) To show that P is a projection operator, we check idempotency,
P2 = U*e(0*P) 1o UUrD(d* D) Lo* T

W Gro0 o) Lo a(@ ) LoTw

—~

Y G @ @) lo*w = P,

where (a) follows because W is a basis; and (b) from ®*®(®*®)~1 = 1.
(iii) If {tx trex is an orthonormal basis, then ¥ = ¥, P = U*®(®*®)~1&* ¥, and thus
P* = (U*Q(*P)T1o*0)* = P,
implying that P is an orthogonal projection operator.

_If P is an orthogonal projection operator, then from P* = P we must have
¥ = ¥, and thus, {¢k }reci is an orthonormal basis.

2.42. Successive approrimation with nonorthogonal basis
Normal equations (2.138a) state that

P*T = P*z.
We use induction to prove the statement:
(i) For k =1,
oM = [po], wo = 0, wo = —=,
lleoll
70 = 30 4 (@, po) g = @ eo)r
lloll lleoll
and thus
N ~ ®0
@) 21 = (po, #V) = (po, (z, po) )
lleoll
1
= —2<{E, @0><§007500> = (:E, QOO> = é(l)* x.
lleoll

(ii) For k = n, we assume that the normal equations are satisfied,

(@(n))* z(n) — (@(n))* z,

with
™ = [po 1 ... @n-1].
For k=n+1,
gt = @+ (@, Yn)tn,
and thus,

(@D ntD) {(‘I’(?)*} (E(”) + (z, wnﬂbn)

_ {(cl><”>>*fc\<”> + (@, ¥n) (@(n»*wn}
(n, E(n)> + (z, Yn){(Pn, Pn) '
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By construction, (Q("))*wn = 0, and thus, the first element of the vector is

(@MY z(m) = (e(M)* 4

where the equality follows from the assumption.
For the second element of the vector, we decompose ¢, as

is orthogonal to span{po, @1, ..

the second element of the vector is

(pn, 8™) + (x

On + Y, T + (z

©Yn = Un + Yn,
where vy, is the orthogonal projection of ¢, onto span{eo, @1, ..., ¥n—1} and vn
.y ¥n—1}. Moreover, vn = |[¢n — vpn||9n. Thus
s Y )P, Pn)
s ) {vn + Yns PYn)
+ (1, E(n)> +(z, ¥n){(vn, ¥n) + (z, n){1m, ¥n)

(n)>
(a)
(b)

—~
o
N2

(
(vn
(vn
(vn,
(
(vn
(vn

B0 + o,

D (vn, @M (@M)*2) + (y, )
D v, @) + (1, @)
= +"Yn7 > = ©n<T,

where (a) follows from Z(") v, € span{eo, @1, ..

span{eo, ©1, - .
to span{wo, @1, ...

.y ¢n—1} and 7n orthogonal to

., ¢n—1} implies that -, is orthogonal to z(n), (b) from z(") belongs
, ¥n—1} implies that Z(™ = &™) (e(M))* ("), (¢) from the as-

sumption on k = n; and (d) from vy, € span{®(™)} implies that v &) ($(M)*z =

vy X
Finally, we have

((I)(n+1))* E(n+1)

[(‘1’("))*} z = (@) g

o

2.43. Ezploring the definition of a frame

(i) We have

for some B € ¢2(J) with 3; = 0.

> B

keI\{j}
Let x be any vector in H. Since {¢k}res is a

©; (S2.43-1)

frame, there exists an expansion

Z APk,

keJ

(S2.43-2)

for some o € £2(7). Then, for any ¢ € R,

» @ Zaks% = CO+Zak4Pk

~
IS

—~

o)

keT keJ
clei— D Brer |+ Y arer
keI\{s} keg
(c+ap)ei+ > (ar—cBr)ek,
keI\{5}

where (a) follows from (S2.43-2); (b) from using (S2.43-1) to substitute for 0; and

(¢) from grouping terms.

Since the sum of squared magnitudes of the expansion

coefficients is at least |c + ocj|2 and c is arbitrary, there is no finite Amax such that

(2.89) always holds.
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(ii) In (i) we showed that not all expansion coefficient sequences with respect to a frame
have a bounded ¢2 norm; we now show that an expansion coefficient sequence with

a bounded £2 norm always exists. _
Let ® have optimal frame bounds Ay and Amax, and let ® be the canonical
dual frame defined in (2.160). Since ® and ® are a dual pair of frames, an expansion

with respect to ® is given by analysis with o

We will show that this expansion satisfies (2.89).
First,

Sl = Sl el Y S [ @81 e

keT ke ke
@ > (@) a, o),
keJ

where (a) follows from (2.160b); and (b) from (®®*)~1! being self-adjoint. Now from
the frame definition (2.142),

Aminl|(@2%) 2] < D7 Jar? < Amax||(@9%) " a?, (52.43-3)
keJ
which is close to the desired form, but must be adjusted to have upper and lower
bounds in terms of ||z2.

From (2.147),
Al I < (@2*)"' < A7l L

max min
Thus,
2 *\—1 2 2 2
A 2l < Jl( @) 7Tl < ALE .
Combining this with (S2.43-3) gives
Amill}‘maxHx”2 Z ‘ak|2 < )\max)\mlzn||m||27
keg

which is of the desired form.

2.44. Frame of cosine functions
Since the frame elements are {¢g }rez U {ap:}kez, we seek the largest Apin and smallest
Amax such that

Ain 2112 <37 (I @)1 + (@, 6D1?) < Amax ll2ll?,

keN

for every z in 5pan(® U ®1). Since ® is an orthonormal basis,

Z|(x, o) = zl?, for every z in span(® U ®1). (S2.44-1)
keN

Thus what remains is to find the greatest lower bound and least upper bound for
Z| 2 for every x in span(® U ®7).
|x”2 keN

Since ® is an orthonormal basis for span(® U 1), any = € span(® U ®1) can be

written as
> amem, (S2.44-2)
meN
where
S laml? = i) (S2.44-3)

meN
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The quantity to be minimized and maximized is

Sl b @S <Zam¢m,¢;>]2 25

keN keN' YmeN keN

where (a) follows from (S2.44-2); and (b) from the linearity in the first argument of the
inner product. So we compute {pm, gog) for all (m, k) € N2:

2
> am{em, o), (S2.44-4)

meN

S

b
(pms 1) 2 b1, (S2.44-5a)

b
(em, #1) = (om, v0+ J502) D 5+ J30m—2, (S2.44-5b)

(em, o8

(pm: ) = (om, J5Pr-1+ J50u41)
52 %5,%,,#1 + %%,k,l, fork=2,3,..., (S2.44-5¢)

where (a) follows from (2.144a); (b) from orthonormality of ®; and (c) from (2.144b).
Thus, substituting (52.44-5) into (S2.44-4) yields

Dl o)

keN

2 2
2 1 1 1
o] ‘O‘O \/50‘2’ Z‘ﬁ"k*l V2 Ykl
k=2

3
|laol® + §|a1\2 + 2] + Jas|® + - -

oo
+ V2|agee| + Y lak—_10k41]
k=2

1 oo
@z + 511’ + V2apas| + S lak—1aki1l, (S2.44-6)
k=2

where (a) follows from (S2.44-3).

Finding the greatest lower bound is now simple. The expression in (S2.44-6) is
bounded below by ||z||2, and this lower bound is achieved by ag = 1, a1 = as = --- = 0.
Combining this with (S2.44-1), we have shown Apin = 2.

Finding the least upper bound is more difficult. Introducing the Lagrange multiplier
A, define the Lagrange function

1 oo
2 2 2
J(a,\) = Z o + ial +V2ag0n + Z Q1041 — A Z o,

kEN k=2 keN
where we have removed the absolute values since a maximizing « will have nonnegative
entries. We can optimize by finding stationary points of J. Thus, we compute the following
partial derivatives:

oJ

= V2as - 2(A — Dav,

Oag

oJ

— = a1 +a3 —2(A—1ai,
Oaq

ﬂ = \/50{0 —+ aq —2()\— 1)0{2,
Oao

oJ

— :ag,2+ag+2—2()\—l)ag, £=3,4,....
day

By setting the partial derivatives to zero, we can parameterize all the candidate max-
imizing vectors by ai1/ap, and A. Making further computations analytically is difficult.
Numerically, one can verify that J(«, A) is maximized under constraint (52.44-3) by setting
a1 /o = 0 The result is for J(a, A) to approach 2 from below as A — 27. Combining this
with (S2.44-1), we have Amax = 3.
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2.45. Dual frame

(i) For ¥ to be a basis, it must be linearly independent. This is not the case because the
components of each element of ¥ sum up to 0. Thus, all z € R* whose components
do not sum up to 0 will not be in span(¥).

® is not linearly independent because the sum of the first and third elements
in ® is equal to the sum of the second and fourth.

(ii) Since Fp contains the basis F, it is a frame. Fb is a frame because it contains a
linearly-independent set of four vectors. Call S1 the synthesis operator associated
with F} and S the synthesis operator associated with F>. We can compute the
optimal frame bounds of F} and F» as the minimum and maximum eigenvalues
of S157 and S253, respectively. They are Apin = 1 and Amax = 5 for F1 and
Amin = Amax = 4 for Fa. So F3 is a tight frame.

(iii) We can use (2.160a) to find canonical dual frames to F1 and F>. The corresponding
synthesis operators are

7T 1 2 1 4 1 -1 —4
R R I
1 2 1 7 1 -1 —4 4
Sy = (82535)71 8y = 352.
2.46. Properties of dual pair of frames
(i) Assume that
P = [301 p2 e HOK]nxK’ rank(®) = m, m < K,n,

and

PP *r = =z € H.

Thus, for all « € R™
33*Qa ¥ Qa,
QP*Q = Im,
(Q*®* Q)" = I,
QP Q = Inm,
20°Q = Q,
2d*Qa = Qa, o€R™,
P r = x, r € H,

where in (a) Q = [ql q2 - qm}nxm is a orthonormal basis for H.
(i) We have that

@ 8) = (@2, &) Y (2,037 Y (),

where (a) follows from (®*)* = ®; and (b) from the fact that for all y € H we have

<I><f>*y =y.
(iii) Call P = <I>I<f>§. To have a projection operator, we need P2 = P. Choose CT)I to
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be the canonical dual of ®7, as in (2.160a). Then
P? = 31350k
= o7 ((@r0) " or) @ ((2705) ' a1)
= o707 ((2707)") @70% ((2703) ")
2 0707 (0707) 7! (920%) ((@z05) 1)

703 ((@293) )

© 9,85 = P,

where (a) follows because the inverse and Hermitian conjugation commute; (b) from
(2z®%) -t (®z®%) = I; and (c) from the definition for the canonical dual, (2.160a).
Thus, a sufficient condition is for E)I to be the canonical dual of ®7.

2.47. Tight frame with nonequal-norm vectors
The frame matrix corresponding to the given set of vectors is

i 2171
For @ to be a tight frame, the following must hold:
0T = cl, c#0. (82.47-2)
Substituting (S2.47-1) into (S2.47-2), we get
eo’ = |:2 C%S2 ’ o? + gsin2 0} = |:(§ (c)i| '
From this,
2c0s26 = ¢, (S2.47-3a)
a? 4+ 2sin?6 = c. (S2.47-3b)

Combining the two equations we get
2
2c0s20 — 2sin?0 = o? = cos(20) = % = |a] = /2cos(20), (S2.47-4a)
where we have used the double-angle formula for cosine. Moreover,

(a) (©]
0 < cos(20) < 1, (S2.47-4b)

where in (a) cosine is positive because of (S2.47-4a) and cannot be 0 because a # 0; and
(b) follows from the definition of a cosine. From here, we get

0 < cos(20) = 2k7r—g <20 < 2k7r+g = kw—% <0< kn+g, (S2.47-4c)
for k € Z. In terms of «, substituting (52.47-4a) into (S2.47-4b), we get
0 < |l < V2 (S2.47-4d)
In summary, combining (S2.47-4), we get
la| = V/2cos(20), a#0,
0 < la V2
k-l < 0 < kn+l,  kez
4 4

For a given 6 in the allowed range, « is fixed, leading to a tight frame. If « is chosen first,
it must be smaller than or equal to /2, because for o > /2, the frame stops being tight.
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2.48. Tight frame of affine functions
We use the Gram—Schmidt orthogonalization (see Table 2.1) on {¢o(t), 1(t)} twice; the
first time we start from ¢o(t), and the second from ¢1(t). This way, we obtain two
orthonormal bases that together form a tight frame.

(i) Call 4o(t) = ¢o(t) = 1.
(ii) Use the Gram—Schmidt orthogonalization to get 1 (t) from 1 (t)

=0, o) ve(t) VB - (VL1
VO = o = (o) 9o©) b~ VE— (vae D ~ VY

(ili) Call 92(t) = ¢1(t) = V/3t.
(iv) Use the Gram—Schmidt orthogonalization to get 3(t) from ¢ (t)

palt) — LoD = (P00 2 Y2 1 (L VBV,
l00() = (po(®), ba(®) vl 11— (1, VB3| ‘

The following is then a tight frame:
¢ = [1 V3@2t-1) V3t 2-3t.

As this tight frame is a union of two orthonormal bases, we expect the optimal frame
bounds to be 2. To confirm this, we construct the Gram matrix (2.121),

V3 1
A R
0 1 s =X
G = oD = 2 2
V3 1
T o,
3 32 01
The largest eigenvalue of the Gram matrix is in fact equal to 2. Thus, A = 2.
Since this frame is a tight frame, its canonical dual frame will be by definition
~ 1 1
<1>=Xc1>=5[1 V3(@2t—1) V3t 2-3t].

2.49. Complex multiplication
The following computation

a = a‘(d_c)7 6 = b(C—‘rd), v = C(a‘+b)7
requires 3 multiplications and 3 additions. With 2 more additions,
e=7y-f and [ = y+a,

we achieve the desired result.

Note that, if one of the terms in the complex multiplication is a constant fixed ahead
of time (as will be the case in the FFT computation in Chapter 3), 2 additions can be
precomputed, leading to a complex multiplication with 3 real multiplications and additions,
or 6 operations.

2.50. Gaussian elimination

(i) The system has a unique solution since y belongs to the range of A and the columns
of A are linearly independent. We use (2.199) to get

10 1 0 3
20 = B@®BMWAz = |0 -5 10|z,
—45 0 0 -15
with
1 0 0 1 0 O
BM = | 4 -1 o, B® = 1o 1 o0
-1 0 -1 0 1 5
By back substitution, we solve xzg = 3, 1 = 2, and g = 1.
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(ii) This system has infinitely many solutions since y belongs to the range of A and the
columns of A are not linearly independent (det(A) = 0).

(iii) The system has no solution since y does not belong to the range of A (we cannot

express y = Zi:o agag, where ay is the kth column of A).
2.51. Kaczmarz’s algorithm

(i) The point x belongs to the hyperplane S; if and only if (r;, ) = y;, where r; are
the rows of A. Thus, x belongs to ﬂlN:Bl S; if and only if (r;, ) = y;, for all
i=0,1,..., N—1, or, Az = y. The matrix A is square and of full rank (its rows
are linearly independent), and thus Az = y has a unique solution. This means that
the N hyperplanes intersect at a single point.

(ii) The key is to notice each step makes a correction that is orthogonal to past and
future corrections,

2@ = 2 4 gy — @V, 00
@ = 2D 4 (g — @Y 0070 + (W4 — (D, m))m

N—-1
ZB(Nfl) = {E(il) + Z (y; - <£B(71), ﬁfl))fyl
i=0

After one sweep, (V=1 verifies all the constraints. For j =1, 2, ..., N —1,
N-1
@D ) = @D )+ Y = @D, ) i ),
=0
N-1

@ D,y + S — @D, ) I 166

-
o

= (@) = @D nlg) = v,
where (a) follows from v, = rn/||Tn]|-

2.52. Convergence of sequences
The convergence of (ax)72, and (bx)32, to a and b, respectively, means that for any € > 0
there exist numbers A: and B: such that

lap, —al < e for every k > A. and |bp —b| < e forevery £ > B.. (S2.52-1)

(i) Assume that ¢ # 0; if not, the statement trivially holds. Let e > 0. Then, from
(82.52-1), we know that there exists a number A, /| such that |ay — a| < ¢/|c| for
every k > A./|c- Then,

5
|cag — ca| = |c|lax —a|] < \c|ﬂ = e.
c

In other words,

for any € > 0, there exists a number K. = A /|| such that
|cap, —cal < e for every k > K-.
(i) Let € > 0. Then, from (S2.52-1), we know that there exist numbers A, /5 and B, /o
such that |a, — a| < e/2 and |by, — b| < /2, for every k > max(A. 2, Be/2). Then,

lag, + bk, — (a +b) +- = e

< lag —al +]bp — b <

N ™

€
2
In other words,

for any e > 0, there exists a number K. = max (A, 2, B, /2) such that
lag + b, — (a +b)| <e for every k > K-.
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(iii) Let € > 0 and

2 2
Then, from (S2.52-1), we know that there exist numbers As and Bs such that
lar —a| < 0 and |bg — b|] < 4, for every k > max(As, Bs). Then,
lagby —abl = |(ar — a)(b, — b) + a(by —b) + blay — a)
< lax = al o — bl + lal [by = 8 + o] lax —al
< 0(Jal + 16| +6) = e.

2
NN CET N

In other words,

for any € > 0, there exists a number K. = max(Ag, Bs) such that

lagbr — ab| < e for every k > K-..

(iv) Let € > 0,
v = M, and c = L‘—Hb‘.
2 |aly
Then, from (52.52-1), we know that there exist numbers A, /. and B, /. such that
lap — a| < e/c and |by — b] < €/c, for every k > max(A,/c, Be /o). Similarly, there
exists a number Ay such that |ag| >~ for all k > A,. Then,

by b| _ labg —bag|  |aby — bay + ab— ab|
ax al  Jaax| laa|
_ laby —ab] +[bay — ab _JalIby — bl + o] oy —
laa| laa|
jal(e/e) + Ble/e) _ e _ .
laly c

In other words,
for any € > 0, there exists a number K. = max(A, ., Ay, B./.) such that
b b

ag a

< e forevery k> K..

What we have done in (i)—(iv) can be generalized as follows: To study the convergence
of (f(ag,bx))72, where f is some continuous function, we find g such that lims_,¢ g(§) = 0,
and for which

[ Flar, ) — F(@b)] < g(8),

Choose £ such that |ag — a| < §, |by — b| < 6, for every ¢ > max(As, Bs). Then,
for any € > 0, there exists a number K, = maX(Ag—1(5)7 Bg—l(s)) such that
|f(ag,br) — f(a,b)| < e for every k > Ko,

proving the convergence of (f(ag,br))32, to f(a,b).

2.53. Convergence tests
(i) Since for any k > 2,
k2 k2 k2

“ T3 Mik_3 M R

and the series Y ;2 ; aj converges,

i i 1 w2
a = 7o T a0
k=1 * k=1 k2 12

the series Y 72 ; ¢ converges as well.
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(ii) Since for any k > 1,

> !
cL = — = ag,
k A k

and the series Y 72 ; ay diverges,

the series Y32 ; ¢ diverges as well.
(iii) Since

kF kok--oo- k -
¢y = — = —— = a
k k! 1-2---.- E = ks
and the series > 72 ;| aj, diverges,
oo oo
doak = DL
k=1 k=1
the series Y2, ¢k diverges as well.
(iv) Using the ratio test for convergence,
okt
c T . a
lim |2+ lim (k+k1) = lim = 0,
k—oo | cp k— o0 % k—oo |k +1

and thus, the series > 77 | ¢; converges absolutely.

2.54. Useful series

(i) Finite Geometric Series: The proof is straightforward:

_ N-1
1—¢V _ A=) +t+---+tV1 _ Ztk
1—t 1—t '

=0

=

(ii) Geometric Series: As N — oo, the series

N N+1
1-t
No= D -
n=1

converges for [t| <1 to t/(1 —1t).

(iii) Power Series: The power series 352 ; ajt® converges if

apyq thF1

ag tk

Af41
ag

= lim
k—oo

lim
k— o0

t’ <1
Hence, the series converges for

ag
Ak+1

[t| < lim

k—oo

(iv) Taylor Series: The kth derivative of z(t) = 1/(1 —t) is

k!

00 = g

Hence, the Taylor series expansion of z(t) is

2(t) = i (t —to) k! tR, = i (t —to)” (t —to)"t!

k
=S (L—to) T (=g

k=0
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(v) MacLaurin Series: From the above Taylor series expansion of x(t), we derive the
MacLaurin series expansion:

n tn+1

z(t) Z (1_ n+2.

2.55. Eigenvalues and eigenvectors

(i) The characteristic polynomial of A is

det (A — A) = det [* o A__QJ = (-2 -4 = A=3)A+1).

The eigenvalues of A are A\g = —1 and A1 = 3.

For Ao = —1, we solve Ax = —=x,
zo +2x1 = —xo,
2z0 + 1 = —x1,
yielding x1 = —xzg. We choose g = 1, x1 = —1 and normalize. The eigenvector

associated with Ao is thus vo = 1/v/2 [1 —1] T
Similarly, for A\; = 3, we solve Az = 3z,
zo + 2x1 = 3xo,
2z0 + 1 = 31,

yielding zg = x1. We choose g = x1 = 1 and normalize. The eigenvector associated
with A is thus vy = 1/v2[1 1] .
The characteristic polynomial of B is

det M —B) = A=a)? =52 = (A~ (a+B))(A— (a—H)).

The eigenvalues of B are A\g = a — § and A\1 = a + .
For Ao = a — 8, we solve Bx = (o — B)z, B # 0,
azo + Bz1 = (a — B)zo,
Bro+az1 = (a—p)z1,
yielding 1 = —x0. The eigenvector associated with Ao is thus vo = 1/v/2 [1 —1] T
Similarly, for A1 = a+ 8, 8 # 0, we solve Bx = (a + )z, 8 # 0,
azo + Bz1 = (a+ B)zo,
Bxo+ax1 = (a+ Bz,
yielding xo = x1. The eigenvector associated with Aj is thus v; = 1/\/5 [1 I]T,
If 3 =0 (and a # 0), then B has a single eigenvalue A = 1 with multiplicity 2
and two associated eigenvectors: [1 O]T and [0 1]T.
(ii) V= [vo wv1], and thus

T 1| 1 1][-1 oOf|1 =1} _ 1|2 4| _
VAV_?{—l 1}{031 1_542_A
It is also true that
o — B 0 T _
\% { 0 a+ﬁ} V' = B.
V is a unitary matrix since VVT = VTV = I it is formed from two orthonormal

vectors.
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(iii) Knowing the eigenvalues, it is easy to compute the determinant as the product of
those eigenvalues:

det(A) = —3.
A is thus an invertible matrix, and its inverse is
1 1| 1 =2
N

This inverse could have been computed easily as

A7 = (vAv YT = (v)TIATly Tt = vatiyT

1 { 1 1} [—1 0} {1 —1}

1 1 .

21-1 1 0 3|1 1

(iv) We again compute the determinant as the product of the eigenvalues,

det(B) = (a— B)(a+B).

B is not invertible if and only if a = 8 or &« = —/3. The inverse is
_ 1 a —f
Bl = — — { } , a # 5.
(a=B)a+p) -8 «

As a sanity check, when o =1, 3 =2, then B= A and B~1 = A~1.
2.56. Operator norm, singular values, and eigenvalues
(i) If the matrix A is Hermitian, that is, A = A*, then AA* = A2, and the eigenvalues

of A and A* coincide. Furthermore, if A\j is an eigenvalue of A that corresponds to
an eigenvector vy, then

AA*v, = AQDwovr) = MA(Avg) = Ay

Hence, )‘i is an eigenvalue of AA*, and by definition, o} = \/E = |Ag| is a singular
value of A.

(ii) This result follows immediately from (i) and (iii).

(iii) Let the singular value decomposition of the matrix A be UXV*, where U and V

are unitary matrices, and ¥ = diag(oo, o1, ...) is a diagonal matrix of the singular
values of A such that og > o1 > .... Then

(a)
[Allz = sup [[Az||= sup [USV™z| = sup [Sy|
l=ll=1 l=ll=1 llyll=
Ok
= sup \/D>_lokukl?> = oo sup — Yk
llyll=1 llyll=1 90
< oo sup (/> |ykl> = oo sup |yl = oo,
llyll=1 llyll=1

where (a) follows from the fact that multiplication by a unitary matrix does not

change the norm. The upper bound o can be achieved with y = [1 0 0 . ] T
Hence, ||A|| = 00 = max {oy}.

2.57. Least-squares solution to a system of linear equations

(i) If y belongs to the range (column space) of A, then there exists « such that Az =y,

7= A2 Y 44T 14Ty © AUTA AT = Az = v,
where (a) follows from (2.225b); and (b) from (2.224).

(ii) If y is orthogonal to the column space of A, then y € N (AT), the null space of AT.
That is, ATy = 0, and so

7= AATA ATy = 0.
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(iii) Let A € RM*N with M > N. The problem is that of “solving” y = Az in the sense
of finding Z to minimize ||y — AZ||. We found the solution (2.225b) and (2.225¢) by
starting from

AT (y—AZ) = 0. (S2.57-1)
Considering (S2.57-1) elementwise gives
a] (y — AZ) = 0, fori=0,1,..., N—1, (S2.57-2)

where a; is the ith column of A.
Now let € = ||ly — J||? = (y — AZ) T (y — AZ). Then

0
= =l (- AD+ (- AD) T = 2] (y—47) Y o,
ox;
where (a) follows from (S2.57-2).
2.58. Power of a matriz
Since A is full rank, it is diagonalizable. Define V = [vo v ... UN—l] as the matrix
containing the eigenvectors v; of A, and define A = diag(Xo, A1, ..., An—_1), a diagonal

matrix containing the eigenvalues of A. We can thus write

AR @ AVIE - (VAVTY(VAV Y- (VAV Y
= VAVTIVA- (VTIV)AVTL = VARV L
where (a) follows from (2.227a); and A* = diag(AE, A¥F, ..., Ak _)).
2.59. Properties of jointly Gaussian vectors

(i) The more general definition of a jointly Gaussian random variable simplifies this
problem greatly. Let w = Ax. Any linear combination of components of w is a
linear combination of components of x and hence is a Gaussian random variable.
Thus, w is a jointly Gaussian random vector. The expressions for the mean and the
covariance matrix follow from the linearity of the expectation:

E[w] = E[Ax] = AE[x] = Apx,
E[(v— ) (w =) 7| = E[(Ax = Ap)(Ax = AT |

E[A(x—,ux)(x—,ux)TAT] = AE[(x—ux)(x—,uX)T]AT = An, AT

How
Yw

(ii) The definition of a jointly Gaussian vector x requires the covariance matrix Xy to
be symmetric and positive semidefinite. (This extends to any random vector since
(x — px)(x — px) T is a quadratic form and the expectation is linear.) The symmetry
condition Xy = EI,

Z:y EY»Z _ _ T _ ET E;r
i N

implies all the specified symmetries: 3y = Z;, ¥, =%], and Yy, = EZy.
(iii) As in (i), y is jointly Gaussian because any linear combination of its entries is a

linear combination of the entries of x. The mean and covariance matrix follow from
(i) by choosing
I 0
A=l

with dimensions matching the decomposition of x into y and z.

(iv) Since x has a joint PDF, its subvectors y and z have joint PDFs as well. Thus, we
can show the result through an equality of PDFs. To simplify our expressions, we
provide a solution only for the case of ux = 0.

Using (2.262), we want to show that the conditional PDF of y given z = ¢ is

fy\z(s‘t) = c CXp(—%(S - uy\z)TE;‘i(s - :u'y\z)) 5 (8259'1)
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with
fylz = py + y2 25t — p) and Syle = By — SyaE oy,

where the scalar constant ¢ could be written explicitly but is fixed implicitly by
the normalization property of the conditional PDF. Applying the multidimensional
analogue of (2.257a) with the joint PDF expression from (2.262) gives

_f 2(s,1)
fy\z(s‘t) - ysz

o4 (-] (B D)

oxp(~ 4t — ) TSt~ )

o exp<—; (- [‘;Z])ngl ([5] - [2]) + 50 -nor=te- uz>> 7

where again the scalar constant c2 could be written explicitly but is fixed implicitly.
We thus need for (S2.59-1) and (S2.59-2) to be equal. We can prove it by using the
partitioned matrix inverse

nol — Xy y,z - — = _Ezy»ZZ;I
x DIFRVEND 38 N D YA I DRI T DD YR ) S Dl I

ca (S2.59-2)

where E = (Zy — By,,%, '%,.y) "1, and expanding the products.

2.60. Bayesian linear MMSE estimation via the orthogonality principle
The form of the optimal linear estimator of one vector from another was derived from
the projection theorem in Section 2.4.4. Thus, we can derive the LMMSE estimator from
(2.85).
Let

so that the desired estimator is a linear function of z:

X = Ay+b = [A 1] m = Bz (S2.60-1)
Using (2.85), the optimal B is given by
B = E[xz*]|(E[zz*])7!. (S2.60-2)

We need to find the factors in this expression.
The first factor is

E(xz*] = E[x[y* 1]] = E[[xy* x|] = [Sxy +axpl px]. (S2.60-3)

B[zs*] = EH}J [y* 1]} - EHyyy: }{H _ [Zy‘;gyﬂ; Mly:|7

matrix inversion gives

Since

_ PO . S
E[zz*])"! = { v _ y My $2.60-4
(E[zz"]) S W e ( )

for the second factor. Substituting (S2.60-3) and (S2.60-4) into (S2.60-2) gives
B = [Ex,ngl Hx — Zx,yzglﬂy] :
Substituting into (S2.60-1), we find that the desired LMMSE estimator is
R = Sy Iy ly s = Sy Ty ty = ok Sy By (Y — ),
matching the result in (2.266a).
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2.61. An inner product on random vectors

(i) Given the following assumptions

N-1

(x,y) = Z E[xkys], var(xg) < oo for all k,
k=0

let us verify the inner product properties from Definition 2.7:
1. Distributivity:

N-1 N-1 N-1
(x+y,2z) = ZE(Xk+Yk 7, | ZEszk +ZEYka
k=0 k=0 k=0

= (x2) +(y, 2).
2. Linearity in the first argument:
N-1 N-1
(ax,y) = Z Elaxgyy] = « Z E[xkyr] = alx, y).
k=0 k=0

3. Hermitian symmetry:

N-1 * N-1
x¥)" = (Z E[wa]) = Y Elxive] = (v, %)

k=0 k=0

4. Positive definiteness:

2

E[xgx}] Z [1xxl?]

vV
=

ik

We have equality if and only if E[ |xz|2 ] = 0 for all k.
(ii) Two vectors x and y are orthogonal under this inner product if on average they are
geometrically orthogonal. This does not mean, however, that all components are
orthogonal.

(iii) As seen in (ii), all orthogonal vectors are not necessarily uncorrelated. However,

Redistribution is strictly prohibited

uncorrelated vectors are orthogonal since
xq (@)
(,y) = > = Ebuyi] = >0 =0,
K K

where (a) follows from the assumption.

(iv) As we have seen, if the vectors are orthogonal, they are not necessarily uncorrelated,

and thus not necessarily independent. Uncorrelated Gaussian random vectors are
independent.
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Chapter 3

Solutions to exercises

3.1. Sinusoidal sequence

(i) The three sketches are given in Figure S3.1-1.

1[””]18 _— IHUIIS .

4

(a) N =8. (b) N = 12.

Figure S3.1-1 Sequences y from (P3.1-1).

(ii) This is true only for N = 16 because z is periodic with period 16, as shown in
Figure S3.1-2.

Figure S3.1-2 Sequence z, = ZkeZ Yn_Nk- For N =16, zp, = Tn,.

3.2. Deterministic autocorrelation and crosscorrelation

(i) Use the definition of the deterministic autocorrelation (3.17) and write

* *

* (a) * ( * *
an = E LTy — § Th—n Ty = E Tm Toppn = Ap,

k€EZ keZ meZ

N

where (a) follows from conjugating the expression twice; and (b) from the change of
variable m = k + n.

(ii) Fix any n € Z, and define sequence y by yx = x)_,, for all k € Z. Then, |ly|| = |||,
and
* * (a) 2 (b)
lanl = D mai_n| = [D_mwyi| = ey < llzllllvl = ll=l> = ao,
kEZ kEZ

where (a) follows from the Cauchy—Schwarz inequality; and (b) from (3.18b).

(iii) To show that the deterministic crosscorrelation is not symmetric, we give a coun-
terexample. Let xy, = dp, and yn = 0p—1. Then

Ca,y,—1 = kayZH = zoy1 = 1
kez
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but
Cay,l = ka yr_, = 0.
kEZ
While the deterministic crosscorrelation is not symmetric in general, the following
holds
Cey,—1 = Cyz1 = L.

(iv) We write

C(ej“’) — che*jwn (;) szkyzine*jwn

nez neZkeZ
*
®) e » B
= 20 D anyme T = 3 apem R Y ymen
neEZmer keZ meEZL
= X(J)Y* (),

where (a) follows from the definition of deterministic crosscorrelation (3.20); and (b)
from the change of variable m = k — n.

3.3. Discrete Laplacian operator
Denote by T' the operator that describes the system y = T'(z).

(i) T is linear because
T(oxon + Br1in) = (axon—1+ Bx1,n-1) — 2(azo,n + Br1,n) + (To,nt1 + T1,n+1)
a(zon—1 — 220,n + Ton+1) + B(@1,n—1 — 21,0 + T1,n+1)

aT(zon) + BT (21,n)-

T is shift-invariant because

T(Tn—k) = Tn-k-1—2Tpn_k+Tn—kt1 = Yn—k>

that is, a shifted input produces a shifted output.

T is not causal because y, depends on z,1, which is a future value of x.
T is not memoryless because y, does not depend only on z,.

T is BIBO-stable because

|zn| <M = lyn| < 4M.

(ii) Because the system is linear, it has a matrix representation,

y_2 0 0 T_o
y—1 0 0 T

Yo = 1 0 x0
Y1 -2 1 1
T2 1 -2 T2

(iii) The system acts as a discrete differentiator, so constant and linear terms get anni-
hilated (see Figure S3.3-1).

3.4. Linear and shift-invariant difference equations
(i) Consider the following difference equation:
Yn = Tn — Yn—1,

with the initial condition y_; = 2. Take the input signal to be x, = é,. The
output signal is then y, = (=1)**!, for n > 0. For z!, = 2x,, the output is
Yp, = 0 # 2yn; thus, the system is not linear. For =, = 1 the output is y{ = -2,
yh, =3 (=1)"*1. Since y/, # yn—1, the system is not shift-invariant.

Redistribution is strictly prohibited Comments to book-errata@FourierAndWavelets.org



SOLUTIONS TO EXERCISES IN Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovacevié, and V. K. Goyal

Jor 1f/l,n Y2
§ R | §
B/ 54 B/ 54 B/ 54
=1 =1 -1
-2 -2 -2
(a) zo,n = c. (b) z1,n = On. (¢) z2,n = Un.-

Figure S3.3-1 The output of the system for different inputs .

(ii) If initial conditions are zero, then:
(a) By induction, the solution of the homogeneous equation

N
Yn = — Z AkYn—k
k=1

is yn = 0.
(b) If input signals z], and ], produce outputs y,, and y,,, respectively, then z, =
az! + Bz!! produces the output yn = ay!, + Byi:

Yyn = ayj + By
M N M N

o (z by S akyslk) 8 (z bl =3 akyszk)
k=0 k=1 k=0 k=1

N

M
D bklawy_y + Ben_y) = > ar(ayl_k + By _y)

k=0 k=1

M N
= Z brTn—k — Z AkYn—k-
k=0 k=1

Hence, the system is linear.
(c) If the input signals =, produces the output yn, then z/, = y,—m produces the
output y, = Yn—m:

y;’b = Yn—m

M N
§ brTn—m—k — § AkYn—m—k
k=0 k=1

M N

Z by, _p, — Z AkYp_k

k=0 k=1

thus, the system is shift-invariant.
3.5. Geomeltric sequences and their properties
(i) The norm of z is
|lzl|2 = Z (\/ 1— a2> o = (r- a2) Z o = (1- a2) 5 =
n=0 n=0 l-a
where (a) follows from (P2.54-3).

(ii) For n < 0, the autocorrelation of x is

o0
Zxkxk,n = Z(l—az)akakfn
k=0

kEZ

oo
o> (1-aMa® = a el = a7
k=0

an
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and for n > 0,
oo (oo}
an = kaxk,n = Z(l—az)akakﬂl = of"Z(l—az)aZk
kEZ k=n k=n
o0
W ar S (1-a? e = amfef} = o,
£=0

where (a) follows from change of variable £ = k — n. We thus get

an = ol
the autocorrelation of a geometric sequence is a symmetric, two-sided geometric
sequence.

(iii) For n < 0, the convolution of = with itself is

(z * x) g TpTpn—p = 0

kEZ
and for n > 0,
n
(z*x), Zxkxn r = (1—a?) Z = (1-a?a"(n+1).
keZ =
(iv) We define two geometric series, charactcrlzed by parameters  and 3, with |of < 1
and |5] < 1.

For n < 0, the crosscorrelation of x and y is

Cn = Zxk:yk n = Z\/l_a2\/1_52 kﬁk "

keZ

- et - 3 es) V0P o,

and for n > 0,
Cn = kaykfn = Z \% 1_0‘2\/ 1_B2ak5k7’n
kEZ k=m
= "1 -a?)(1-52) ) (aB)

k=m

a P wRE——— 1—a?)(1 - B2
(:) a (1_02)(1_62)2(0‘6)2 — ( )( B )Ocn,
o 1—-ap
where (a) follows from change of variable £ = k — n. We thus get

o = BT n <0
" ya™, n>0,

with v = /(1 —a2)(1 — 82)/(1 — aB); the crosscorrelation of two geometric se-
quences is an asymmetric, two-sided geometric sequence. Note that for « = 8 we
obtain the previous result.

For n < 0, the convolution of « and y is

@*y), = Y Tkyn-r = 0;
keZ
and for n > 0,
n
(Txy), = D apyn—r = /(1 —a2)(1 -2 > akpr*
kEZ k=0

BnJrl _ C|{n+1

B—a

(1—a?)(1-p%)
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Y ()]

- —/3 | /3 Vg

Figure S3.7-1 The DTFT of the output of the system y = h*z, with z,, = %(Jn +0n—1)
and hg, a third-band lowpass filter.

where (a) follows from the formula for the finite geometric series, (P2.54-1).

3.6. Circular convolution in frequency property of the DTFT
Let y = hx. Then, its DTFT is

Y(ejw) _ Zynefjwn _ anhnefjwn

nez nez
1 ™ ) ) )
= Z (2—/ X(eﬂ’) elvn du) hp e 79
nez TS
1 ™ ) )
= o Z/ X (&) hp e 1@ gy
nez” "’
1 ™ ) )
= 7/ X(e) | > hne 1@ | dy
2m J nez
1 [ ; ; 1
= 7/ X" HE " Ndy = —He X,
27 ) _n 2

where we used the fact that h € £1(Z).
3.7. Third-band filter

(i) We can rewrite hy as

h wo . 1 27
= — SInc| —won 5 wy = —.
"= \oag 2™ °7 3

Thus, from Tables 3.4 or 3.5,
H (ej“’) _ {\/57 for |w| < %717

0, otherwise.

The filter is lowpass because it lets through low frequencies |w| < %7‘(’ and blocks all
others.

(ii) Using the convolution property of the DTFT,
) 1 )
X(eI¥) = 3 (14+e77v),

H(e7*)X (%) = {(\/%) (1+e7e), for w| < gm;

Jw
Y (™) 0, otherwise;

V()| = {MW for Jw] < L

0, otherwise.

Figure S3.7-1 shows the plot of |Y (e/¥)|.
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3.8. ROC of z-transform
(i) For xp = 0n,

X(z) = 26n27" =20 =1

nez
ROC = {z|z e C}.
(ii) For xp = 0k,
X(z) = Z Sz = 27k
nez
ROC — {z]|z€C}, fork<O0;
1 {z]|]z] #0}, fork > 0.
(iii) For zn, = a™ up,
= 1
— - — -1 — .
X(z) = Za"unz "= Z(az o= T a1
nez n=0
ROC = {z||z| > |e}.
(iv) For zp, = =™ u_p_1,
-1 (@) oo
a
X(z) = Z Q" Uu—p_12" " = — Z (azil)" = — Z (of1 z)"
newz n=—oo m=1
oo
(b) 1 \m 1 1
Z_(a A"+ 1—a*12+ 1—az!
m=0
ROC = {z[[z] <lal},
where (a) follows from the change of variable m = —n; and in (b) we added and
subtracted the zeroth term to be able to apply (P2.54-2).
(v) For zpn = na™ un,
oo o0
X(z) = Zna" Upz” " = Zn(azil)" = az! Zn(azil)”fl
neZ n=0 n=0
@ @) @ dlimazT) st
N dlaz—1) N d(az—1) T (l—az )2
ROC = {z][z[ > |al},
where (a) follows from recognizing > °° jn(az™1)"~! as the derivative of
o0 o (az™1)™ with respect to (az~1); and (b) from the solution to (iii).
(vi) For y, = —na™ u—pn_1,

-1

X(z) = Z—na”u,nflzfn = — Z n(az"hHn

nez n=-—oo
—1
= —az! Z n(az"hHn !
n=-—oo
-1 —1\n
(@ A= 2 o (@z™)")
= az
d(az—1)
O) 1 d(1/1—az"t) az"l
N d(az—1) T (l—az )2’

ROC = {z]|z] <lal},

where (a) follows from recognizing >
—1
n=—oo

-1
n=-—oo

n—1

n(az™1) as the derivative of

(arz=1)™ with respect to (az~1); and (b) from the solution to (iv).
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(vii) For zy, = cos(won) un,

o0
Zcos(won) upz " = Z cos (won) z~ ™

X(z) =
newz n=0
= 14+ - Z 63“’0"—4-67]“’0”)
n—l
1 > 1 >
_ - jw 71 - —Jw 71
Ty 2 ey o e
B 1+1 eJwo z—1 +1 e’J“’szl _ 1— coswoz"t )
o 21—eiwoz—1  21—edwoz—1 =~ 1—2coswpz—!+ 22’
ROC = {z]|z| > 1}.

(viii) For zy, = sin(won) un,

o0
X(z) = Z sin(won) un 2= " = Z sin (won) 27"
ne” n=0
1 oo
1+ = elwon _ gmiwony ;—n
57 2 ( )

n=1

(oo}

1
1+ ejwozfl efjwozfl

n=1

1 eJwoz—1 1 e’J“’Uz’l 1 —sinwgz"1

2j 1—eiwoz=1 25 1— e Jwoz—1 1—2coswpz 1+ 272
ROC {z ||z > 1}.

(ix) For zy, = a™ for 0 < n < N, and 0 otherwise,

N-1 N-—1
X(z) = Za"zﬂl = Z (az™)? = e ;
=0

n=0
{z|z€C,z#0}.

ROC
3.9. Orthogonality
(i) If P(2) is a polynomial, then P(z~1') is not, and thus, for (P3.9-1) to hold, P(z)
must be a monomial, P(z) = £z—¢
(ii) The proposed solution satisfies the orthogonality constraint (P3.9-1),
Az) A(z~1 A A(z71
A(z) A(z71) 27 LT A(z—1) 2L—1 A(2)
3.10. Linear and circular convolution as polynomial products
Call C(z) the result of the multiplication

2N -2

C(z) = A(2)B(z) = Z cn 2"

since A(z) and B(z) are polynomials of degree N — 1. The coefficients ¢, can be found
from the linear convolution of the sequences a and b,

[ ao 0 0 e 0 C e T
al ao 0 0 CO
a2 ai ao 0 bo C;
. . . . bl
aN-1 aN-2 aN-3 ‘°° ap by = CN. aE (S3.10-1)
0 aN-1 anN-2 - al : 01;
0 0 anN_1 - as by_1
L 0 0 0 an—1] LC2N —2 |
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With D(z) = C(z) mod (2% — 1), and because for n =0, 1, ..., N —1, the coefficients
cnan 2V T mod (2N — 1) = cy4p 27, we have that dpn = cp + cNtn, OT,

do
d1
da

dn_1

= [In

Inxn—1]

T oo
C1
Cc2

$3.10-2
N1 ( )
CN

LC2N —2 |

where I is an identity matrix and Inxny—_1 is a matrix with an identity matrix Iny_1

followed by an all-0 row. Combining (S3.10-1) and (S3.

do
dy
da
dN—1
with
[ ag 0
al ag
as a1
A = [INn Inxn-1] |an—1 an—2
0 aN—1
0 0
L 0
ao 0 0
al ag 0
- | a2 a ao
GN-1 aN-2 aN-3
Thus,
do ao an_
dy ai ao
da _ az ai
dn-1 aN-1 an-—

bo
b1
A b2
by-1
0
0
ao
aN—3
aN_2
aN-—1
0
0 0
0 0
0|4+
: 0
ao 0
1 an-2
aN—1
aN—-o
2 an-3

10-2), we can write

o

ag
a1
az

ao| [bn-1

exactly the representation for the circular convolution of sequences a and b.

3.11. Deterministic autocorrelation
(i) The deterministic autocorrelation is the convolution of the sequence with its time-
reversed version, (3.62d),

an = E Tk Ty = Ty *n T_n.

From Table 3.6, the z-transform of z_p, is X(271), and thus, A(z) = X(2)

keZ

X(z7h).

If X(z) has the ROC {z | m < |z| < M}, then X(z~!) has the ROC {z |
1/M < |z| < 1/m}. The ROC of A(z) is the intersection of these two ROCs, that
is, {z | max{m,1/M} < |z| < min{M,1/m}}.
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(ii) For xn to be stable, |o| < 1. From Table 3.6, we then have,

1
X(z) = —— for |z] > |,
1—az1
and L
XY = for  |z| < |a"l.
1—az
Therefore,
1 1
Az) = —M ——
) l—az711—-az
1 1 1 .
= - < < .
1— a2 (1_0{271 l_aflzfl) ‘O!| IZI ‘a I

From Table 3.6 we thus have a, = (a™un + o "u_p_1)/(1 — &?). For this deter-
ministic autocorrelation sequence, the poles are a, @~ !, the zeros are 0, 0o, and the
ROC is {z | |a| < |2| < |a™1|}.

(iii) Let yn = —p, then Y(2) = X(271), and thus Ay(2) = Y(2)Y (27 1) = X (27 H) X (2) =
A(z), that is, their deterministic autocorrelations are the same. In other words, time
reversal does not change deterministic autocorrelation.

(iv) Take vp = Tp—_ny, then V(2) = 270 X (2), and thus A, (z) = 270X (2) 270 X (271) =
A(z), that is, their deterministic autorcorrelations are the same. In other words, shift
in time does not change deterministic autocorrelation.

3.12. Block circulant matrices

A block-circulant matrix C' has block C(;_j) moa N in its (i, 7)th position. We want to
show that the matrix

A =FCF™!
is block diagonal. The (k, j)th block of A is given by
1 N-1N-1
Ak,j = Z W ('L 7) modNW i
=0 j=0
@ 1= e ¢
“ Y o
D> W™ Cig) moa nWy
i=0 j=0
® 1 N-1N-1 ] N1 N-1
2 < Wy oW = = S WYY CnwR
i=0 m=0 i=0 m=0

© Ok Z Crn Wi,

m

where in (a) we multiplied and divided by W{!; (b) follows from the change of variable
m = (¢ — j) mod N; and (c) from the orthogonality of the the roots of unity, (3.288c).
From this we see that A is block diagonal.

3.13. Pattern recognition

Redistribution is strictly prohibited

(i) A sequence z € RN can be written as a linear combination of {@k}%;é only if they

form a basis for RN . Because the basis sequences are circular shifts of p, the matrix
® corresponding to {cpk}%;(l) is circulant. We know from (3.181a) that the DFT
diagonalizes the circular convolution operator

® = FIAF,

where A is a diagonal matrix of DFT coefficients of p. Thus, ® is full rank if and
only if all these DF'T coefficients are nonzero.

(ii) Assuming that the condition from (i) is satisfied, that is, ¢, k =0,1, ..., N —1
form a basis for RV, we can expand z as

rz = Pa,

Copyright 2014 M. Vetterli, J. Kovacevi¢, and V. K. Goyal
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with a the vector of expansion coefficients. Since ® is full rank, it is invertible, and
thus
a =&l = FTIA P

3.14. Computing linear convolution with the DFT

3.15.

Redistribution is strictly prohibited

The equivalence of linear and circular convolution for N > M + L — 1 has been shown in
Theorem 3.10, and the computation of circular convolution using the DFT was shown in
Section 3.6. These two results together answer the question.

The algorithm is as follows: Take N > M + L — 1, and compute the DFTs of = and
h extended to a length-N sequence each by appending zeroes. The result is

X = Fua, H = Fh,
with X and H vectors of DFT coefficients. From (3.171), the circular convolution in the
time domain has the DFT pair
Yy = Hp Xk, k=0,1,...,N—1.
Taking the inverse DFT,
y = F7ly.

Note that even if N > M + L — 1 (that is, taking a much longer DFT than required), the
sequence y will be zero for n > M + L — 1, because of the equivalence between linear and
circular convolutions.
DFT properties
Some of these DFT pairs are explicitly given in Table 3.7.

(i) For yn = T_y, mod N = TN—n, its DFT is

N— N—1 (@) N—1 SN
a —
Y = E yWE = 3 ano oW 2 S a Wi
= n=0 m=0

- Z 2 WEN W Em Nilxmw}g’“)m = Nilme}VN*’“)m
m=0 Y m=0

N-1
Z me](\;ik mod N)m = X _kmod N»
m=0
where (a) follows from the change of variable m = N —n. For areal , Y, = X _; =
X} is also true.
(ii) For y = h ® =, we find the DFT pair from
N-1
Yn = (h @(E Z hnm(k n) mod N
n=0
@ 1 Noin- N—1 .
a — —_ —_
Y= HWR™ S Xmwy ™™
=0 ¢=0 m=0

IN— N-1
_ Z Z Hemefmk% Z W(mff)n ® 1 Z Hon X Wy mk

n=0 mO

3
~

’Z \

exactly the inverse DFT of HX. In the above, (a) follows from the inverse DFT
(3.163b); and (b) from the orthogonality of the roots of unity (3.288c).

(iii) For Y = (1/N) (H ® X), we find the DFT pair from
N-1

1
(He X))y = — ZHnX(k n) mod N
n=0

Y, =

Copyright 2014 M. Vetterli, J. Kovacevi¢, and V. K. Goyal
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exactly the DFT of hz. In the above, (a) follows from the DFT (3.163a); and (b)
from the orthogonality of the roots of unity (3.288c).

X = 5(Xg + Xp)

When £y, = _,, mod N = TN—n, its DFT is

N-1 N-1
1 1
=2<Z%z +vamw>=2<2mww+2mw >
n=0 n=0 n=0
N-1 N— o
= %(Wkn + W kn Z Ty COS (Wkn)7
n=0 n=0
and is real.
(v) When ©y, = —Z_p, mod N = —TN—n, its DFT is
X = 5(Xg + Xp)

= ;(wa’m

and is purely imaginary.

N-1
S e

n=0

N-1
anf;") — <Z onN Z onNk’!L)
n=0

n=0
N-1

% W]’f;" - Wy k" =3 Z Tn sm(—kn)

n=0

3.16. Tight frames as projections from orthonormal bases

(i) Figure S3.16-1 shows the frame vectors for N = 3, 4, 5.

(a) For N = 3, consecutive frame vectors are separated by 27 /3.

(b) For N = 4, consecutive frame vectors are separated by 27 /4.

(¢) For N =5, consecutive frame vectors are separated by 27 /5.

-
N

N
J

(b) N =4.

Figure S3.16-1 Frame vectors.

(ii) Call 7y, the column vectors of the DFT matrix. We know these vectors are orthog-

onal, but not orthonormal,

(rk

7T7L> = Nop_p.

Since these column vectors are the row vectors of ® normalized by 1/v/ M,

The result then follows directly.

Redistribution is strictly prohibited
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X % F(2) @ a() @ H) v

Figure S3.19-1 Multirate system.

3.17. Downsampling by N

We have
N-1
Y(E) = Yoewz ™ = 3 ame N 3 g/ <% > Ww”m>
keZ m=kN meZ n=0
LS () = LN s ()
N AN N AN
meZ n=0 n=0 meZ

1 = n _1/N
NnZ:OX(WNz )

where (a) follows from the orthogonality of the roots of unity, (3.288c).
3.18. Downsampling

(i) For k=0,1,..., N/2—1,
1 L /N1 N-1
Ot Xia) = 3 (3 mwd s X o)
n=0 n=0
N-1
1
R S N O D O P
2 n=0
o N/2-1 © N/2-1
c .
= D w2 Y YWy = Yi,
=0 =0

where (a) follows from WJ]\,V/2 = —1; (b) from (3.288c¢); and (c) from W3 = Why2.
(i) For k=0,1, ..., N/M —1,

1 M—1 1 M—-1N-1 (k+iN/M)
- X . - W o1 n
g e = g g e

2

—1

Il
S
/—\H 3
M7

iN/Mn kn
Wy > e Wy

n

Il
- O

@ 1 NZlmero

@ L ( w;y) s Whn
n=0 \ i=0

o VM- o NM-1

= > amWRM 2 > ?JZW]Ifre/M = Y,
=0 =0

where (a) follows from W]]\,V/M = Was; (b) from (3.288¢c); and (c) from W =
3.19. Multirate system with different sampling rates
(i) See Figure S3.19-1.
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x() = 1) 12~ 1) F12-(2)- v

Figure S3.20-1 Equivalent multirate system.

(ii) The equivalent filter is
F(z*)G(=°)H ("),

followed by downsampling by 24,
23
1 _ _ _ _
Y(z) = o > FP(Wy ) G(Wa 2 H (W 2) X (WyF 21 /24),
k=0

3.20. Multirate identities

(i) Using the fact that filtering followed by upsampling is equivalent to upsampling fol-
lowed by upsampled filtering, we move both H and H; across upsamplers to get the
system in Figure S3.20-1. We also know that upsampling followed by downsampling
by the same factor is identity. Therefore the transfer function of this system is:

Y (z)
X(z)

= Hi(z)Ha(2).

(ii) Using again the interchange of filtering and upsampling, we can redraw the system
as in Figure S3.20-2. The lower branch contains an upsampler followed by a delay
and a downsampler. The output of such a system is 0. Therefore only the upper
branch remains and the final transfer function of the system is:

Y (2)
X(z)

= Ho(2).

X(2) Ho(2) |—(12) (1D—e— v

- @ = -0

Figure S3.20-2 Equivalent multirate system.

(iii) For the first system, the input/output relationship is

Y(i) _ 1 1/2 1/2 1/2 1/2y] @
X0 2 [HE/GE?) + H(=22)6 (=212 2,
where (a) follows from (P3.20-1a).
For the second system, the input/output relationship is
Y() _ 1 1/2 1/2 1/2 1/2y] @
X0 " 3 [H2)PE2) + H(=22)P(=21%)] 2o,

where (a) follows from (P3.20-1b).
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3.21. Interchange of multirate operations and filtering

(i) Using multirate identities, D,, = Dg and H(z) = A(2)A(2?)A(z*) to yield y =
DgHzx.
(ii) H(z) is an ideal lowpass filter, see Figure S3.21-1.

(iii) H(z) is an ideal bandpass filter, see Figure S3.21-1. Despite A being an ideal high-
pass filter, the highest frequencies will get filtered out in the second iteration of the
filter-downsample block, and thus, this system will not keep the highest frequency
content of the input.

3.22. Commutativity of upsampling and downsampling
In (3.186a), D2 is the downsampling-by-2 operator, an identity matrix with odd rows taken
out. Similarly, in (3.192a), Uz is the upsampling-by-2 operator, an identity matrix with
zero rows inserted between every two rows. Similarly, Dps is the downsampling-by-M
operator, an identity matrix with rows kM +j, 7 =1, 2, ..., M — 1, taken out, and Uy is
the upsampling-by-N operator, an identity matrix with (N —1) zero rows inserted between
every two rows. Then,

1, for Mi= Njy;

- 1, fori/N=j/M € Z;
(DMmUN)i; = {0, otherwise,

(UnDpnr)s; = {0, otherwise.

For the above to hold, it must hold element-by-element, and thus, Mi = Nj, or i/N =
j/M =k € Z must hold for all 4,j € Z. We now show that this is possible if and only if
ged (M, N) = 1.

If ged (M, N) = 1, then

I = Mi = Nj = MNEk,
N M
and ) )
) ) ) . i J
Mi = N = = Nq,j =M = — =q = L.
i J i q, J q N q M

We prove necessity by contradiction. Let ged (M, N) = L. Then, M = M’'L and
N = N’L, where ged (M, N’) = 1. Further, Mi = Nj implies that ¢ = N'q, j = M’q, and
i/N = q/L = j/M = k € Z must hold for any ¢ € Z, possible only for L = 1 and ¢ = k.
Hence, L = ged (M, N) = 1.
3.23. Combinations of upsampling and downsampling
We solve the problem using matrix notation for Us, Uy and Da:

R 1 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Us = 0 1 0 , Uy = 0 1 0 ,
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
: 0 0 1
and
1 0 0 0 O
Dy, = 001 0 0
00 0 0 1

Redistribution is strictly prohibited Comments to book-errata@FourierAndWavelets.org



SOLUTIONS TO EXERCISES IN Foundations of Signal Processing Copyright 2014 M. Vetterli, J. Kovacevié, and V. K. Goyal

(i) For the first comparison, compute

1 0 0 0 O 1 0 0 0 O
0O 0 0 0 O 0O 0 0 0 O
0O 0 0 0 O 0O 0 0 0 O
UsDo = 0O 0 1 0 O , DoUs = 0O 0 1 0 O
0O 0 0 0 O 0O 0 0 0 O
0O 0 0 0 O 0O 0 0 0 O
0 0 0 0 1 0 0 0 0 1
Thus Uz D2 x and D2Us z are identical since U3 D = D2Us.
(ii) For the second comparison, compute
1 00 0 0 - _ S
0 0 0 0 O : Lo
0O 0 0 0 O 0O 1 0 0 O
0O 0 0 0 O 0O 0 0 0 O
UysDo = 0O 0 1 0 O , DoUs = 0O 0 1 0 O s
0O 0 0 0 O 0O 0 0 0 O
0O 0 0 0 O 0O 0 0 1 0
00 0 0 0 :
0 0 0 0 1 L : -

which are evidently not the same, and thus Us D2 x # DUy x.

The results of the two comparisons are different because in the first case, 3 and 2 are
coprime and thus D2 and U3z commute, while in the second, 4 and 2 are not coprime and
thus Dg and Us do not commute (see Exercise 3.22).

3.24. Interchange of filtering and sampling rate change

(i) Denote the input to the system by z. Using (3.188), the z-transform of the sequence
after downsampling by 2 is

1
- [X(ZW) + X(—zl/z)] _
2
Filtering with G (%) then results in a sequence with z-transform
1 1/2 12\] &
5 [X(z )+ X(—2 )] G(2).

Alternatively, first filtering with 6(22) results in a sequence with z-transform
X (2)G(2?%). Using (3.188), downsampling by 2 now results in a sequence with z-
transform

S [XEEGE22) + X (2 2)E((-4/2)2)]
1

- 5[X(zl/z)é(z)Jr)((_zl/z)c?*(z)] = [X(z1/2)+X(_zl/2)] G(2),

1

2
matching the previous expression.

(ii) Denote the input to the system by z. Filtering with G(z) results in a sequence with
z-transform X (z)G(z). Using (3.193), upsampling by 2 then results in a sequence

with z-transform
X (22)G(2?).
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Alternatively, using (3.193), first upsampling results in a sequence with z-transform
X (22). Filtering with G(22) then results in a sequence with z-transform

X(z)G(2?),
matching the previous expression.

3.25. Periodically shift-varying systems
A linear, shift-varying system is characterized by a two-variable impulse response hy j,
the response of the system to the input &, = d,_x. Since the input can be written as
Tn = > TkpOp_k, the output is given by yn = 3, Trhg n-
When hy, ,, is periodic in k£ with period N, we define the polyphase components xj, as
in (3.230), to yield

T
Thkon = TnN+tks Ty = [ -+ T_2N+k T—-N+k TN+k T2N+k ] y
for k€ {0, 1, ..., N — 1}. Denote the upsampled version of xy, , by xg\;), SO
Ny Tpn/N, forn/NeZ; _ [xpyp, forn/N eZ;
T = 0, otherwise; - 0, otherwise.
(N) _ _ T
z ——[...000...0mN+k0...].

N-1

Take the above upsampled components, delay each by k, and sum them up; we get = back:
N-1 )
N
o= Y )
k=0

As this is a linear system, we can find the output as

N-1 N-1 N-1
Yn = th,n Z wEJz),Z = Z th,n wEJz),Z (i) Z Z hk,n wEJz),Z
keZ i=0 i=0 keZ 7 i=0 (k—i)/N€Z 7
N-1 N-1
S INID ST D D) DI
i=0 (k—i)/N€Z ' =0 kez

where (a) follows from the excluded terms being zero; (b) from the periodicity of h; and
(c) because the added terms are zero. The final expression shows the output as a sum
of N terms. The ith term is the ith polyphase component, upsampled and filtered by an
i-sample delayed version of hy .

3.26. Sequence with a zero-polyphase component
A sequence with all odd-indexed samples x equal to 0 is the upsampled-by-2 version of its
first polyphase component, zo. Using (3.92), its DTFT is given by

X)) = Xo(eI2),
so X is m-periodic since Xg is 2m-periodic. Thus, if X (e/*) is nonzero at w = 0, it is
nonzero at w = 7 as well.

3.27. Conwolution and sum of discrete random variables
Since x and y are integer-valued, for any integer k, the event {z = k} is

U {X:m7y:k_m}
meZ
as a union of disjoint events. Thus,

pak) = S Px=m,y=k-m) € S Px=m)Py=k—m)

meZ meZ
b)
QST pem)pyk—m) € (e xpy)(R),
meZ

where (a) follows from the independence of x and y; (b) from the definition of PMF; and
(c) from the definition of convolution.
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3.28. Autocorrelation and crosscorrelation

We have
Cxy(e) = D E[xnyh_y] e = > Elxn (xn—k +wWnx)"] e ¥
kEZ keZ
= S B[] + Bl wi et L oag(e),
keZ

where (a) follows from x and w being uncorrelated. Also,

Ay(@) = D E[ynyhop] e = D El(xn +wWn) (xn—k + Wnx)"] e E

kEZ kEZ
= Sl ]+ Elwaw ]+ Blxnwi ]+ E[waxs ] e
kel

@ A () + A (e3¥),

where (a) again follows from x and w being uncorrelated.

3.29. Toeplitz matriz—vector products
A size-(N x N) Toeplitz matrix has 1+ 2(N — 1) = 2N — 1 parameters, while a same-size
circulant matrix has N parameters. Thus, the minimal extension of a size-(N x N) Toeplitz
matrix to a circulant matrix needs N — 1 columns and rows.

The corresponding numbers of parameters for symmetric Toeplitz and circulant ma-
trices are N and | N + 2/2], respectively. So the minimal extension is by N — 2 columns
and rows.

For example, a Toeplitz matrix 7" extended to a circulant matrix C' is as follows:

a b ¢ e d
a b ¢ d a b ¢ e
T =1|d a b C=]le d a b cf,
e d a c e d a b
b ¢ e d a
while a symmetric Toeplitz matrix T extended to a symmetric circulant matrix C is as
follows:
a b ¢ b
a boc b a b c
T = 1b a b C =
c b a c b a b
b ¢ b a

Because we know that the DFT diagonalizes a circulant matrix, we can use that fact to
estimate the cost of computing the product of a circulant matrix with a vector, and thus,
the cost of computing the product of a Toeplitz matrix with a vector. Since the cost of
computing the DFT is given by (3.271), the cost of computing the product of a Toeplitz
matrix with a vector is O(N logy N).

3.30. Owerlap—save convolution algorithm
In the factored form, three matrices are used, A, £ and H as in Example 3.46,

I 0 0
0 I O 0 I O
T _ 0 0 I2 T 0 0 I
A5 = I 0 0 ’ B = 0 I O ’
0 I O 0 0 I
0 0 I
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and H is given in (3.274). Multiplication by AT will concatenate the following input blocks:

0] x4
1 5
T2 6
20 — s | 2 = o
T4 s
5] 9

After multiplication by Hg, the output blocks will be

hoxo + hoxs + h1xs] hoxs + haxg + hixg

hixo 4+ hox1 + hoxs hiz4 + hoxs + hoxg

(0) _ [hazo+ hiz1 + hox2 (1) _ |h2za+hizs + hoze

He hox1 4+ hize + hoxs |’ He hoxs + hixe + hoxr
hoxo + h1x3 + hoxa haoxe + h1x7 + hoxs

haoxs + hixy + hoxs] hox7 + h1xg + hoxg

We see that the first two elements of each block are incorrect while the last 4 are correct.
Thus, the effect of ET is to discard those incorrect elements. This is why this method
is sometimes also called overlap-discard. In general, we keep the last M elements of each

block.
3.31. Sums and products
®
oo
j2m (@) :
]};[ exp( Bkt 1)) = exp (]27r2 K+ 1) > = exp(j2m) = 1,
where (a) follows from
oo n
1 1
= S~ ) = lim (1- =1
Zk(k-ﬁ-l Z_:( k+1) nbmoo( n+1)
(i)
1023 63 15 63 15 15 (@)
16k
Swh = S-St - Swip S w - w3 w0
k=0 k=0n=0 k=0 n=0 n=0

where (a) follows from the orthogonality of the the roots of unity (3.288c).
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Ideal lowpass filter. Ideal highpass filter.
|A(e™)] |A(e™)
22 22
V2 V2
w w
n/4 nm/2 3n/4d & n/4 nm/2 3n/4d &

Magnitude responses.

|A(e”)) |A(e”))|
2v2 2v2

vz — vz

w w
n/4 w2 3rn/4d & n/4 w2 3rn/4d &

Upsampled by 2.

|A(e”*)] |A(e”*)]
22 22

V2 V2

w w
n/4 nm/2 3rn/4d & n/4 nm/2 3rn/d &

Upsampled by 4.

| A7) A(e729) A (%) | A7) A(e72) A (i)
22 2VZ

V2 V2

w w
n/4 nm/2 3rn/d & n/4 nm/2 3rn/d &

Equivalent filters.

Figure S3.21-1 Iterated ideal filters.
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