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SOLUTIONS TO PROBLEMS – CHAPTER 2 

 

Note to instructors: 

Problems 2.1-2.7 and their solutions are unchanged from Problems 4.1-4.7 of the second edition, apart 

from the references to Figure numbers and eqn numbers. 

 

Solution to problem 2.1 

 

(a) The Solar Constant, *

0G , is the irradiance perpendicular to  the solar beam just outside our Earth‟s 

atmosphere (see RER sec.2.2.2). 

Assume that the Earth maintains a constant distance L from the Sun (i.e. neglect the slightly elliptical 

orbit of the Earth).                                              

 

The power emitted by the Sun (as a black body) from its surface area is: 
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Comment: this answer equals the observed solar constant of 1366 W m
-2 

 within 0.15% (i.e. within 

rounding errors) ; indeed working this sum backwards from satellite measured data is one way to 

determine TS  . 

 

(b) The area intercepting solar radiation at the Earth is 2

ER , but the area of the Earth emitting 

infrared radiation to maintain thermal equilibrium is almost exactly a spherical surface of area 
24 ER .  The depth of the Earth‟s atmosphere is negligible compared with its radius for this 

calculation.  We initially assume the Earth is a black body of uniform absolute temperature T.  and 

zero reflectance.  Hence at equilibrium: 
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  Hence this approximate analysis gives the radiative temperature of the Earth as 
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However there is significant reflection of incoming solar radiation from white cloud and the Earth‟s non-

black surfaces.  Therefore, reflection should be included, as in the related analysis of RER sec.2.9.1.  

Then: 
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where ρ0  is the effective short-wave reflectance of the Earth from Space.  Approximately ρ0  0.3, hence  
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These calculations demonstrate the fundamental physical processes by giving reasonable answers to an 

accuracy of about +/- 5%.  The same principles, but with more detail and, are used for computer-

simulations, e.g. of weather. 

 

 

Solution to Problem 2.2 

 

Sketch diagrams should be drawn for the southern hemisphere, to replicate Figs 2.8 and 2.9.  As 

compared with the diagrams for the northern hemisphere, latitude  is now negative and solar device 

orientation  shifts by 180
o
.  Working through the equations in Sect 4.5.2, angle of incidence  from Equ 

4.8 is seen to be unchanged.  

 

 ========================================================================= 

 

Solution to Problem 2.3 

 

 This problem is a numerical example of eqns (2.8)-(2.11) of RER section 2.5.2.  So, as in RER Example 

2.1, the first step is to use the data to identify (determine) the various „input‟ angles required to calculate 

θz and θ.  Here, we have: 

 

latitude   :  given for Suva, capital of Fiji, in the Southern Hemisphere    =  -18
o
 

declination δ:  calculated from RER eqn (4.5) thus: 

 day number  = 139 for 20 May ( counted on a calendar)n  

  Hence, from RER (2.5): 

 

 

  
0
sin[360  (284 139) / 365)]

 19.7deg with 
0
=23.5deg

 

Hour angle ω: at 9 a.m., using RER eqn (2.4): 

 o 1 o(15 h )( 3h) 45      

  Neglecting ωeq and assuming ψ = ψzone (which is in fact true for Suva). 

 

(a) With the above angles as input, RER eqn (2.11) gives the angle θz between the beam radiation and 

the vertical: 

 

  

cos
z
 sin sin  cos cos cos

 sin(18o )sin19.7o  cos(18o )cos45o cos19.7o

 (sin18o )sin19.7o  (cos18o )cos45o cos19.7o

 0.528, and so


z
= 58o  

 

 

If the diffuse irradiance is insignificant compared with the beam irradiance, then the variation of G* is 

that of the beam component, which is given by RER eqn (2.2) : 

 
* cosbh b zG G   

Hence the irradiance in the beam direction is  
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(b) Although the angle θc can be calculated from the full formula [RER eqn (2.8)],  since we have just 

calculated θz , it is less work to use RER eqn (2.9) instead.  To do this we need three additional 

„input‟ angles: 

 

Slope β: given as β = +30 degrees. 

Azimuth γ: +180 degrees for a surface facing due north (see RER, p.93). 

Solar azimuth γs:   

This is closely related to the hour angle, but measured in a different way.  As on RER p.94, ( γs -γ ) is 

the angle between the  beam and the surface (both projected onto the horizontal plane). Since at 9 a.m. 

the sun is 45
o
 East of N, then  

( γs -γ ) = 45
o
.  

 

Putting these values into RER eqn (2.9) yields: 

 

o
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Assuming, as in (a) that total irradiance varies with angle in the same way as beam irradiance (i.e. 

according to RER eqn (2.2)) we find that the irradiance on the collector is 

 

*

-1 -1
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================== 

(c) Now we are to assume that half the radiation on a horizontal surface is diffuse, so 

  
G

dh
 G

bh
 0.5G

th
 0.51.0MJh-1     

 

Then, by definition, the diffuse radiation is the same at all [upward facing] orientations, so  

 
  
G

dh
 G

d
* G

dc
 0.5MJh-1  

 

 The beam component varies with cosθ as before, so  

 
-1* / cos 0.95MJhb bh zG G    and -1* */ cos 0.7MJhc b cG G    . 

 

Adding these, 

 

the total irradiance  in the beam direction is  

 

Gt*= 0.95+0.5 =1.45 -1MJh  

 

And the total irradiance on the collector is  

 

Gt*= 0.7+0.5 = 1.2 -1MJh   

 

Comparing these to the values in parts (a) and  (b), we see that the irradiance is, as expected, weaker in 

the beam direction (reduced from 1.9 MJ/h to 1.45MJ/h)  and also on the collector (reduced from 1.4 

MJ/h to 1.2 MJ/h) which is reasonable since the collector is oriented close to the beam direction.  

Note that the input power to a focusing solar collector would be very much reduced is these conditions, 

since the diffuse irradiation cannot be focused. 
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Solution to Problem 2.4 

 

Comment:  the only part of this Problem that requires physical insight is the first line. The rest is simple 

algebra.  

 

A short cut calculation is to take the first line as a special case of formula (C.17) of RER Appendix C.  

  

Although the derivation of (C.17) is simple, see  below, it is by no means obvious to most students, who 

wonder why T2
4
 ( Ts

4
 in this case) is coupled with ε1 rather than with ε2.   The key to understanding is to 

realise that radiation is not only emitted directly (terms in σT
4
) but also reflected and/or radiated back 

from the second body, as alluded to in RER sec. R3.5.. 

 

 
  Step 1. The geometry is that of the diagram in Appendix C (copied  above) above, but with A1<<A2 

(the sky is effectively infinite in extent compared to any solar collector).   

 

All the radiation emitted by the body [1] reaches the sky [2] and none is reflected back.  Thus the sky 

behaves as a black body with 2 2 1    and the shape factor F12 =1 (see RER sec. R3.5.6).  The 

shape factor in the reverse direction follows from RER eqn (3.43) : 

 
21 1 2 12

1 2 12

( / )

/           since 1.

F A A F

A A F



 
 

 Body [1] behaves as a „grey‟ body with 1 1 11     , as in RER sec R3.5.7. 

 

We can now calculate the net radiative power reaching [2] from [1] 

 

P12 =         (power emitted from [1] )  

- (power emitted from [2]) x (fraction of this that reaches [1]) 

+     (power reaching [1] from [2]) x (fraction reflected back to [2]) 

      = 4 4 4

1 1 1 2 2 2 1 2 2 1 2 1( )( / ) ( )(1 )T A T A A A AT       

      =  4 4

1 1 1 2 1 1( )[ 1 (1 )]T A T A       

      =  4 4

1 1 1 2( )A T T    

 

which is eqn (C.17) of RER Appendix C. Step 2.  The net radiative transfer Eqn (C.17) becomes for 

the case at hand: 

 4 4

r 1 1 1( )sP A T T    (B1) 

We can change this into a linear form matching those for other forms of heat transfer, where heat is lost to 

the environment at ambient temperature Ta  
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which is the required result.  

 

 

 

Solution to Problem 2.5 

 

(a) RER eqn (2.11) gives the angle between the solar beam and the local vertical, i.e. the zenith angle z : 

 cos sin sin cos cos cosz        (2.11) 

 

At sunrise and sunset θz = 90
o
, so cos θz  = 0 and (4.11) above becomes 

 
sin sin

cos tan tan
cos cos

 
  

 
     (C) 

 

After solar noon, hour angle ω is positive (in the sign convention of RER sec2.5.1), and so at sunset ω is 

the positive solution of (C), i.e. 

at sunset 1

1 cos ( tan tan )      . 

 

Since the hour angle ω increases at 15 deg/ hour, it follows that the time in hours between solar noon and 

sunset is  1 1 /15N  . By symmetry, the time between sunrise and sunset is  

 1

1

2
2 cos ( tan tan )

15
N N      

Which is RER eqn (2.7) as required. 

 

(b) At northern mid-summer o23.5    and at northern midwinter o23.5    (see RER Figure 

2.5).   Hence we obtain the following table of numerical results.  Note the significant differences in 

the periods of daylight. 

 

 Northern Midsummer  

δ = +23.5
o
 

Northern Midwinter  

δ = -23.5
o
 

Latitude   = +12
o
 N= 12.7 h N= 11.3 h 

Latitude   = +60
o
 N= 18.5 h N= 5.4 h 

 

========================================================================== 

 

Solution to problem 2.6 

 

(a)  Irradiance on horizontal (above atmosphere) is: 

 
  
G

oh
  G

0

* cos
z
 (2.24) 

Here the prime indicates that  the quantity refers to the approximated  circular Earth orbit . 

 

But from RER eqn (2.11) 

 
  
cos

z
 sinsin  coscos cos  
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So   in (2.24)              
  
G

oh
  G

0

* cos
z
 G*

0
(sin sin  coscos cos )  

 

The daily insolation is (from RER eqn (2.6)): 

 
/2

0 /2
.

s

s

t t

h oht t
dH G t




    (H1) 

 

Where ts is the length of the day.   

We convert this integral to being in terms of ω by using  

RER eqn (2.4), written in the form: 

 
  
  k(t  t

noon
) 

eq
 ( 

zone
)  (2.4) 

with k=15
o
/h . Since within any one day the last two terms of (2.4) are effectively constant, for small 

changes   t   / k  

 

So in (H1)  
/2

0 /2
. . /

s s

s s

t t

h oh oht t
dH G t G d k

 

 


 

 
      

 

where s  is the hour angle at sunset. 

Hence   
  
H

0h
  G*

0(sinsin coscos cos)
s

s

 d / k  

 

 

 
* *

0 0
0

*
* 0

0

( )(sin sin )(2 ) ( )(cos cos ) sin

sin sin ( )(cos cos )(2sin )

s

s
h s

s s

G G
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G
t G

k




     

    




  

 

 (H2) 

 

With ω measured in radians for the integration.  

 

Since / 2st t   when s    (radians) and since 180
o
 = π radians, it follows that  

o2 180

radians

s s

s s

t t

k   
     

Hence eqn (H2) becomes 

  

 
o

*

0

180 1
[sin sin ( )(cos cos )(sin )]

rad
oh s s

s

H t G     
 

 
    

 
 (2.24) 

As required. 

 

======================== 

(b) Numerically, in midsummer (δ = +23.5
o
) at latitude   = +48

o 
, RER eqn (2.7) gives   

 1(2 /15)cos ( tan tan ) 15.8hst       

Hence  

 o o1
2

15.8h 15 /h 119  and so sin 0.875s s       

 

Feeding these angles into (2.24), gives the term in [ ] =0.555, and so  
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H
oh
  (G

0

*t
s
)  0.555

 (1367
Jm-2

s
)(15.8h) 

3600s

h
 0.555

=  43.1 MJm-2

 

 

In midsummer (22 June), day number is  n = 172.   

 

Hence, using RER eqn (4.25) and the value below this for e  , the extraterrestial irradiance is, 

 
0

0 0

-2 -2

[1 cos(360 / 365 )]

[0.967] 43.1MJm 41.6MJm

o

h hH e n H  

  
 

 

But according to RER Fig.2.7 in mid-summer the daily insolation at 48
o
  at the Earth‟s surface under a 

clear sky (i.e. the maximum of the 48
o
 curve of Fig.2.7) is about 28.5 MJm

-2
 .  This implies that the 

clearness index  of RER eqn (2.19)  is 

 
0/ 28.5/ 41.6 0.68T h hK H H    

Which is a not unreasonable value, considering the atmospheric absorption indicated by the difference in 

irradiation between air mass m=0 and m=1   of RER Fig.2.15. (See also the discussion of RER sec2.8.5).  

 

Similarly in midwinter (δ= -23.5
o
, n =358), following the analysis as above, we find  

 

  

t
s
 8.15h ,  

s
=61.1o  , sin

s
 = 0.875, 

[ term ] =0.394, and 

H
0h
  15.8MJ

 

 

Whereas, according to RER Fig.2.7, the clear-sky surface daily insolation in mid-winter is the  minimum 

of the 48
o
 curve, i.e. 6.5MJ.  This implies a clearness index of KT = 0.41. That this is less than KT in mid-

summer is to be expected, because at latitude 48
o
 in mid-winter, even at mid-day, the sunshine passes 

through air mass m ≈2.   

 

========================================================================= 

 

Solution to Problem 2.7 

 

 

Comment: To plot all the relevant 3-dimensional lines on one 2-dimensional diagram is very confusing. It 

is easier to separate the various planes, as below.  

 

Throughout, as hinted in the problem, we use an (x,y,z) co-ordinate system centred on the centre of the 

Earth, with z-axis towards the north pole, and the sun in the x-z plane (i.e. with y =0).  

The following 3 diagrams are all drawn for the northern hemisphere case ( 0)  . 

As given in the Problem, collector azimuth γ = 0 , and collector slope β =  .  

 

Diagram (A) : the solar beam . In plane y =0  

 

 

 

 

 

Unit vector in direction of 

sun is  

(in x,y,z  co-ordinates) 

 

s  = (cosδ, 0 , sinδ) 
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[These are the „direction 

cosines‟]  

Diagram (B) : in plane containing polar axis and the 

normal to the collector. 

 

 

 
 

 

 

 
We work through this diagram to 

establish that the plane of the 

collector (thick line) is normal to 

that of the equator. Angles β and 

  are given as indicated.  

 

Then at top of diagram, 

complementary angle a is  

90-β .  Therefore the angle 

opposite it (i.e. the top angle in the 

triangle) is also 90-β  .  

But in the triangle, the bottom left 

angle   equals β (given). Hence 

the remaining (bottom right) angle 

in the triangle is  

180-(90-β) –β = 90o  

 

Hence a unit vector normal 

to the collector has zero 

component in the z-direction  

 

 

Diagram C: seen from „above‟ i.e. with the collector 

projected on the x-y plane  

 

 

 
 

 

 

 

Hour angle ω is the angle the 

Earth has rotated since solar 

noon. For simplicity, we 

show the case ω>0  (i.e. in 

the afternoon).   

Since the Sun is in the x-z 

plane, it is clear from 

diagram C that the x and y 

components of the unit 

vector normal to the collector 

are (cosω, sinω).  

y 

x 

ω 

z 
North 

x 

Sun‟s 
rays   

δ 

N 

β 

a 

θ 
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In summary: 

 

 from Diagram A, a unit vector in direction of the sun is  

s   = (cos δ, 0, sin δ) 

 

From diagrams B and C, a unit vector normal to the collector  is 

 c   = (cos ω, sin  ω, 0) . 

 

Therefore the angle between the solar beam and the normal to the collector is given by  

 
ˆ ˆcos cos cos 0.sin 0.sin

cos cos

    

 

   



s.c
 

as required. 

 

========================================================================= 

 

Solution to Problem 2.8 

 

This Solution addresses Problem 2.8 formulated as  follows: 

Is the energy in outgoing long-wave radiation from the Earth equal to that in the incoming short-wave 

radiation from the Sun.  Why? 

 

All the numbers needed to address  this question are in RER Fig2.12a , which shows the relevant energy 

flows as annual averages in W.m
-2

 .   

 

Interpretation 1: at the  “top of the atmosphere”  

 

The top of Fig 2.12a represents “the top of the atmosphere”.  We see there: 

Downgoing (incoming, „short-wave‟) solar radiation : 342 W.m
-2

  

Upgoing thermal („long-wave‟) radiation : 235 W.m
-2

  

 

The reason these are not equal is the short-wave  “reflected solar radiation “ of 107 W.m
-2

  shown at far 

left of Fig.2.12a.  

But reassuringly the net energy balance of the Earth to space is zero (i.e.  the Earth is in thermal 

equilibrium with the Sun  , since   

342-107=235.   

 

Interpretation 2: near the Earth’s surface 

 

Incoming short-wave RFD (shown by the fat downward arrow flowing downwards from the 342 W.m
-2

  

at the top of the atmosphere) : = (342-77-67)= (168+30) = 198 W.m
-2

    

Outgoing long-wave radiation  (shown by fat upwards arrow second from right at the surface) = 

(350+40)=390  W.m
-2

   

 

These are way out of balance because of the „back radiation‟ from greenhouse gases and clouds and the 

upward heat fluxes by latent heat (shown as „evapo-transpiration‟  of 78 W.m
-2

   ) and sensible heat (free 

convection , shown as „thermals‟ of 24 W.m
-2

 ) .  

 

But the surface of the Earth is in thermal balance , since  

Net heat carried upwards = (30+ 24+78+390-324 )= 198 W.m
-2

  .  
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+++++++++++++++ 

 

Solution to  Problem 2.9  

 

(a) Having ice on top keeps the water beneath cool, because (i) it reflects back most  of the incoming 

solar radiation (80% according to the question), which would otherwise warm that water, and (ii) 

the water beneath may lose a proportion of any  extra heat that does get to it  by melting a little of 

the ice above it (only „a little‟ since the latent  heat of ice is very high).  (The  proportion depends 

on the speed of currents in the water, among other factors). 

With no ice on top of it, the water temperature will increase significantly because (i) a much larger 

fraction of the incoming solar radiation is absorbed (80% since only 20% is reflected), and (ii) 

there is less ice in a position to take up latent heat (none on top though there may be some at the 

side).  

 

(b) Thus where ice has melted more than „normal‟ in summer, the open water the increased area of 

open water reflects less solar radiation  heat than the ice than the ice that would „normally‟ be 

there, and so that are  up more than „normal‟.  Because the water is warmer than „normal‟ in 

summer, it takes longer to freeze in autumn. Consequently less sea-ice (i.e. floating ice) is formed 

than in a usual winter, leaving an even greater area of open water, which in turn warms even more 

that the year before (other things being equal).  In short, there is a  „positive feedback‟ which tends 

to decrease the area of sea ice in summer still further, and thus to lead to ever increasing warming 

in that region.  Hence both the observed and projected temperature increases are greatest in the 

Arctic region, as all the ice there is floating.  (Most of the ice in the Antarctic is on top of land, so 

this effect is less marked there..) 

 

Extra information for interest 

Quantitiative observed and projected increases  in mean surface temperature according to IPCC 

Working Group 1 (2013) are  given in the following table : 

 

 Global average increase (
o
C) Arctic region increase (

o
C) 

Observed average temperature 

increase (1901-2012) 

0.8  1.5-2.5 

Projected temperature increase 

(1981-2000) to 2081-2100 

(RCP4.5scenario/ RCP6.0 

scenario) 

2.0/ 2.5 4.5/ 6.0 

 

 

     

 

Solution to Problem 2.10 

 

(a)  The bulk of the ocean can expand only upwards,  since coastal volumes are <<1% of  the ocean as  

a whole.  Thus, its vertical expansion z is governed by the volumetric  coefficient of expansion, so  

/ /z z V V T      and  thus for a temperature increase of T =1
o
C=1K (i.e roughly 

the observed increase in surface temperature ) 

 3 -4 -1(4×10 m)×(3×10 K )×(1.0K) = 1.2mz    

 This is much less than the observed sea level rise principally because it takes a very long time 

(centuries) for a temperature increase at the  surface to spread through the whole ocean.  

 

Extra information for interest 

 

Indeed if this took place purely by diffusion, the time taken would be  



 14 

 

2 3 2 -6 2 -1

14 7 6

~ / (4×10 m) / (0.1×10 m .s )

1.6×10 s×(1y /3.14×10 s)~5×10 years

z  


  

using data in RER Appendices A and B. 

In fact even slow-moving ocean currents carry heat faster than this (including vertically)  and so 

IPCC WG1 (2007) estimate the time frame required as a few centuries.  

 

(B) Archimedes principle. The sea ice is floating already and thus displacing its own weight of water. 

Therefore its melting into liquid water does not increase the average sea level.     

 

(C) Volume of Greenland ice sheet  is 

 

6 3
6 2

G 8 2

-3

1.0 10 km
V = (0.5km)×(2×10 km ) = 

2.6×10 km

= 4×10 km = 4m



  

Ocean covers about 50% of Earth‟s surface area, so total area of ocean is  

  

 2 3 2 8 20.5 4 2×3.14×(6.4×10 km)  = 2.6×10 kmo EA R     

The  volume VG of water spread over an area Ao , will have a depth  

 
6 3

-3

8 2

1.0 10 km
/ 4×10 km = 4m

2.6 10
G oz V A

km


   


  

So , on these approximate figures,  melting the Greenland ice sheet would raise the global sea level by 

4m 

 

=======    

 

Solution to Problem 2.11 

 

 

For an outline of the  projected impacts of climate change on biological and social systems see Box 

17.1 and Box 17.5 in RER chapter 17.  Note particularly the strong effect of the amount of fossil  fuel 

to be used in the future.    

 

For more detail (but at a global or regional level) the prime source is the reports by IPCC Working 

Group 2.  The most recent such report is part of the IPCC‟s Fifth Assessment Report  of 2013-2014, 

and is available at www.ipcc.ch . 

In particular Table 1 in Box SPM2 of the Summary for Policy Makers gives a summary of the main 

risks for each of the 7 regions of the Earth.   

 

http://www.ipcc.ch/

