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Chapter 1 Selected Solutions
1.1 Spectrum of an amplitude-modulated signal
Let s(t) be a bandlimited baseband signal with a frequency content S(f) given by 1 −
|f |/fmax for |f | < fmax, where fmax is the maximum frequency of the baseband signal.
This baseband signal is multiplied by cos(2πfct) to produce an amplitude-modulated pass-
band signal s̃(t) = s(t) cos(2πfct), where fc is the carrier frequency and fc is much larger
than fmax.

(a) Sketch the frequency spectrum S(f) of the baseband signal.

Solution
The baseband frequency spectrum is a triangular function shown in part (a) of the figure
below.
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(b) Sketch the frequency spectrum S̃(f) of the amplitude-modulated passband signal.

Solution
Applying the modulation property of Fourier transform (see Section 2.1), a sketch of the
modulated spectrum is shown part (b) of the figure with fc = fo.

(c) The amplitude-modulated (AM) signal is demodulated bymultiplying s̃(t) by a coherent
signal of the form cos(2πfct). The signal is filtered by an ideal lowpass filter with a cutoff
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frequency fmax. Sketch the magnitude of the frequency spectrum of the demodulated signal.

Solution
Applying the modulation property of Fourier transform again yields part (c) of the figure.

1.2 Frequency demodulation errors
This problem considers the effect of a frequency error in the process of demodulation. An
amplitude-modulated signal s̃(t) = s(t) cos(2πfct) is demodulated using cos

(
2πfc(1 +

x)t
)
, where x is a relative frequency error, and s(t) is given in Problem 1. Sketch themagni-

tude of the frequency spectrum of the demodulated signal for: (a) x = 0, (b) x = fmax/10fc,
and (c) x = fmax/fc. Comment on the results.

Solution
(a) This is the same as Problem 1c.

(b) and (c)

Solution
When x ̸= 0, the two parts of the spectrum do not exactly overlap. This is shown schemat-
ically in the figure below with fc = fo.
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Part shifted up from -f0
that is cutoff by the filter

Part shifted down from f0
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Sum is a distorted
version of the original signal

s(t)

=

When the offset x is equal to fmax, the baseband spectrum is “inverted”. The distortion is
caused by the combination of the two parts of the spectrum not being aligned because of the
different demodulation frequencies, and the lowpass filter which removes higher frequency
components of the baseband signal.

2



1.3 Phase demodulation errors
An amplitude-modulated signal s̃(t) = A cos(2πfct) is demodulated by using the reference
cos(2πfct+ ϕe) where ϕe is a phase error, and A is a constant amplitude.

(a) Determine an expression for the demodulated signal as a function of the phase error
ϕe.

Solution
Application of cosA cosB = 1

2 (cos(A−B) + cos(A+B)) gives

1
2s(t) cosϕe(t) +

1
2s(t) cos

(
4πf0t+ ϕe(t)

)
.

When the phase variation is slow with respect to the carrier, the second term is filtered out
by the lowpass filter. However, the first term shows that the original signal s(t) is now
multiplied by a phase error term cosϕe(t) producing distortion in the demodulated signal.

(b) The demodulated signal is now integrated over a time period T . What is the maximum
phase error ϕe that can be tolerated for the demodulated signal to ensure that the magnitude
is within 10% of the magnitude when there is no phase error?

Solution
To keep the magnitude of the error term within 10% requires cosϕe(t) to be less than 0.9.
Solving for ϕe, gives |ϕe| < 0.45 radians or |ϕe| < 25.8o.

1.4 Envelope demodulation
Consider an amplitude-modulated passband signal

s̃(t) = s(t) cos(2πfct),

where s(t) = cos(2πf1t) and f1 is much less than fc. This signal is demodulated using
envelope detection. What is the form of the resulting baseband signal in terms of s(t)?

Solution
This signal does not have a bias term and thus the envelope s(t) is not always positive.
Therefore the original signal cannot typically be recovered as is shown in the figure below.

Signal Modulated signal with no bias Recti�ed signal
Lowpass signal

(”clipped” version of the original signal)
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1.5 Energy in the passband signal
The energy in a real passband signal s̃(t) over an interval T is

E =

∫ T

0

s̃(t)2dt.

Let s̃(t) = A cos(2πfct) and T ≫ 1/fc.

(a) Determine the energy in s̃(t) in terms of A and T .

Solution

E =

∫ T

0

s̃(t)2dt

=

∫ T

0

(A cos(2πfct))2 dt

=

∫ T

0

A2

2
(1 + cos(4πfct)) dt

=
A2T

2
,

where the second term on the third line is nearly zero when T ≫ 1/fc.

(b) Determine the energy in the demodulated baseband signal (cf.(1.3.3))

r(t) = A cos(2πfct) · cos(2πfct)

and compare this with the result in part (a).

Solution
When T ≫ 1/fc, r(t) = A cos(2πfct) · cos(2πfct) = A/2. Then

E =

∫ T

0

r(t)2dt

=

∫ T

0

A2

4
dt

=
A2T

4
.

The energy is half that of the incident signal.
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(c) Compare both energies to that of a constant signal A over a time T .

Solution
The electrical energy is 1/4 that of a constant signal One factor of 1/2 is from modulation.
The second factor of 1/2 is from demodulation.

1.6 Sensitivity of a lightwave receiver
Suppose that a phase-asynchronous lightwave communication system using a noncoherent
carrier requires 10,000 photons per bit to achieve a bit error rate equal to 10−9.

(a) If the information rate is 10 Gb/s, R = 1, and λ = 1500 nm, what is the required
lightwave signal power at the receiver? Express your answer in dBm.

Solution
Using the values given in the problem, the power is mhc0/λ =13.3 µW which is −18.8
dBm.

(b) Determine the output photocurrent.

Solution
The current is given by PR = 13.3µA.

(c) Determine the electrical power gain in decibels (dB) required after photodetection to
produce a one volt signal into a 50 ohm resistor.

Solution
Generating a one volt signal into 50Ω requires a current equal to 1/50 A. Working with the
current, the power gain of the electrical amplifier is 20 log10((1/50)/13.3×10−6) = 64 dB.

(d) A lightwave amplifier is now placed before the photodetector. Determine the light-
wave signal power gain in decibels required to produce the same one-volt signal when no
electrical amplification after photodetection is used.

Solution
Given the square-law nature of the photodetection process, the required gain for the optical
amplifier is reduced by a factor of two when the gain is expressed in decibels. ThereforeG
is about 32 dB.
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(e) Comment on the results of parts (c) and (d). (Note that there is a typo in letters de-
noting the problem sections the text.)

Solution
The square-law nature of the photodetection process means for the same photodetected
current, the optical gain before direct photodetection is half the equivalent gain after direct
photodetection in the electrical domain when the gain is expressed in decibels.
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Chapter 2 Selected Solutions
2.1 Linear systems
Show that for any constants a and b, the definition of a linear system can be replaced by the
single statement

a x1(t) + b x2(t)→ a y1(t) + b y2(t),

whenever x1(t)→ y1(t), and x2(t)→ y2(t).

Solution
Using homogeneity, input ax1(t) has output b y1(t). Let ax1(t) = X1(t) and let ay1(t) =
Y1(t). Similar expressions can be derived for x2 and y2. Then using superposition gives

X1(t) +X2(t)→ Y1(t) + Y2(t).

Substituting back X(t) = a x(t) and Y (t) = b y(t) yields the desired expression.

2.2 Properties of the Fourier transform
(a) Starting with the definition of the Fourier transform and its inverse, derive the primary
properties of the Fourier transform listed in Section 2.1.

Solution
Modulation Property

∫ ∞

−∞
x(t)e−i2πftei2πfctdt

=

∫ ∞

−∞
x(t)e−i2π(f−fc)tdt.

= X(f − fc)

.

Time Translation

Start with inverse transform ∫ ∞

−∞
X(f)ei2πfte−i2πft0df

=

∫ ∞

−∞
X(f)ei2π(t−t0)tdf

= x(t− t0).
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Scaling

∫ ∞

−∞
x(at)e−i2πftdt.

Let t′ = at, then dt = dt′/a. Substituting gives

=
1

a

∫ ∞

−∞
x(t′)e−i2π(f/a)t′dt′

=
1

a
X(f/a).

Differentiation

Write x(t) as inverse transform and take the derivative of each side to give

d
dt
x(t) =

d
dt

∫ ∞

−∞
X(f)ei2πftdf

=

∫ ∞

−∞
i2πfX(f)ei2πftdf.

(b) Using the modulation property of the Fourier transform and the transform pair 1 ←→
δ(f), show that

∫∞
−∞ ei2πf1te−i2πf2tdt = δ(f2 − f1), thereby demonstrating that the set

{e−i2πfjt} of time-harmonic functions is orthogonal.

Solution

∫ ∞

−∞
ei2πf1te−i2πf2tdt =

∫ ∞

−∞
e−i2π(f1−f2)tdt

=

∫ ∞

−∞
(1)e−i2πf ′tdt

= δ(f ′)

= δ(f1 − f2),

where 1←→ δ(f) has been used.

8



2.3 Gram-Schmidt procedure
The Gram-Schmidt procedure is a constructive method to create an orthonormal basis for
the space spanned by a set ofN signal vectors that are not necessarily linearly independent.
Let {xn(t)} be a set of signal vectors. The procedure is as follows:

(a) Set ψ1(t) = x1(t)/
√
E1 where E1 is the signal energy.

(b) Determine the component of x2(t) that is linearly independent of ψ1(t) by finding the
projection of x2(t) along ψ1(t). This component is given by [x2(t) ·ψ1(t)]ψ1(t) where the
inner product is defined in (2.1.65).
(c) Subtract this component from x2(t).
(d) Normalize the difference. The resulting basis function can be written as

ψ2(t) =
x2(t)− [x2(t) · ψ1(t)]ψ1(t)

|x2(t)− [x2(t) · ψ1(t)]ψ1(t)|
.

(e) Repeat for each subsequent function in the set forming the normalized difference be-
tween the function and the projection of the function onto each of the basis functions al-
ready determined. If the difference is zero, then the function is linearly dependent on the
previous vectors and does not constitute a new basis vector.
(f) Continue until all functions have been used.

Using this procedure, determine:

(i) An orthonormal basis for the space over the interval [0, 1] spanned by the functions
x1(t) = 1, x2(t) = sin(2πt), and x3(t) = cos2(2πt).

Solution
The function x1(t) = 1 is already normalized so ψ1(t) = x1(t) = 1. Project x2(t) onto
ψ1(t) to give ∫ 1

0

(1) sin(2πt)dt = 0,

showing that x2(t) is orthogonal to ψ1(t) = 1. Normalizing this term gives

|x2(t)| =

√∫ 1

0

sin2(2πt)dt =
1√
2

so thatψ2(t) =
√
2 sin(2πt).The last basis function is determined by expressing cos2 (2πt) =

1
2 (1 + cos (4πt)). Then

x3(t) · ψ1(t) =

∫ 1

0

(1) · 1
2
(1 + cos (4πt)) dt =

1

2
,
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showing that the zero-frequency or DC component of x3(t) is the same as ψ1(t). Repeating
for ψ3(t), we have

x3(t) · ψ2(t) =

∫ 1

0

√
2 sin (2πt) · 1

2
(1 + cos (4πt)) dt = 0,

showing that x3(t) is orthogonal toψ2(t). Therefore, the component of x3(t) that is orthog-
onal to bothψ1(t) andψ2(t) is cos (4πt). Normalizing this term givesψ3(t) =

√
2 cos (4πt).

(ii) An orthonormal basis for the space over the interval [0, 1] spanned by the functions
x1(t) = et, x2(t) = e−t, and x3(t) = 1.

Solution
Let x1(t) = et be the first function. Normalizing this term gives

|x1(t)| =

√∫ 1

0

e2tdt =
√

1
2 (e

2 − 1),

and thus

ψ1(t) =
et√

1
2 (e

2 − 1)
.

Now project this function onto the second function to give

x2(t) · ψ1(t) =
1√

1
2 (e

2 − 1)

∫ 1

0

ete−tdt =
1√

1
2 (e

2 − 1)
.

Subtracting from x2(t) gives

x2(t)− (x2(t) · ψ1(t))ψ1(t) = e−t − 1
1
2 (e

2 − 1)
et.

Normalizing yields√∫ 1

0

(e−t −N1et1)
2 dt =

√
1

2
(N2

1 (e
2 − 1)− 4N1 − e−2 + 1 =

1

N2
,

so that ψ2(t) = N2(e
−t − N1e

t) where N1 = 1
1
2 (e

2−1)
and N2 are given above. Now

project the third function x3(t) = 1 onto each of first two functions to give

x3(t) · ψ1(t) = N1

∫ 1

0

etdt = N1 (e− 1) ,
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and

x3(t) · ψ2(t) = N2

∫ 1

0

(e−t −N1e
t)dt =

N2(N1e+ 1)(e− 1)

e
.

Subtract to produce the part of the third function that is orthogonal to both ψ1(t) and ψ2(t)

x3(t)−
(
[x3(t) · ψ1(t)]ψ1(t) + [x3(t) · ψ2(t)]ψ2(t)

)
= 1−

(
N1 (e− 1)N1e

−t(t) +
N2(N1e+ 1)(e− 1)

e
N2(e

−t −N1e
t)

)
= 1−N2

1

(
e(1−t) − 1

)
+N2

2 (N1e+ 1)(e− 1)(e−(t+1) −N1e
t−1)

This function can then be normalized to determine ψ3(t).

2.4 Gaussian pulse
(a) Using the Fourier transform pair e−πt

2 ←→ e−πf
2

and the scaling property of the
Fourier transform, show that

e−t
2/2σ2

←→
√
2πσe−2π2σ2f2

=
√
2πσe−σ

2ω2/2.

Solution
Let c−1 =

√
2πσ. Using the scaling property of Fourier transforms gives

e−π(ct)
2

←→ 1

c
e−π(f/c)

2

so that
√
2πσe−2π2σ2f2

.

Using ω = 2πf , this expression shows the exact reciprocal relationship between the root-
mean squared timewidth and the root-mean squared bandwidth expressed in (angular) fre-
quency.

(b) Using an angular frequency ω, show that when the root-mean-squared timewidth is
defined using the squared-magnitude of the root-mean-squared bandwidth is defined using
the squared-magnitude of the Fourier transform, TrmsWrms = 1/2.

Solution
When the squared magnitude of the pulse is used, Trms = σ/

√
2. Then, using an angular

frequency ω, Wrms = 1/
√
2σ. Therefore TrmsWrms = 1/2. This relationship is the basis
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for the Heisenberg uncertainty relationship discussed in Chapter 15

(c) Derive the relationship between the root-mean-squared bandwidthWrms for the signal
power and the −3 dB or half-power bandwidthWh for a pulse whose power P (t) is given
by e−t

2/2σ2
P .

Solution
The 3 dB point is defined when the frequency function is half the peak value at f = 0.
Using the Fourier transform pair derived in part (a), and solving for f gives

e−2π2σ2
P f

2

=
1

2

⇒ f3dB =
1

σπ

√
loge(2)

2
.

(d) A lightwave pulse s(t)modeled as a gaussian pulse with a root-mean-squared timewidth
Trms is incident on a square-law photodetector with the electrical pulse p(t) generated by
direct photodetection given by |s(t)|2/2. Determine the following:

(i) The root-mean-squared timewidth of p(t) in terms of Trms.

Solution
Squaring an gaussian reduces the root-mean timewidth by a factor of

√
2. Therefore, the

root-mean-squared timewidth of p(t) is equal to Trms/
√
2.

(ii) The root-mean-squared timewidth of the electrical power per unit resistance Pe(t) =
p(t)2 in terms of Trms.

Solution
The signal is squared again so that the root-mean squared width of the electrical power pulse
Pe(t) = p2(t) is half the root-mean squared width of the lightwave pulse.

(e) Finally, rank order the root-mean-squared timewidth of the lightwave pulse s(t), the
electrical pulse p(t) generated by direct photodetection, and the electrical power pulse
Pe(t). Are these results valid for any kind of pulse?

Solution
The order from largest to smallest is: the lightwave pulse, the photodetected pulse, and then
the electrical power pulse. The results are valid for any kind of smooth pulse such that the
derivative of the pulse does not contain impulses.
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2.5 Pulse formats
Derive relationships between the root-mean-squared width, the −3 dB width, and the full-
width-half-maximum width in both the time domain and the frequency domain for:

(a) A rectangular pulse defined as p(t) = 1 for −W/2 ≤ t ≤ W/2, and zero other-
wise.

Solution
For the rectangular pulse, the full width half max (FWHM) is equal to the widthW of the
pulse. The definition of the root-mean squared width is (cf. (2.1.30))

σ2
t =

∫∞
−∞ (t− t)2p(t)dt∫∞

−∞ p(t)dt
where t =

∫∞
−∞ tp(t)dt∫∞
−∞ p(t)dt

.

Because it is a square pulse of unit height and baseW , the area isW . Because the function
is even, t = 0. Therefore,

σ2
t =

∫∞
−∞(t− t)2p(t)dt∫∞

−∞ p(t)dt

=

∫∞
−∞ t2p(t)dt

W

=

∫ W
2

−W
2

t2dt

W
=

W 2

12

→ σt =
W√
12
.

(b) A triangular pulse defined as p(t) = 1− |t| /W for |t| ≤W , and zero otherwise.

Solution
For this case, the full width half max (FWHM) is half the base 2W of the triangle, orW .
Because it is a triangular pulse of unit height and base 2W , the area isW as before. Because
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the function is even, t = 0 as before. Therefore,

σ2
t =

∫∞
−∞(t− t)2p(t)dt∫∞

−∞ p(t)dt

=

∫∞
−∞ t2p(t)dt

W

=
2
∫W
0
t2
(
1− t

W

)
dt

W
=

W 2

6

→ W√
6
.

This width is a factor of
√
2 less than the width of the rectangular pulse. This factor can be

explained by noting that a triangular pulse is the convolution of a square pulse with itself.
(See Problem 2.6)

(b) A lorentzian pulse defined as

p(t) =
2α

t2 + α2
,

where α is a constant.

Solution
The full-width half-maximum value is defined when p(t) = 1/2. Solving gives tFWHM as√
α(4− α). The root-mean-squared width of a lorentzian pulse is

T 2
rms = t2 = =

1

E

∫ ∞

−∞

2αt2

t2 + α2
dt,

where E =
∫∞
−∞ |p(t)|

2dt is the pulse energy. Because the integrand goes to the constant
2α as t goes to infinity, the integral does not converge and the root-mean squared timewidth
for a lorentzian pulse is not defined or is defined as infinite.

2.6 Pulse characterization
The rectangular pulse p(t) defined in Problem 2.5 is used as the input to a time-invariant
linear system defined by h(t) = p(t) so that the impulse response is equal to the input pulse.

(a) Derive the full-width-half-maximum timewidth and the root-mean-squared timewidth
of the output y(t) = x(t) ⊛ h(t) and show explicitly that 2σ2

p = σ2
y where σ is the root-

mean-squared timewidth.
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Solution
The convolution of the input square pulse h(t) with an impulse response g(t) that has the
same functional shape results in a triangular output pulse of the same form as Problem
2.5(b).

Therefore, using the root-mean squared width from part Problem 2.5(a), we have

h2rms + g2rms =
W 2

12
+
W 2

12
=

W 2

6
,

which is the square of the root-mean squared width g(t) from Problem 2.5(b), showing that
the root-mean squared timewidths of optical pulses “add in quadrature” for nonnegative
pulse shapes according to h2rms + g2rms = f2rms.

(b) Let the full-width-half-maximum width be denoted by F . Determine whether the rela-
tionship 2F 2

p = F 2
y holds for each pulse defined in Problem 2.5.

Solution
Using the definition of the full-width-half-maximum width gives

h2FWHM + g2FWHM = W 2 +W 2 = 2W 2,

which does not equal the full-width-half-maximum width of the output pulse for any pulse
considered in this problem. For this reason, timewidths and bandwidths based on root-mean
squared values are often preferred to full-width-half-maximum widths.

2.7 Passband, baseband, analytic signals, and the Hilbert transform
(a) Using

s̃(t) = A(t) cos
(
2πfct+ ϕ(t)

)
= Re

[
(sI(t) + isQ(t)) ei2πfct

]
= Re[z(t)],

determine expressions for A(t) and ϕ(t) in terms of sI(t) and sQ(t).

Solution
The relationship is just the conversion between rectangular and polar coordinates

A(t) =
√
sI(t)2 + sQ(t)2

ϕ(t) = tan−1

[
sQ(t)

sI(t)

]
.
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(b) Verify the following relationships:

(i) sI(t) = Re
[
z(t)e−i2πfct

]
Solution
When s̃(t) = A(t) cos [2πfct+ ϕ(t)], then by definition s̃(t) = Re[z(t)], and z(t) =
A(t)ei(2πfct+ϕ(t)). Therefore, Re

[
A(t)ei(2πfct+ϕ(t))e−i2πfct

]
= Re

[
A(t)eiϕ(t)

]
= A(t) cosϕ(t) =

sI(t).

(ii) sQ(t) = Im
[
z(t)e−i2πfct

]
Solution
Im
[
A(t)ei(2πfct+ϕ(t))e−i2πfct

]
= Im

[
A(t)eiϕ(t)

]
= A(t) sinϕ(t) = sQ(t).

(iii) A(t) = |z(t)|

Solution
Follows directly from the definition of z(t).

(iv) ϕ(t) = arg
(
z(t)e−i2πfct

)
Solution
Follows directly from the definition of z(t).

(c) Derive a relationship for the Hilbert transform ŝ(t) in terms of the complex-baseband
signal sI(t) + isQ(t) and the carrier frequency fc.

Solution
By definition x̂(t) = Im[z(t)] (cf. (2.1.22)) so that x̂(t) = Im[A(t)eϕ(t)ei2πfct] or
x̂(t) = Im

[
(sI(t) + isQ(t)) ei2πfct

]

2.16 Marginalization
The bivariate gaussian probability density function has the form

px,y(x, y) = Ae−(ax2+2bxy+cy2).
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(a) Express A in terms of a, b, and c.

Solution
Express the joint probability density function in the standard form of amultivariant gaussian
distribution

fx,y(x, y) =
1√

(2π)N detC
e−

1
2 (x−⟨x⟩)TC−1(x−⟨x⟩),

where x =

[
x
y

]
. Comparing this standard form to the expression given in the problem, it

is seen that themeans ⟨x⟩ and ⟨y⟩ are both zero because there is no constant term. Moreover,
the inverse of the covariance matrix C−1 is

C−1 = 2

[
a b
b c

]
with the covariance matrix given by

C =
1

2(ac− b2)

[
c −b
−b a

]
,

and the determinant of C given by

detC =
1

4(ac− b2)
.

The variances are diagonal terms of the covariance matrix and are given by

σ2
x =

c

4(ac− b2)
σ2
y =

a

4(ac− b2)
.

Using these expressions, the normalization is

A =
1√

(2π)2 detC
=

√
ac− b2
π

.

(b) Find the marginals, px(x) and py(y), and the conditionals px|y(x|y) and py|x(y|x). (c)
Find the means ⟨x⟩, ⟨y⟩, the variances σ2

x, σ2
y , and the correlation ⟨xy⟩.

Solution
The means and the variances were derived in part (a). The marginals are given by

fx(x) =
1√
2πσ2

x

e−x
2/2σ2

x fy(y) =
1√
2πσ2

y

e−y
2/2σ2

y

17



The correlation ⟨xy⟩ is

⟨xy⟩ =
√
ac− b2
π

∫ ∞

−∞

∫ ∞

−∞
xye−(ax2+2bxy+cy2)dxdy = − b

2(ac− b2)
,

which is simply the off-diagonal element of the covariance matrix. Finally, the conditional
distributions are

fx|y(x|y) =
fx,y(x, y)

fy(y)
py|x(y|x) =

fx,y(x, y)

fx(x)
.

2.18 Joint and marginal gaussian probability density functions
The joint probability density function p(x, y) is given as

p(x, y) =


1

2πσxσy
exp

[
−1

2

(
x2

2σ2
x

+
y2

2σ2
y

)]
if xy > 0

0 if xy < 0

.

(a) Show that this function is a valid probability density function.

Solution
The integral of the joint probability distribution separates to an integral over x and an inte-
gral over y. The integral on either x or y is half the value over the whole plane. Therefore

px(x) =
1

2

∫ ∞

∞
pxy(x, y)dx

=
1

4πσxσy
exp

[
− y2

4σ2
y

] ∫ ∞

∞
exp

[
− x2

4σ2
x

]
dx︸ ︷︷ ︸

2σx
√
π

=
1

2
√
πσy

exp
[
− y2

4σ2
y

]
.

Including an additional factor of two because of symmetry, this marginal probability den-
sity function integrates to one so that the distribution is a valid probability density function.

(b) Sketch p(x, y) in plan view and in three dimensions. Is this joint probability density
function jointly gaussian?

Solution
The plot of the function is on the next page for σx = σy = 1.
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It is nonzero in the first and third quadrants when xy > 0. It is zero elsewhere.This joint
probability density function is not jointly gaussian.

(c) Find the marginal probability density functions px(x) and py(y) and comment on this
result.

Solution
The marginal distribution for y is of the same form as the form derived in part (a) with
each marginal distribution equal to a gaussian distribution. Therefore, knowing that each
marginal distribution is gaussian is not sufficient to infer that the joint distribution is jointly
gaussian.

2.21 Coherence function and the power density spectrum
(a) Let R(τ) = e−|τ |ei2πfcτ . Determine the one-sided power density spectra S(f) and
Sλ(λ).

Solution
The power spectral density Sf (f) is the Fourier transform of the coherence function r(τ)

Sf (f) =

∫ ∞

−∞
r(τ)e−i2πfτdτ

=

∫ 0

−∞
eτei2πfcτe−i2πfτdτ +

∫ ∞

0

e−τei2πfcτe−i2πfτdτ

= =
i

2π(f − fc) + i
+

i
2π(fc − f) + i

=
2

1 + 4π2(f − fc)2
,
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which is a shifted lorentzian spectrum. The one-sided spectrum is twice this value and is
defined for nonnegative frequencies. To find Sλ(λ), use Sλ(λ) dλ = Sf (f) df to obtain

Sλ(λ) = Sf (f)
df
dλ

= − 2

1 + 4π2(f − fc)2
c

λ2

= − c

λ2
2

1 + 4π2c
(
1
λ −

1
λc

)2
= − 2c

λ2 + 4π2c
λc

(λc − λ)2
.

(b) A lightwave carrier has a power density spectrum Sλ(λ) given by

Sλ(λ) =
π

(λ− λc)2 + π
.

Determine the total lightwave signal power P .

Solution
Let x = λ − λc where λc is a constant. Then dλ = dx. The spectral density is one-sided
so the limits on λ are 0 and∞. When λ = 0, x = −λc. The upper limit remains the same
so that the integral is∫ ∞

0

π

(λ− λc)2 + π
dλ = π

∫ ∞

−λc

1

x2 + π2
dx.

The integral is the form of an arctan function so that

π

∫ ∞

−λc

1

x2 + π2
dx =

√
π

∣∣∣∣arctan( x√
π

)∣∣∣∣∞
−λc

=
√
π

(
π

2
+ arctan

( λc√
π

))
.

(c) Determine the full-width-half-maximum width of the spectrum in part (b).

Solution
To determine the full-width-half-maximum width, solve Sλ(λ) = π

(λ−λc)2+π
= 1

2 to give
λ = λc ±

√
π. Then the full-width-half-maximum width = 2

√
π.

(d) Estimate the coherence timewidth τc for the spectrum in part (b).

Solution
∆t ≈ 1/∆f = λ2/c∆λ so that τc = λ2

2c
√
π
where ∆λ is the full-width-half-maximum

width value of Sλ(λ).
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2.22 Autocorrelation and the power density spectrum of a random signal
using sinusoidal pulses
A binary waveform consists of a random and independent sequence of copies of the pulse(
1 + cos(2πt/T )

)
rect(t/T ) with random amplitude An for the nth term of the sequence.

The start time j of the pulse sequence is a uniformly-distributed random variable over [0, T ].
The symbols transmitted in each nonoverlapping interval of length T are independent. The
probability of transmitting a mark with an amplitude A is 1/2. The probability of transmit-
ting a space with an amplitude 0 is 1/2.

(a) Determine the autocorrelation function of the signal.

Solution
The form of solution follows the example shown in Figure 2.10 with the retangular pulse
replaced by

(
1 + cos(2πt/T )

)
. The convolution y(t) is evaluated as

y(t) =


∫ t+T/2

−T/2

(
1 + cos(2πτ/T )

)(
1 + cos(2π(t− τ)/T )

)
dτ −T < t < 0∫ T/2

t−T/2

(
1 + cos(2πτ/T )

)(
1 + cos(2π(t− τ)/T )

)
dτ 0 < t < T

0 otherwise

which gives

y(t) =

 −(1/4π)3T sin (2πt/T ) + ((t+ T )/2) cos (2πt/T ) + t+ T −T < t < 0
(1/4π)3T sin (2πt/T )− ((t− T )/2) (cos (2πt/T ) + 2) 0 < t < T

0 otherwise

(b) Determine the power density spectrum of the signal.

Solution
The power density spectrum is the Fourier transform of the autocorrelation function. Let
y1(t) be the expression for −T < t < 0 and let y2(t) be the expression for 0 < t < T
given in the expression listed in part (a). Then setting T = 1 for simplicity gives

Y (f) =

∫ 0

−1

y1(t)e
i2πftdt+

∫ 1

0

y2(t)e
i2πftdt.

Evaluating the integrals separately and then combining gives

Y (f) =
sin2(πf)

π2f2 (f2 − 1)
2 .
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A plot of y(t) and Y (f) is given below.
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2.23 Covariance matrices
Define z as a vector of N circularly-symmetric gaussian random variables with a complex
covariancematrixV given in (2.2.30b). Define x as a vector of length 2N that consists of the
real part Re[z] and the imaginary part Im[z] in the order x = {Re[z1], ...,Re[zN ], Im[z1], ..., Im[zN ]}.
Show that the real 2N × 2N covariance matrix C given by (cf. (2.2.22))

C =
⟨
(x− ⟨x⟩) (x− ⟨x⟩)T

⟩
,

where x is a random column vector formed by pairwise terms can be expressed in block
form in terms of the N ×N complex covariance matrix V as

C =
1

2

[
ReV −ImV
ImV ReV

]
.

Solution
Let the column vector x of length 2N consist of the real part Re[z] and the imaginary
part Im[z] in the order x = {Re[z1], ...,Re[zN ], Im[z1], ..., Im[zN ]}. For example let z1 =
x1 + iy1 and z2 = x2 + iy2. Now write C as

C = ⟨xxT ⟩ =

⟨
x1
x2
y1
y2

 [ x1 x2 y1 y2
]⟩

=

[
⟨Re[z]Re[z]T ⟩ ⟨Re[z]Im[z]T ⟩
⟨Im[z]Re[z]T ⟩ ⟨Im[z]Im[z]T ⟩

]

where, for example

⟨Re[z]Re[z]T ⟩ =
⟨[

x1
x2

] [
x1 x2

]⟩
=

[
⟨x1x1⟩ ⟨x1x2⟩
⟨x2x1⟩ ⟨x2x2⟩

]
.
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The four 2×2 blocksmake up the complete 4×4matrix. Now use the following expressions,
which can be directly verified

⟨Re[z]Re[z]T ⟩ = 1

2
ReV

⟨Re[z]Im[z]T ⟩ = −1

2
ImV

⟨Im[z]Re[z]T ⟩ = 1

2
ImV

⟨Im[z]Im[z]T ⟩ = 1

2
ReV

For example,

V = ⟨zz†⟩ =
⟨[

x1 + iy1
x2 + iy2

] [
x1 − iy1 x2 − iy2

]⟩
=

[
⟨x1x1 + y1y1⟩ ⟨x1x2 + y1y2⟩ − i⟨x1y2 − x2y1⟩

⟨x1x2 + y1y2⟩+ i⟨x1y2 − x2y1⟩ ⟨x2x2 + y2y2⟩

]
.

When all of the variances are equal, ⟨x1x1 + y1y1⟩ = 2⟨x1x1⟩. This is the origin of the
factor of one half. Substituting gives the desired expression

C =
1

2

[
ReV −ImV
ImV ReV.

]
.

2.25 Diagonalizing a covariance matrix
A real covariance matrix C of a bivariate gaussian random variable is given by

C =

[
1 1
1 4

]
.

(a) Determine a new coordinate system (x′, y′) such that the joint probability density func-
tion in that coordinate system is a product distribution and express the joint probability den-
sity function in that new coordinate system as the product of two one-dimensional gaussian
probability density functions.

Solution
The inverse of C is

C−1 =
1

3

[
4 −1
−1 1

]
,
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and the determinant is equal to 3. Using these expressions, the joint distribution is

fx(x) =
1

(2π)N/2
√
detC

e−
1
2 (x−⟨x⟩)TC−1(x−⟨x⟩)

=
1

2π
√
3
e−(4x

2−2xy+y2)/6,

where x =

[
x
y

]
.

(b) Plot this probability density function using a contour plot showing the original coor-
dinates (x, y)and the transformed coordinates (x′, y′).

Solution
A plot of the distribution is below
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(c) Determine the angle θ of rotation defined as the angle between the x axis and the x′
axis.

Solution
The eigenvalues of the autocovariance matrix are

1

2

(
5±
√
13
)
,

and the eigenvectors are[
1
2

(
−3 +

√
13
)
− 4

1

]
and

[
1
2

(
−3−

√
13
)
− 4

1

]
.
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The angle of the major axis is the angle that the eigenvector that corresponds to the largest
eigenvalue makes with respect to the x-axis. This is given by

tan−1
(y
x

)
= tan−1

(
1

1
2

(
−3 +

√
13
)
− 4

)
= 73o.

. This angle is shown in the figure.

2.33 Square-law photodetector
A finite energy lightwave field U(r, t) is directly photodetected to produce an electrical
waveform r(t) given by

r(t) = RP (z, t) = R
∫
A
I(r, t)dA

= R
∫
A
|U(r, t)|2 dA,

where (1.2.4) has been used.

(a) Show that when U(r, t) is bandlimited to the frequency interval −W ≤ f ≤ W , the
electrical waveform r(t) is bandlimited to the interval −2W ≤ f ≤ 2W .

Solution
The intensity is defined as the square of the lightwave field. The Fourier transform of the
intensity is the convolution of the spectrum of the lightwave field with the complex con-
jugate of the Fourier transform of the lightwave field. Because the Fourier transform is
bandlimited to the frequency interval −W ≤ f ≤ W , r(t), the convolution of the Fourier
transform S(ω) of s(t) with the Fourier transform S∗(ω) of s∗(t). The support of this con-
volution in the frequency domain is twice that of S(ω). Therefore, the Fourier transform is
bandlimited to the interval −2W ≤ f ≤ 2W .

(b) Given the coherence timewidth τc of the lightwave signal, estimate the coherence timewidth
of the directly photodetected electrical signal.

Solution
When the coherence timewidth τc of the lightwave signal is expressed using a root-mean
squared value, the squaring operation of direct photodetection in the time domain corre-
sponds to a convolution in the frequency domain as was discussed in part (a). The mean-
squared bandwidth (or variance) then doubles (See. Problem 2.6) with the root mean-
squared bandwidth increased by

√
2. Using the approximate reciprocal relationship be-

tween the bandwidth and the coherence time, the root-mean-squared coherence timewidth
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of the directly photodetected lightwave signal is reduced by a factor of
√
2.

(c) Estimate the associated width of the lightwave signal power density spectrum and the
width of the electrical power density spectrum.

Solution
In the frequency domain, the spectrum is convolved with itself and thus the mean-squared
bandwidths add (See. Problem 2.6) with the root mean-squared bandwidth of the directly
photodetected lightwave signal increased by

√
2. The electrical autocorrelation function is

defined using a product of the directly photodetected lightwave signal and a delayed copy
of that signal. Accordingly, there is an additional factor of

√
2. Therefore, the root-mean-

squared width of the electrical autocorrelation function is approximately a factor of two less
than the root-mean-squared coherence time of the lightwave signal incident to the photode-
tector because of the two squaring operations.
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Chapter 3 - Selected Solutions
3.1 Coupling efficiency into a fiber
(a) Suppose that the radiation emitted by a lightwave source is conical, independent of ϕ,
and has a small numerical aperture. Show that the solid angleΩ subtended by the lightwave
source is given by Ω ≈ πNA2, where NA is the numerical aperture.

Solution
The solid angle Ω is defined by

Ω =

∫ 2π

0

dϕ
∫ θmax

0

sin θ dθ

=

∫ 2π

0

dϕ
∫ arcsin(NA)

0

sin θ dθ

= − 2π cos θ|arcsin(NA)0

= 2π
(
1−

√
1− NA2

)
,

where cosNA =
√
1− NA2 has been used. Expanding

√
1− NA2 ≈ 1 − 1

2NA
2 and

simplifying gives

Ω = 2π
(
1−

√
1− NA2

)
≈ 2π

[
1−

(
1− 1

2
NA2

)]
= πNA2.

(b) A source emits light with a power P and with an angular distribution I(θ) = P cos θ/π
where I(θ) is the power per solid angle (with units of Watts/sr) in the direction θ. Show
that the coupling efficiency into the fiber is equal to NA2.

Solution
The total power subtended by a cone with a solid angle Ω defined by a axial angle θ is
shown in Figure 3.5 where θ is the maximum acceptance angle into the fiber and is given
by θ=arcsin NA from (3.2.4). The total power collected by the fiber within the solid angle
Ω is

P =

∫
Ω

P (Ω)dΩ

=
P

π

∫ 2π

0

dϕ
∫ arcsin(NA)

0

sin θ cos θ dθ

= P sin2 θ
∣∣arcsin(NA)
0

= P NA2
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.

(c) The radiation pattern for many sources can be modeled as I(θ) = (n+ 1)P cosn θ/2π
where n is an integer. Find the coupling efficiency for a lightwave source of this form.
(This should reduce to part (b) for n = 1.)

Solution
The integral over the solid angle Ω becomes

P =

∫
Ω

P (Ω)dΩ

=
P (n+ 1)

2π

∫ 2π

0

dϕ
∫ arcsin(NA)

0

sin θ cosn θ dθ

= − P cosn+1 θ
∣∣arcsin(NA)
0

= P
(
1− (1− NA2)(n+1)/2

)
,

where the cos(arcsin(NA)=
√
1− NA2 has been used. The expression reduces to Part (a)

when n = 1.

3.4 TE and TM modes
(a) Starting with

∇× E = −∂B
∂t

∇×H =
∂D
∂t

∇ ·B = 0

∇ ·D = 0,

and the constitutive relationships

B = µ0H
D = ε0E +P ,

derive Maxwell’s equations restricted to a monochromatic field given by

∇× E = −iωµ0H
∇×H = iωεE.

.
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Solution
SubstitutingD = εE and B = µ0H into the two curl equations gives

∇× E = −µ0
∂H
∂t

∇×H = ε
∂E
∂t
.

Replacing ∂/∂t with the term iω, and where E → E and H → H for the monochromatic
form of the equation gives

∇× E = −iωµ0H
∇×H = iωεE.

(b) Now suppose thatE(x, y, z) = [Ex(x, y)x̂+Ey(x, y)ŷ+Ez(x, y)ẑ]e−iβz andH(x, y, z) =
[Hx(x, y)x̂+Hy(x, y)ŷ+Hz(x, y)ẑ]e−iβz . Substituting this form into the monochromatic
form of (2.3.1a) and into the monochromatic form of (2.3.1b), show that each transverse
field component (Ex, Ey,Hx andHy) can be written in terms of the axial components (Ez
andHz) and thus show that a transverse electromagnetic (TEM) mode cannot propagate in
a dielectric slab waveguide.

Solution
The curl operation in rectangular coordinates is

∇× E =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣ = −iωµ0H.

Noting that ∂/∂z → −iβ for the form of the electromagnetic fields given in the problem
we have

∂Ez
∂y

+ iβEy = −iωµ0Hx (1a)

−∂Ez
∂x
− iβEx = −iωµ0Hy (1b)

∂Ey
∂x
− ∂Ex

∂y
= −iωµ0Hz (1c)
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The second curl equation gives

∂Hz

∂y
+ iβHy = iωεEx (2a)

−∂Hz

∂x
− iβHx = iωεEy (2b)

∂Hy

∂x
− ∂Hx

∂y
= iωεEz (2c)

Solve for Hx in (1a)

Hx =
i

ωµ0

(
∂Ez
∂y

+ iβEy
)
.

Solve for Ey in (2b) and substitute into the preceding equation

Hx =
i

ωµ0

[
∂Ez
∂y

+ iβ
1

iωε

(
−∂Hz

∂x
− iβHx

)]
.

Combining terms we have

Hx =
i

k20n
2 − β2

(
ωε
∂Ez
∂y
− β ∂Hz

∂x

)
,

where k20n2 = ω2εµ0. The expression shows that the transverse component Hx can be
expressed in terms of the two axial components Ez and Hz . Each of the other transverse
components can also be expressed in terms of the axial componentsEz andHz . Therefore,
if both Ez and Hz and zero, then all of the components are zero. This means that a TEM
mode, for which Ez = 0 and Hz = 0 cannot be supported in a dielectric waveguide.

3.5 Boundary conditions for TE and TM modes
(a) Specialize Maxwell’s equations to a monochromatic field propagating in the z direction
when all field components have a dependence of the form ei(ωt−βz).

Solution

The governing equations for monochromatic fields are

∇× E = −iωµ0H

∇×H = iωϵE.
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Combining these equations produces the Helmholtz equation

∇2E+ k2E = 0.

Given that both fields are of the form e−iβz , ∇E = ∇tE − β2E where the t refers to the
transverse components. The resulting Helmholtz equation is then

∇2
tE+ k2tE = 0,

where k2t = k2 − β2.

(b) Now suppose that E = Ey(x, z)ŷ, as was the case for the slab waveguide. Determine
the relationship between Ey and Hz , and thus show that Hz is proportional to dEy/dx.

Solution

Using∇× E = −iωµ0H, the governing equation relatingHzand Ey is

dEy
dx
− dEx

dy
= −iωµ0Hz. (3)

Therefore, when Ex = 0 as in a slab waveguide,Hz ∝ dEy/dx.

(c) Repeat part (b) ifH = Hy(x, z)ŷ and show thatEz is proportional to (n2/n1)2 dHy/dx.

Solution

Using ∇×H = iωϵE, and setting Hx = 0 as in a slab waveguide, the governing equation
relating Ezand Hyis

dHy

dx
= iωϵiEz, (4)

where ϵ1 = ϵ0n
2
1 in the core and ϵ2 = ϵ0n

2
2 in the cladding. Because the index is differ-

ent in the two regions, in order for Ez to be continuous across the boundary requires that
Ez ∝ (n2/n1)

2 dHy/dx.

(d) Explain why there is a difference in the boundary conditions between the TE and TM
modes for dielectric materials.

Solution
For a TE mode given in (3) the fields are scaled by µ0, which is a constant that does not
change between the waveguiding regions. For the TM mode given in (4), the fields are re-
lated by ϵi, which does change between the waveguiding regions because the index changes.
This produces the additional term for the TM mode.
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3.6 Derivation of the Bessel differential equation
Starting with the form of the Helmholtz equation given in (3.3.19) in cylindrical coordinates
and trying a solution of the form Ez(r, ψ, z) = f(r) exp [−i(νψ + βz)], use the separation
of variables method to derive the Bessel differential equation (cf. (3.3.20)).

Solution

The Laplacian in cylindrical coordinates is

∇2Ez =
1

r

∂

∂r

(
r
∂Ez
∂r

)
+

1

r2
∂2Ez
∂ψ2

+
∂2Ez
∂z2

.

Now write Ez(r, ψ, z) as a product of three functions

Ez(r, ψ, z) = f(r)Ψ(ψ)Z(z),

where Ψ(ψ)Z(z) = e−i(νψ+βz). Using the form of the Laplacian and Ez(r, ψ, z) =
f(r)e−i(νψ+βz) substitute this expression into the Helmholtz equation given by

∇2Ez(r, ψ, z) + n2k20Ez(r, ψ, z) = 0,

to yield

d2f(r)
dr2

+
1

r

df(r)
dr

+

(
n2k20 − β2 − ν2

r2

)
f(r) = 0,

which is (3.3.20).

3.7 Normalized frequency
A fiber has the following specifications: index of refraction n = 1.46, normalized index
difference∆ = 0.0036, and core diameter d = 8.3 microns.

(a) Derive the expression for the normalized frequency V in terms of:

(i) The numerical aperture.
(ii) The index difference.

Solution
(i) The expression for the normalized frequency V as a function of the NA is (cf. (3.3.12a))

V = a
2π

λc

√
(n21 − n22) = a

2π

λc
NA.
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(ii) Rewriting the NA in terms of the index difference using (3.2.6) gives (cf. (3.3.12b))

V = a
2π

λc
NA = a

2π

λc
n1
√
2∆,

which is (3.3.12b) with 2π/λc = k0.

(b) For a fiber that has a core index of 1.5 and ∆ = 0.1%, what is the largest core that
can support single-mode operation at a wavelength of 1.3µm?

Solution
For single mode operation, Vmax=2.4. Solving for the radius a from the expression derived
in part (a) yields

a = Vmax
λc

2πn1

√
2∆

= 2.4
1.3

2π × 1.5
√
2× 10−3

= 7.4microns

3.11 Linearly-polarized modes of a fiber (requires numerics.)
The normalized frequency V of a step-index fiber is 4.

(a) Using the mode characteristics of a linearly-polarized mode given in Figure 3.15, deter-
mine whichmodes are guided in the fiber, and estimate the normalized propagation constant
b (cf. (4.2.1)) for each guided mode.

Solution
Examining Figure 3.15 for V = 4, there are four modes that are guided. LP01, LP11, LP21
LP02. Using (4.2.1), which relates pa, qa and V gives:

For the LP01 mode, b= 0.77
For the LP11 mode, b= 0.44
For the LP21 mode, b= 0.047
For the LP02 mode, b= 0.00446

(b) For the two modes with the largest values of b, use a root-finding algorithm to nu-
merically find the values of pa, qa, and b.

Solution
LP01 mode, b=0.77 (0.7727), qa = 3.51, pa = 1.9.
LP11 mode, b = 0.44 (0.440), qa = 2.65, pa = 2.99.
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As can be seen, for b −→ 1, the mode is well guided, qa −→ V and pa −→ 0. For modes
near cutoff, b −→ 0, qa −→ 0, and pa −→ V .

(c) Using (3.3.45), plot the radial dependence of the intensity of the field for the mode
closest to cutoff.

Solution
For V = 4, the mode closest to cut-off is the LP02 mode. The values for this mode are: b =
0.004459, qa = 0.267, and pa=3.991, which is nearly equal to V . Using (3.3.45), the form
for the radial dependence is

Jν(pr)

Jν(pa)
for r ≤ a Kν(qr)

Kν(qa)
for r ≥ a.

A plot of the intensity is shown below.
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3.18 Modes of an infinite parabolic-profile graded-index fiber
Let the inhomogeneous index of refraction profile for a graded-index fiber be given as

n2(x, y) = n20

[
1− 2∆

(
x2 + y2

a2

)]
,

where a is the core radius.

(a) Assuming a solution of the form

U(r) = U(x, y, z) = AU(x, y)e−iβz,

where A is a constant, substitute this form of solution and the index of refraction profile
given above into the scalar Helmholtz equation

∇2U(x, y, z) + n(r)2k20U(x, y, z) = 0,
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and show that

∂2U(r)
∂x2

+
∂2U(r)
∂y2

+

[
k20n

2
0

(
1− 2∆

(
x2

a2
+
y2

a2

))
− β2

]
U(r) = 0.

Solution
Using ∂2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 and ∂2/∂z2 → −β2 gives the desired equation.

(b) Using the separation of variables method with U(x, y) = f(x)h(y) show that

1

f(x)

d2f(x)
dx2

−
(
2k20n

2
0∆

a2

)
x2 = −K1

1

h(y)

d2h(y)
dy2

−
(
2k20n

2
0∆

a2

)
y2 = −K2,

whereK1 andK2 are two separation constants.

Solution
Writing U(x, y) = f(x)h(y), using ∂U(x, y)/∂x = h(y)df(x)/dx, ∂U(x, y)/∂y =
f(x)dh(y)/dy and dividing through by f(x)h(y) gives the desired equations.

(c) Show that the two separation constants satisfy

β2 = k20n
2
0 −K1 −K2.

Solution
See the solution to part (b).
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Chapter 4 Selected Solutions
4.1 Transit time delay using ray optics and the equivalent frequency transfer
function
The maximum delay spread in ray optics is the difference between the delay of the ray that
takes the longest time and the delay of the ray that takes the shortest time to travel the same
distance in a fiber. A distribution of delays results from a distribution of rays coupled into
the fiber at various angles. Suppose that the propagation times associated with this distri-
bution of rays is uniformly distributed between the limiting values of τ1 and τ2, where τ2
is larger than τ1.

(a) Determine the functional form of the distribution of the ray delays.

Solution
The distribution of the delays is uniform.

(b) Determine the root-mean-squared delay spread.

Solution
The root-mean squared width of this distribution is

σ2
t =

∫∞
−∞(t− t)2g(t)dt∫∞

−∞ g(t)dt
where t =

∫∞
−∞ tg(t)dt∫∞
−∞ g(t)dt

.

Because the pulse has unit height and a width ofW , the area isW . Because the function is
even, t = 0 (the integral of an odd function × an even function over a symmetric interval
is zero). Therefore,

σ2
t =

∫∞
−∞(t− t)2g(t)dt∫∞

−∞ g(t)dt

=
1

W

∫ ∞

−∞
t2g(t)dt

=
1

W

∫ W
2

−W
2

t2dt =
W 2

12

→ σt =
W√
12
.

(c) Now suppose that the distribution of delay times determined in part (a) is used to model
the impulse response h(t) for the fiber. Determine the frequency response H(ω) in terms
of the differential delay τ2 − τ1.
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Solution
The transfer function H(f) is the Fourier transform of the impulse response h(t) which is
the Fourier transform of the rect function so thatH(f) is equal to sincf .

(d) A lightwave source is characterized by a numerical aperture NAs that is smaller than
the numerical aperture NA of the fiber. Two rays coupled by this source into the fiber are
to be compared. One ray along the axis and one ray defined by NAs where NAs is much
smaller than one. Determine the ratio of the differential time delay using this lightwave
source relative to the differential time delay using a different lightwave source with a nu-
merical aperture equal to the numerical aperture of the fiber.

Solution
Solving for∆ in terms of the NA gives

∆ =
1

2

NA2

n21
.

Substituting∆ into the expression for the transit time spread, the differential time delay can
be written as

τ = τ2 − τ1 =
Ln1
c

∆ =
1

2

NA2

n1

L

c
.

In the same way, the transit time spread τs for the second lightwave source can be written
as

τs = τ2 − τ1 =
Ln1
c

∆s

where

∆s
.
=

1

2

NA2
s

n21
.

The ratio of the transit times is

τ

τs
=

1

2

NA2

n21

/
1

2

NA2
s

n21
=

NA2

NA2
s

.

The transit time spread decreases as the ratio of the squares of the numerical apertures. This
statement emphasizes that for a fiber that can support multiple rays (or modes), the transit
time spread and the associated bandwidth depends on the distribution of the launched rays
as measured by the source NAs. The dependence of the fiber response as measured by
τ on the launch conditions, as measured by NAs can lead to a launch-dependent channel
response. This dependence must be controlled for reliable communications.
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4.5 Mode-group density
The mode-group density in an optical fiber, defined as ∆β .

= dβ/dg, represents the close-
ness of the mode spacing with respect to the mode-group index g.

(a) Starting with the approximate expression for the dispersion relationship given in (4.4.4),
derive∆β as α approaches infinity, which corresponds to a step-index fiber.

Solution
When∆ is much less than one, the expression for β(ω, g) given in (4.4.4) reduces to

β(ω, g) ≈ n0k0

[
1−∆

(
g

G

) 2α
α+2

]
.

As α goes to infinity, this expression simplifies to

β(ω, g) ≈ n0k0

[
1−∆

(
g

G

)2
]
.

The derivative of this expression with respect to the mode-group index g is

∆β ≈ −2∆n0k0
(
g

G

)
.

showing that∆β is linear in the mode-group index g.
(b) What is the corresponding density with respect to the mode indexm?

Solution
There are approximately 2g modes in most mode groups. Therefore the mode density is
twice the mode group density.

(c) Repeat for α = 2. Compare the mode-group density of a step-index fiber to the mode
density of a parabolic power-law graded-index fiber. Comment on the result.

Solution
For α = 2, the exponent is equal to one and

β(ω, g) ≈ n0k0

[
1−∆

(
g

G

)]
.

The derivative of this expression is

∆β ≈ −
(
∆n0k0
G

)
,
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showing that to the first order of approximation,∆β is a constant independent of the mode
group number g so that every mode group travels with approximately the same group ve-
locity.

4.6 Index of refraction, group index, and material dispersion coefficient for
silica glass
An empirical expression called the Sellmeier formula is often used to model the index n(λ)
of glass as a function of wavelength. One form of the Sellmeier formula for silica glass is

n(λ) =

√
1 +

1.0955× 1018λ2

1018λ2 − 1002
+

0.9× 1018λ2

1018λ2 − 90002
.

(a) Plot the material dispersionDλ over the range of 500-1500 nm. As a check, Figure 4.6
used the same formula.

Solution
The expressions for the group index N(λ) is given in (4.3.7) and is repeated here

N(λ) = n(λ)− λdn(λ)
dλ

,

where n(λ) andN(λ) are understood to mean n(2πc0/λ) andN(2πc0/λ). The expression
for the dispersion coefficientDλ is given in (4.3.8) and is repeated here

Dλ =
1

c0

dN(λ)

dλ
,

or

Dλ =
1

c0

d
dλ

(
n(λ)− λdn(λ)

dλ

)
= − λ

c0

d2n(λ)
dλ2

. (5)

Using the expression for the index of refraction given in the problem, a plot of the index
n(λ) and the group index N(λ) is shown on the left side of Figure 4.6, with the group in-
dex being the curve with the minimum. The dispersion is shown on the right side of Figure
4.6, where the units are ps/(nm · km). The calculated group index at 1310 nm is 1.4613,
as compared to a typical value of the group index from a data sheet of 1.4675 . This is a
0.42% difference.

(b) Determine the material dispersion minimum and the dispersion slope at the minimum.
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Express the slope in units of ps/(nm2 · km).

Solution
Solving for the zero crossing of the dispersion coefficient gives a minimum value of 1275
nm. The slope at the dispersion minimum is 0.125 ps/(nm2 · km).

(c) What is the maximum spectral width of a pulse at 1300 nm that will limit the mate-
rial dispersion to 50 ps for a fiber with length 75 km and a material dispersion Dλ = 1.2
ps/(nm · km)?

Solution
Ignoring waveguide dispersion, rewrite the root-mean squared spectral width σλ (4.5.10)
as

σλ =
σintra
LDλ

.

Substituting the numerical values gives

σλ =
50 ps

75km× 1.2ps/(nm · km)
= 0.6 nm.

4.7 Fiber modes and dispersion
A step-index fiber with a numerical aperture equal to 0.15 and a core index n1 ≈ N1 = 1.5
operates at 850 nm and supports two modes with normalized propagation constants b = 0.4
and b = 0.75.

(a) What is the core diameter of the fiber?

Solution

Referring to the right side of Figure 4.3 with b = 0.75 for the LP01 mode and b = 0.4
for the LP11 mode, the approximate value of V is 3.8. Solving for the radius a gives

a =
V λ0
2πNA

=
3.8(0.85)

2π(0.15)
= 3.43 µm.

(b) Using the figure shown below, determine the distance into the fiber at which the modal
delay between the two modes is 2.5 ns.
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Solution
Referring to the figure, d(V b)/dV is estimated to be 1.13 at V = 3.8 for the LP01 mode
and 1.25 for the LP11mode. Using (4.4.10), the differential delay δτ/L per kilometer is

δ
τ

L
=

n1∆

c0

(
d(V b01)

dV
− d(V b11)

dV

)
= 1012

1.45(0.0036)

3× 108
(1.25− 1.13) ≈ 2 ns/km

where the scaling factor of 1012 converts s/m into ns/km. To achieve a total delay of 25 ns
requires about 12.5 km of fiber.

4.9 Single-mode fiber dispersion
A lightwave system of interest operates at 1550 nm using a single-mode step-index fiber.
The transmitted lightwave signal has a spectral width of σλ = 0.05 nm and transmits a pulse
with a root-mean-squared width of 100 ps. This pulse propagates 50 km in the fiber. The
total intramodal dispersion coefficientD in the fiber in units of ps/(nm ·km) is modeled as

D =
S0

4

(
λ− λ40

λ3

)
,

where λ0 = 1310 nm is the zero dispersion wavelength and the dispersion slope parameter
S0 has units of ps/(nm2 · km).

(a) Determine the dispersion slope S0 parameter required to limit the root-mean-squared
width of the wavelength-dependent delay distribution to 25 ps.

Solution
The total spread σintra of the pulse caused by intramodal dispersion is given by (4.5.7)

σintra = Lσλ|D|,
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where |D| .=
√
D2 is the absolute value of the total group-velocity dispersion coefficient

D defined in (4.4.14).
Substituting the numerical values gives

25 = 50× 0.05× S0

4

(
1550− 13104

15503

)
.

Solving, S0 = 0.0258 ps/(nm2·km).

(b) If S0 = 0, and the system operates at λ0, is there dispersion? Provide quantitative
reasoning for your answer.

Solution
There is still dispersion from the next term in the Taylor series expansion of β(ω) given in
(4.3.1).

4.10 Dispersion
(a) Using Figure 3.15, determine the number of modes that propagate at 900 nm if the fiber
has a diameter of 7 microns, a numerical aperture of 0.15, and an index n=1.45.

Solution
The normalized frequency V is given by

0.15

(
7

2

)
2π

0.9
= 3.67. (6)

The value for the normalized index difference∆ is given by (3.2.6) with∆ = (NA/n)2/2 =
0.005. Examining Figure 3.15, two modes propagate.

(b) Determine the intermodal dispersion σinter/L per unit length in units of ns/km if the
lowest-order mode contains 80% of the power and the rest of the power is distributed uni-
formly among all modes that propagate. Use the figure provided in Problem 7 to determine
the delay values.

Solution
There are two modes. The intermodal dispersion is given in (4.4.10) and repeated here

τm ≈ L

c0

(
N1 + n1∆

d(V bm)

dV

)
,

Reading off curve provided in Problem 7, d(V b)/dV for the LP01 mode is estimated as
1.13, whereas the value for the LP11 mode is estimated as 1.25. The group index at 900 nm
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is 1.465 from Figure 4.6. Using n1 ≈ N1, gives

⟨τ2m⟩ =

(
Ln1
c0

)2 (
0.8(1 + 1.13(0.005))2 + 0.2(1 + 1.25(0.005))

)
and

⟨τm⟩2 =

(
Ln1
c0

)2

(0.8(1 + 1.13(0.005) + 0.2(1 + 1.25(0.005))
2

so that

σinter =
(
⟨τ2m⟩ − ⟨τm⟩2

)1/2
= 1.17 ns/km.

where the factor of 1012 converts s/m into ns/km.

(c) Using Figure 4.6 for the group index, determine the material dispersion coefficient Dλ

at 900 nm when the power-density spectrum has a spectral width of 1 GHz.

Solution
The material dispersion coefficient is given in (4.3.8) and is repeated in (5)). Using the
curve on the right side of Figure 4.6, this is about Dλ ≈ −83 ps/(nm · km) at 900 nm. To
determine the dispersion, we convert the spectral width in frequency to a spectral width of
1 GHz into a wavelength spectral width σλ to give

σλ =
λ2∆f

c
=

(
0.9× 10−6

)2
109

3× 108
= 0.0027 nm. (7)

The dispersion in ps/km is then σλDλ =0.0027 nm×−83 ps/(nm · km) = −0.224ps/km.

(d) Determine the waveguide dispersion term Dguide for the two guided modes with the
largest values of b.

Solution
Using Figure 4.9, the normalized waveguide dispersion term for the LP01mode is estimated
as −0.1 and that for the LP11 mode is estimated as 0.15. The waveguide dispersion given
in (4.4.13) is then

σwave = −n1∆
cλ

V
d2(V b)

dV 2

=
−1.45× 0.005

3× 108 × 0.9× 10−6
× (−0.1) = 2.68 ps/(nm · km).
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For the LP11mode, the term is −4 ps/(nm · km).

(e) Determine the intramodal dispersion coefficientD = |Dλ +Dguide| for the two guided
modes with the largest values of b.

Solution
The total dispersion is the sum and is dominated by the material dispersion. For the LP01
mode, we have

D = σλ |Dwav +Dλ|
= 0.0027 |−83 + 2.68| = 0.217 ps/km.

For the LP11mode, the total dispersion is 0.235 ps/km.

4.13 Output pulse for a gaussian power density spectrum
Let the normalized power density spectrum of a modulated lightwave signal be

Sλ(λ) =
1√
2πσλ

e−(λ−λc)
2/2σ2

λ ,

as a function of the wavelength λ where the carrier wavelength is λc = 1350 nm. The fiber
has a core diameter of 9 microns and a numerical aperture of 0.15. The transmitted pulse is
a square pulse of duration T = 200 ps over a fiber span of length 75 km with an intramodal
dispersion coefficient of D = 8 ps/(nm · km). Using Figure 4.6 for the index (or group
index) and the figure provided in Problem 7 for the delay terms, determine:

(a) The normalized frequency V of the fiber.

Solution
Using (3.3.12) we obtain

V = NA
2πa

λc
= 0.15

9π

1.35
= π. (8)

(b) The value of sλ = dτ/dλ|λ=λc .

Solution
Using (4.4.5) gives the expression for the intermodal dispersion σintra = σλdτ/dλ. Com-
bining this expression with σintra = LσλD (cf. (4.5.7)) gives

sλ = LD,

44



where D is the total dispersion given for this problem as D = 8 ps/(nm · km). This value
includes both waveguide and material dispersion. Multiplying by the distance gives

sλ = 75× 8 = 600 ps/nm. (9)

(c) The total root-mean-squared width σintra of the delay spread distribution over the span
length L expressed in picoseconds (cf. (4.5.7)).

Solution
The total root-mean-squared width σout at the output of the fiber span is estimated us-
ing the mean-squared timewidth of the input square pulse, which is given by T 2/12 (see
Problem, 4.1). The mean-squared spread of the fiber impulse response is estimated as
σ2
fiber = (σλDL)

2. Summing the mean-squared values and taking the square root provides
an estimate of σout given by

σout =
√
σ2
in + σ2

fiber

=

√
T 2

12
+ (σλDL)2.

As a numerical example, when σλ= 0.25 nm, σout is approximately 160 ps and is dominated
by the spreading caused by the dispersion in the fiber.

4.15 Optimal value for index profile
Starting with

∆
α− 2− 2y

α+ 2
+

∆2

2

3α− 2− 4y

α+ 2
= 0,

show that if α > 1 and both ∆ and y are small, then the optimal power-law index profile
αopt is given by

αopt = 2(1 + y −∆).

Solution
Solving for α in the preceding equation we have

αopt =
2(2 + 2y +∆+ 2y∆)

2 + 3∆
.
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Expanding this expression in a power series gives

αopt ≈ (2y + 2) + ∆(−y − 2) +O
(
∆2
)
.

Because both y and∆ are small, the term y∆ can be neglected giving

αopt ≈ 2(1 + y −∆).

4.16 Polarization-mode dispersion vector
(a) Using (AB)† = B†A†, and differentiating DD† = I with respect to ω, show that the
transformation iDωD† is hermitian.

Solution
Starting with DD† = I and noting that the time derivative will produce iω, we have

iωDωD† + iωDD†
ω = 0

or

iωDωD† = −iωDD†
ω

Using (AB)† = B†A† the left side is the conjugate transpose of the right side and thus
iωDωD† is Hermitian.

(b) Using the differential relationship D(ω + dω) = D + dωDω and |detD| = 1 for a
unitary matrix, show that trace ofDωD† is equal to zero, which implies that the eigenvalues
of D sum to zero.

Solution
Starting with D(ω + dω) = D+ dωDω factor out D on the right side to yield

D(ω + dω) =
(
I+ dωDωD†)D

where D−1 = D† because D is unitary. The determinant of the left side equals one and the
determinant of the first time on the right side equals one. Therefore the sides are equal if
and only if the trace of DωD† is zero, which is evident from (4.6.10).

4.19 Dispersion relationship from ray optics
Modes in a slab waveguide can be intuitively reconciled with ray theory by letting the ray
define the direction of a plane wave propagating in the slab waveguide. In this reconcil-
iation, a mode is formed by the interference with itself of a propagating plane wave that
“zig-zags” between the core/cladding interfaces. The direction of the plane wave is shown
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as the line in Figure 3.10. This arrow defines a ray associated with the plane wave. The z
components of the two interfering plane waves produce a traveling wave while the trans-
verse components add to produce a standing wave.

(a) Using kx = p and kz = β rewrite

p2 + β2 = (n1k0)
2

in terms of the components kx and kz of the wavevector k in the slab waveguide.

Solution
Rewriting this equation, we have

k2x + k2z = (n1k)
2,

where kx = p and kz = β are now written as the components of the wavevector of a plane
wave.

(b) Derive an expression for the angle θ that the plane wave makes with respect to the
normal of the core/cladding interface in terms of kx, n, and k0.

Solution
The angle θ the plane wave makes with the core/cladding interface is related to the x-
component of the wavevector by cos θ = kx/(n1k).

(c) Consider a slab waveguide that supports a plane wave with a polarization that is trans-
verse to the direction of propagation. Upon reflection from the core/cladding interface, a
consequence of Maxwell’s equations is that this plane wave experiences a phase shift ϕTE
given by

ϕTE = −2 arctan
(√

sin2 θi − (n2/n1)
2
/
cos θi

)
,

where θ is the angle from the normal to the core/cladding interface. Using this expression,
determine the total phase shift the plane wave experiences after two reflections consisting
of one reflection from each boundary of the slab waveguide.

Solution
After a reflection from each boundary, the plane wave experiences a phase shift of 4akx
along the propagation direction z. Each reflection adds an additional phase shift ϕTE given
above. For a mode to be generated, the total phase shift must bem2π wherem is an integer
so that the field adds constructively with itself after the two reflections. This condition is
given as

4akx + 2ϕTE = m2π. (10)
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(d) A guided mode in the slab waveguide is generated whenever the total phase shift is
m2π where m is an integer so that the field adds constructively with itself after the two
reflections. Derive this condition and show that√

(1− cos2 θ)− (n2/n1)2
/
cos θ = tan (n1k0a cos θ −mπ/2) .

Solution
Substituting the phase shift ϕTE from the reflection at the boundary into (10) along with
kx = n1k cos θ and taking the tangent of each side gives√

(1− cos2 θ)−
(
n2
n1

)2/
cos θ = tan

(
n1ka cos θ −

mπ

2

)
. (11)

Values of θ that satisfy this equation are the allowed angles for the rays that produce a
self-consistent phase after two reflections. Each angle defines a mode with a corresponding
propagation constant β given by (3.3.10a).

4.20 Bandwidth-dependent launch conditions
Consider a uniform mode distribution in which the power is uniformly distributed among
all the modes in a fiber. The fraction of the power in each mode is Fm = 1/M , whereM
is the number of modes. The expressions for the group-delay terms become

⟨τ⟩ =
1

M

M∑
m=1

τm ⟨τ2⟩ =
1

M

M∑
m=1

τ2m,

where M is the number of modes. Suppose that a fiber has the following parameters:
V = 5, n1 = 1.46,∆ = 0.0036, and N1 = 1.48.

(a) Determine the delay spread σinter for the case of a uniform mode distribution across
the LP01, LP11 modes. Use the figure provided in Problem 7 to determine τm for each
mode.

Solution
The expression for the delay is given in (4.4.10)

τm =
L

c0

[
n1∆

d(V bm)

dV
+N1

]
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Using the figure provided in Problem 7, the values of d(V bm)/dV for each of the three
modes and the delay are

d(V bm)/dV for LP01 = 1.1 τ = 4.953 µs/km
d(V bm)/dV for LP11 = 1.24 τ = 4.955 µs/km
d(V bm)/dV for LP21 = 1.35 τ = 4.957 µs/km

The root-mean squared spread for the uniform mode launch with the power in each mode
being 1/3 is

σinter =
(
⟨τ2m⟩ − ⟨τm⟩2

)1/2
=

 1

M

M∑
m=1

τ2m −

(
1

M

M∑
m=1

τm

)2
1/2

=

[
1

3
(4.9532 + 4.9552 + 4.9572)− [(4.953 + 4.955 + 4.957) /3]2

]1/2
σinter = 2.66 ps/km

(b) Determine the delay spread σinter when the power in the LP11 mode is half the power in
the LP01 mode and the power in the LP21 mode is half the power in the LP11 mode.

Solution
The root-mean squared spread for the nonuniform mode launch with powers of 4/7, 2/7 and
1/7 in each mode is

σinter =
(
⟨τ2m⟩ − ⟨τm⟩2

)1/2
=

 1

M

M∑
m=1

τ2m −

(
1

M

M∑
m=1

τm

)2
1/2

=

[
4

7
4.9532 +

3

7
4.9552 +

1

7
4.9572 −

(
4

7
4.953 +

3

7
4.955 +

1

7
4.957

)2
]1/2

σinter = 2.12 ps/km

(c) Which launch condition produces the smallest value of σinter? Why?

Solution
The non-uniform launch produces the least spread because there is a smaller proportion of
the power in the higher-order modes.
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4.23 Wavelength-dependent group delay
Refer to the figure Figure 4.9, which shows the group delay factor for two linearly-polarized
modes.

(a) Find the value of the normalized frequency V for which the group delay term for the
LP01 mode is equal to the group delay term for the LP11 mode.

Solution
Examining the figure, the value of the normalized frequency V is estimated to be 3.

(b) For this value of V , is the group velocity dispersion coefficient the same for each mode?
Explain.

Solution
No. The slope at this point, which is proportional to the group-velocity dispersion coeffi-
cient (cf. (4.3.2c)) is not the same for each mode.

(c) Over the range of values shown in Figure 4.9, is there a value of V for which the group
velocity dispersion of the LP01 mode is equal to the group velocity dispersion of the LP11
mode?

Solution
This is equivalent to asking if slope is the same for a given value of the normalized fre-
quency V . For the range of values of V shown in Figure 4.9, there is no value of V for
which the slopes are the same. Therefore, there is no value of V for which the group veloc-
ity dispersion of the LP01 mode is equal to the group velocity dispersion of the LP11 mode.
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Chapter 5 Selected Solutions
5.1 Nonlinear terms
(a) Expand the cube

(Aj cos(ωjt) +Ak cos(ωkt) +Aℓ cos(ωℓt))3

into a summation of ten product terms, one of which is

6AjAkAℓ cos(ωjt) cos(ωkt) cos(ωℓt).

Solution
The 10 terms of the expansion are

6AjAkAℓ cos (ωjt) cos (ωkt) cos (ωℓt) + 3A2
jAk cos

2 (ωjt) cos (ωkt)

+3AjA
2
k cos (ωjt) cos

2 (ωkt) + 3A2
jAℓ cos

2 (ωjt) cos (ωℓt)

+3AjA
2
ℓ cos (ωjt) cos

2 (ωℓt) +A3
j cos

3 (ωjt) + 3AkA
2
ℓ cos (ωkt) cos

2 (ωℓt)

+3A2
kAℓ cos

2 (ωkt) cos (ωℓt) +A3
k cos

3 (ωkt) +A3
ℓ cos

3 (ωℓt) .

The first term is the desired term.

(b) Using sum and difference cosine formulas, expand the product term cos(ωjt) cos(ωkt) cos(ωℓt)
and show that it can be written as

cos(ωjt) cos(ωkt) cos(ωℓt) = 1
4 cos

(
(ωj + ωk + ωℓ) t

)
+ 1

4 cos
(
(ωj − ωk + ωℓ) t

)
+ 1

4 cos
(
(ωj + ωk − ωℓ) t

)
+ 1

4 cos
(
(ωj − ωk − ωℓ) t

)

Solution
Writing the cosines in terms of exponentials gives

1

8

(
eiωjt + e−iωjt

) (
eiωkt + e−iωkt

) (
eiωℓt + e−iωℓt

)
.
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Expanding and collecting the terms gives

1

8

[
(ei(ωj+ωk+ωℓ)t + e−i(ωj+ωk+ωℓ)t) + (ei(ωj−ωk+ωℓ)t + e−i(ωj−ωk+ωℓ)t)

+(ei(ωj+ωk−ωℓ)t + e−i(ωj+ωk−ωℓ)t) + (ei(ωj−ωk−ωℓ)t + e−i(ωj−ωk−ωℓ)t)

]
Each of the four terms inside the square brackets is of the form 2 cos(·) leading to the de-
sired expression.

(c)What proportion of the total power on the left side is contained in the term cos
(
(ωj − ωk − ωℓ) t

)
on the right side?

Solution
The term cos2

(
(ωj − ωk − ωℓ) t

)
contains (1/4)2 = 1/16 of the total power. This can be

verified by squaring both sides, expanding cosine squared as cos2(ωt) = (1 + cos 2ω)/2
and expanding the cosine in terms of exponentials.

5.2 Effective Area
(a) The commercial single-mode fiber known as Corning SMF-28 has a core diameter
of d = 8.3µm. At an operating wavelength of 1550 nm, the fiber specifications are
∆ = 0.0036, n ≈ 1.47 and V ≈ 2.09. Using these values, determine the linearly po-
larized mode parameters p and q (cf. (3.3.27)).

Solution
Using an initial guess of b = 0.4, a root finding algorithm yields b = 0.44, pa = 1.56 and
qa = 1.39.

(b) Calculate Aeff for the Corning SMF-28 fiber at λ = 1.55µm. Compare the calculated
value with the measured value of 80 µm2. (This requires numerical integration of (5.3.13).

Solution
The effective area is given by

Aeff = 2π

[∫∞
0
|U(r)|2r dr

]2∫∞
0
|U(r)|4r dr

= 2πa2

[
1

J2
0 (pa)

∫ 1

0
J0(paR)

2R dR+ 1
K2

0 (qa)

∫∞
1
K0(qaR)

2R dR
]2

1
J4
0 (pa)

∫ 1

0
J0(paR)4R dR+ 1

K4
0 (qa)

∫∞
1
K0(qaR)4R dR

= 2π(d/2)2(0.703) = 76microns2.
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The calculated effective area is slightly less than the measured effective area.

5.5 Phase matching
(a) Starting with

a(z, t) =
M∑

m=−M

am(z, t) exp
(
i
[
m∆ω (t− z/vg)− (m∆ω)

2
β2z/2

])
,

write out the terms forM = 1. For example, the term a1 is

a1 = a1(z, t) exp
(
i
[
∆ω (t− z/vg)−∆ω2β2z/2

])
.

Solution
The other two terms forM = 1 are a0 = a0(z, t) and a−1 = exp

(
i
[
−∆ω (t− z/vg)−∆ω2β2z/2

])
.

(b) Form the product (a∗−1+ a
∗
0 + a

∗
1)(a−1+ a0+ a1)

2, then determine the phase-matched
terms for which the frequencies sum to zero.

Solution
The total number of terms is given by

2a0a−1a
∗
1(1)e

−2i∆ωτ + 2a0a1a
∗
−1e

2i∆ωτ + a2−1a
∗
−1e

−i∆ωτ− 1
2 iβ2∆ω

2z

+a2−1a0e
−2i∆ωτ−iβ2∆ω

2z + a2−1a
∗
1e

−3i∆ωτ− 1
2 iβ2∆ω

2z + 2a1a−1a
∗
−1e

i∆ωτ− 1
2 iβ2∆ω

2z

+2a0a−1a0e
−i∆ωτ− 1

2 iβ2∆ω
2z + 2a1a−1a

∗
1e

−i∆ωτ− 1
2 iβ2∆ω

2z + a20a
∗
−1e

i∆ωτ+ 1
2 iβ2∆ω

2z

+a21a
∗
−1e

3i∆ωτ− 1
2 iβ2∆ω

2z + a21a
∗
0e

2i∆ωτ−iβ2∆ω
2z + 2a0a1a

∗
0e

i∆ωτ− 1
2 iβ2∆ω

2z

+a20a
∗
1e

1
2 iβ2∆ω

2z−i∆ωτ + a21a
∗
1e

i∆ωτ− 1
2 iβ2∆ω

2z

+2a1a−1a
∗
0e

−iβ2∆ω
2z + 2a0a−1a

∗
−1 + a20a

∗
0 + 2a0a1a

∗
1

The last four terms on the last line are the phase-matched terms because they do not have
terms that include multiples of the temporal phase mismatch term∆ωτ .

(c) Collect the phase matched terms and show that

a∗a2 ≈
(
|a0|2 + 2 |a1|2 + 2 |a−1|2

)
a0 + 2a1a−1a

∗
0e

−iβ2∆ω
2z,

as appears in (5.5.6).

Solution
Only the last four terms of the expansion are phase matched. Factoring out a0 from the first
three terms leads to the desired expression.
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5.6 Mean-squared output width for a weakly dispersive nonlinear fiber
A generalized gaussian pulse is defined as

G(t) =
(
e−(t2/2σ2)m

)n
,

wherem and n are parameters. The area under this pulse can be expressed as and is∫ ∞

−∞
G(t)dt = 23/2σ n−1/2m Γ

(
1 + (2m)−1

)
, (12)

where Γ(x) is the gamma function defined as Γ(k) .=
∫∞
0
xk−1e−xdx (cf. (2.2.45)).

(a) Let n = 1. For pulse G(t), determine the effective power

Peff(m) =

∫∞
−∞ |G(τ)|

4 dτ∫∞
−∞ |G(τ)|

2 dτ
,

which was defined in (5.4.16). Form = 1, this term reduces to (5.4.19).

Solution
For n = 1, the pulse is given by

s(t) = e−(t2/2σ2)m .

Then

Sp(m) =

∫∞
−∞

∣∣∣e−(t2/2σ2)m
∣∣∣4 dτ∫∞

−∞

∣∣e−(t2/2σ2)m
∣∣2 dτ =

∫∞
−∞G(t,m, 4)∫∞
−∞G(t,m, 2)

,

where both the numerator and the denominator are in the form of G(t) with n = 4 for the
numerator and n = 2 for the denominator. Therefore

Sp(m) =
23/2σ 4−1/2m Γ

(
1 + (2m)−1

)
23/2σ 2−1/2m Γ

(
1 + (2m)−1

) = 2−1/2m.

Form = 1, the factor is 1/
√
2 and agrees with (5.4.19).

(b) On the same figure, plot three generalized gaussian pulses for 1 ≤ m ≤ 3 using n = 1
and σ = 1. Calculate the scaling factor Peff(m) for each pulse. On the basis of these three
pulses, what kind of pulse experiences more pulse spreading in a weakly-dispersive fiber?
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Why? (Note that the original problem statement used a different number of pulses.)

Solution
The plot is below. The effective scaling factors Peff(m) are 2−1/2, 2−1/4 and 2−1/6 for
m = 1, 2 and 3 respectively. The pulse form = 1 has the least pulse spreading because it
has the smallest bandwidth.

Time

G
(t

,1
,m

)

m=1

m=2

m=3

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

(c) Determine an expression for the instantaneous frequency shiftω(t) = ωc−γdP (z, t)/dt
given in (5.3.16) as a function of time in terms of the parametersm and σ for a pulse whose
power is a generalized gaussian pulse with n = 2.

Solution
For n = 2, the power in a pulse is proportional to |s(t)|2 so that

P (t) ∝ e−(t2/2σ2)2m .

The instantaneous frequency is

ω(t) = ωc − γ
dP (z, t)

dt
= ωc − σ−1

(
mγ22(1−m)e−2−2m(t/σ)4m (t/σ)

4m−1
)

(d) Plot ω(t) with σ = 1 for 1 ≤ m ≤ 3. Compare these three curves with the results
derived in part (b).

Solution
The plot is on the next page. The pulses for higher values ofm have a larger instantaneous
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frequency because the slope of the edges of the pulses shown in the previous figure is greater
for largerm.

Time

m=3
In

st
an

ta
ne

ou
s 

Fr
eq

ue
nc

y

m=2
m=1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

5.8 Nonlinear fiber parameters
A standard single mode fiber is given withD= 17 ps/(nm ·km), γ = 1.3 radians/(W · km)
and κ = 0.2 dB/km. A second fiber hasD= 2.3 ps/(nm ·km), γ = 2 radians/(W · km) and
κ = 0.2 dB/km. An input gaussian pulse have a peak power of 50 mW and a root-mean
squared temporal width of 50 ps.

(a) For each fiber, determine the nonlinear length LNL, the dispersion length LD, the ef-
fective length Leff, and the walk-off length Lwo with subchannels separated by 100 GHz.

Solution
The table of the values is calculated below for a wavelength of 1.55 microns. Converting
0.2 dB/km into Nepers/km using 1 Neper/km = 4.34 dB/km gives κ = 0.046 km−1. The
dispersion length uses LD = σ2

in/β2 with β2 = 125 ps2/km for D= 17 ps/(nm · km) and
β2 = 18.4 ps2/km for D= 2.3 ps/(nm · km). For the walk-off length, use 100 GHz ≈ 0.8
nm at 1550 nm and equation (5.3.25).

LNL (km) LD (km) Leff (km) Lwo (km)
Standard 15.4 18 21.7 3.7
Shifted 10 136 22 27
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(b) For a single unamplified segment of fiber, derive the peak pulse power for each fiber
such that the total accumulated phase shift is smaller than 0.1 radians.

Solution
The accumulated nonlinear phase ϕNL is given in (5.3.20) and repeated here

ϕNL =
Leff

LNL

= γLeffPin.

Setting ϕNL to 0.1 radians and solving for the peak input power Pin gives

Pin =
0.1

γLeff
.

For the first fiber, Pin is about 3.5 mW. For the second fiber Pin is about 2.3 mW.

(c) For the same coupled power and the same pulse, which fiber produces a smaller nonlin-
ear phase shift?

Solution
Standard fiber because γ is smaller.

(d) For the same coupled power and the same pulse, which fiber produces a larger dispersion-
limited distance?

Solution
The dispersion-shifted fiber.

(e) Based on the results of the previous parts, discuss the circumstances under which each
fiber should be preferred.

Solution
The dispersion-shifted fiber has a longer dispersion length, but a longer walk-off length
and a shorter nonlinear length. Because the linear dispersion can be compensated while the
nonlinear impairments are more difficult to compensate, low dispersion fiber tends not be
used in high performance systems because it is less tolerant to nonlinear impairments.

57



Chapter 6 Selected Solutions
6.1 Derivation of the Gordon distribution and its entropy
(a) Starting with p(m) = Kum, derive

p(m) =
1

1 + S

(
S

1 + S

)m
,

satisfying the constraints
∑∞
n=0 mf(m) = S and

∑∞
n=0 f(m) = 1.

Solution
Start with

pn(n) = Kun

, whereK andu are two constants that need to determined using the constraints
∑∞
n=0 pn(n) =

1 and
∑∞
n=0 npn(n) = S. Substituting Kun into these two expressions and using the fact

that |u| < 1 for a valid probability density function gives

∞∑
n=0

Kun =
K

1− u
= 1

and
∞∑
n=0

Knun = Ku

(1− u)2
= S.

Solving the first equation gives u = 1 − K. Substituting this expression into the second
equation yields

K =
1

1 + S
and

u =
S

1 + S ,

so that

pn(n) = Kun =
1

1 + S

(
S

1 + S

)n
.

showing that the Gordon distribution is in the form of a geometric distribution.

(b) Using the form of p(m) given in part (a), and the definition of the entropy H given
by

H = −k
∞∑

m=0

p(m) loge p(m),
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derive the entropy of a Gordon distribution, which is stated in Table 6.1.

Solution
The entropy is

H = −k
∞∑

m=0

pm(m) loge pm(m)

= −k
∞∑

m=0

pm(m)
(
loge

(
1

1 + S

)
+ m loge

(
S

1 + S

))

= k
∞∑

m=0

pm(m)
(
loge (1 + S) + m loge

(
1 + S
S

))

= k

(
loge (1 + S)

∞∑
m=0

pm(m)︸ ︷︷ ︸
=1

+ loge

(
1 + S
S

) ∞∑
m=0

mpm(m)︸ ︷︷ ︸
=S

)

= k

(
loge (1 + S) + S loge

(
1 + S
S

))
.

6.2 Maximum-entropy distribution without a mean constraint
Following the procedure used to derive the Gordon probability mass function given in
(6.1.5), but removing the finite mean constraint on the probability distribution function,
show that the maximum-entropy distribution on a finite number of states is the uniform
probability density function given by

f(m) =
1

M ,

where M is the number of states.

Solution
Start with

S =

∞∑
m=0

pm(m) loge pm(m) + C

∞∑
m=0

pm(m),

which does not include the mean energy constraint. Following the same steps as used to
derive (6.1.5) gives

∞∑
m=0

[
loge pm(m) + 1 + C2

]
f(m) = 0.
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Setting the term in brackets to zero and solving for pm(m) gives

pm(m) = e−(1+C) = K,

which states that the value of the probability density function is a constant which is a uniform
probability distribution. Therefore, when there is no mean energy constraint, every state is
equally likely.

6.3 The Bose-Einstein probability mass function and the Boltzmann
probability density function
(a) Starting with (6.1.9), derive an expression for the form of the probability density func-
tion of the energy f(E), with E = hfm.

Solution
Equation (6.1.9) is

pm(m) = =
1

1 + N

(
N

1 + N

)m

=
(
1− e−hf/kT0

)
e−m(hf/kT0). (13)

Using fE(E)dE = fm(m)dm and dm/dE = 1/hf gives

fE(E) =
1

hf

(
1− e−hf/kT0

)
e−E/kT0 .

(b) Is the resulting probability density function a valid continuous probability density func-
tion? Explain your answer.

Solution
The resulting function is not a valid continuous probability density function because it does
not integrate to one when E is treated as a continuous variable.

(c) Take the limit of the expression in part (a) as hf goes to zero and show that the re-
sulting expression is the Boltzmann probability density function.

Solution
Taking the limit as hf approaches zero gives

fE(E) =
1

kT0
e−E/kT0 .

This is a valid probability distribution and is the Boltzmann probability distribution.
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6.5 Coherence time and bandwidth
The root-mean-squared coherence timewidth τrms of the autocorrelation function R(τ) (cf.
(2.1.30)) has a different value than coherence timewidth τc defined by (2.2.59) and repeated
here

τc
.
=

1

|R(0)|2
∫ ∞

−∞
|R(τ)|2 dτ,

where the autocorrelation functionR(τ) is the Fourier transform of the power density spec-
trum S(f) (cf. (2.2.55)). Determine the relationship between the root-mean-square co-
herence timewidth τrms, and the coherence timewidth τc for the following power density
spectra in (a) and (b).

(a) S(f) = 1√
2πσ

e−f
2/2σ2

.

Solution
Using Parseval’s relationship (cf. (2.1.18)) and the fact that R(0) is the inverse Fourier
transform of S(f) evaluated at t = 0 gives

τc
.
=

1

|R(0)|2
∫ ∞

−∞
|R(τ)|2 dτ =

∫∞
−∞ |S(τ)|

2 dτ∣∣∣∫∞
−∞ S(f)df

∣∣∣2 =
1

2σ
√
π
. (14)

Using Table 2.1, the autocorrelation function R(τ) is

R(τ) =
√
2πe−2π2σ2t2 ,

which, from inspection, has a root-mean squared timewidth τrms equal to

τrms =
1

2σπ
.

The value τrms differs by a factor of
√
π compared to the coherence timewidth τc given in

(14).

(b) S(f) = e−|f |.

Solution
For the doubled sided-exponential, the coherence timewidth τc is

τc
.
=

1

|R(0)|2
∫ ∞

−∞
|R(τ)|2 dτ =

∫∞
−∞ e−2|f |dτ(∫∞
−∞ e−|f |df

)2 =
1

4
.
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Using Table 2.1, the autocorrelation function R(τ) is in the form of a lorentzian function.
The root-mean squared timewidth τrms of the this function is not defined because x2f(x)
does not go to zero as x goes to infinity.

(c) Citing a specific example, discuss why one definition of the coherence timewidth might
be preferred over the other definition.

Solution
The example in part (b) shows that coherence timewidth τc can be defined whereas the root-
mean squared timewidth τrms cannot be defined. Therefore, for a lorentzian function, the
coherence time τc may be preferable to τrms.

6.7 Filtered spontaneous emission
The spontaneous emission noise in a single polarization of a lightwave is bandlimited using
an ideal rectangular passband optical filter ho(t)with a complex-baseband transfer function
given by

Ho(f) = 1 for |f | < B/2
0 otherwise.

The resulting filtered lightwave noise power has an expected value ⟨P ⟩. It is detected by
an ideal photodetector with an impulse response h(t) equal to δ(t).

(a) Determine the power density spectrum Sg(f) of the arrival process g(t) within the pho-
todetector.

Solution
The total noise density spectrum for the photoelectron generation rate process g(t) within
the photodetector is given by (6.4.15)

Sg(f) = R+ SR(f),

where the mean value for the photogeneration rate is given by R = PR/e The form for
SR(f) is given in (6.4.16) where SP (f) is the power density spectrum of the lightwave
power given in (6.4.7) with the signal power Ps set equal to zero. This expression is scaled
by a factor of (R/e)2 to express the signal in terms of photocounts. The normalized power
spectrum of the bandlimited spontaneous emission is Sn(f) = 1/B for |f | < B/2. This is
a rect function in frequency. Using (6.4.7) and noting that the convolution of a rect function
with itself is a triangular function of the form 1− 2 |f | /B, the power-density spectrum of
the photoelectron generation rate process g(t) within the photodetector includes both shot
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noise and intensity noise and can be written as

Sg(f) =

(
R
e

)
P︸ ︷︷ ︸

shot noise

+

(
R
e

)2

P 2δ(f)︸ ︷︷ ︸
mean

+

(
R
e

)2

P 2(1− 2|f |/B)︸ ︷︷ ︸
intensity fluctuations

.

The form shows that the fluctuations for shot noise go as P , the fluctuations for intensity
noise go as P 2.

(b) Determine the power density spectrum S(f) of the filtered electrical signal rdet(t) if
the photodetected electrical signal is filtered by a detection filter with an impulse response
h(t) = e−t/τu(t).

Solution
The transfer functionH(f) corresponding to h(t) is

H(f) =
τ

1 + i2πτf
.

The power-density spectrum Si(f) in units of A2/Hz is given by Si(f) = e2Sg(f). There-
fore, the power-density spectrum S(f) of the filtered directly-photodetected electrical sig-
nal into a unit resistance is given by S(f) = e2Sg(f)H2(f) where Sg(f) was determined
in part (a).

(c) Under what conditions are the statistics of the sample value r after the detection fil-
ter given by:

(i) exponential
(ii) gamma
(iii) gaussian

Solution
The three distributions correspond to systems for which the intensity noise is much larger
than the shot noise so that continuous wave-optics distributions can be used.

(i) exponential

Solution
The statistics are exponential if there is only a single mode. This means that the coherence
time of the optical source is on the order of the bandwidth of the filter function H(f) so
that τc ≈ 1/B.
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(ii) gamma

Solution
The output distribution is, in general, a gamma distribution with the mean value given by
P and the number of coherence intervals, which is approximately Bτc.

(iii) gaussian.

Solution
Gaussian output statistics are generated whenever the number of coherence intervals used
to form the detection statistic becomes large.

6.8 Bandlimited noise
The electrical noise power generated by direct photodetection given in (6.5.3) was derived
for Bτc = 1, where τc is the coherence timewidth defined in (2.2.59) and B is the pass-
band noise-equivalent bandwidth (cf. (2.2.78)). The relationship betweenB and τc is valid
when the lightwave-noise-suppressing filter is an ideal bandpass filter in the form of the
rect function.

(a) Derive a corresponding expression for Bτc for a lightwave noise-suppressing filter de-
fined by a gaussian function with a root-mean-squared width σ equal to B.

Solution
Let the gaussian function in the frequency domain be given as

H(f)
.
= e−f

2/2σ2

.

We want to determine the product Bτc = B/Bc where B is equal to the passband noise-
equivalent bandwidth BN given in (2.2.77) and Bc = 1/τc is the power equivalent width.
Using

BN

.
=

1

G

∫ ∞

−∞
|H(f)|2 df.

With G = 1 and H(f) given above, this gives

B = BN

.
=

∫ ∞

−∞

∣∣∣e−f2/2σ2
∣∣∣2 df = σ

√
π.
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The filtered noise power density spectrum is given by Sn(f) = N0|H(f)|2 with |H(f)|2 =∣∣∣e−f2/2σ2
∣∣∣2. Using (2.2.78) for Bc gives
Bc =

(∫∞
−∞ Sn(f)df

)2
∫∞
−∞ S2n(f)df

=
(
∫∞
−∞

∣∣∣e−f2/2σ2
∣∣∣2 df)2∫∞

−∞

∣∣e−f2/2σ2
∣∣4 df =

πσ2

σ
√
π/2

= σ
√
π/2.

The ratio is

B

Bc
=

σ
√
π

σ
√
π/2

=
√
2.

Therefore in constrast to the ideal retangular noise-suppressing filter, the noise equivalent
bandwidth BN is not equal to the power-equivalent bandwidth Bc = 1/τc.

(b) Quantitatively explain how the value of Bτc affects the statistics of the sample deter-
mined over an interval of duration T .

Solution
The value ofBτc is an estimate of the number of temporal degrees of freedom in the system.
This value dictates the ability to convey information in time.

6.9 Degrees of freedom of lorentzian-filtered noise
Let the autocorrelation function of the noise process n(t) be given by

Rn(τ) = Ne−α|τ |.

(a) Show that this autocorrelation function is generated by filtering white noise with a filter
that has the transfer function

H(ω) = N
2α

α2 + ω2
.

A filter of this form is called a lorentzian filter.

Solution
This expression can be derived using Table 2.1, and the scaling property of the Fourier
transform using an angular frequency ω.
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(b) Write the integral in (6.6.4) using symmetric limits. Separate that integral into two
regions and differentiate twice to produce a second-order differential equation of the form

d2ψk(t1)
dt21

+ b2kψk(t1) = 0.

Determine the expression for bk in terms of λk, α, and N .

Solution
Writing the integral equation to solve in symmetric form gives

λkψk(t1) = N

∫ T

−T
e−α|t1−t2|ψk(t2)dt2. (15)

Separate this integral into two regions and differentiate twice.

λkψk(t1) = N

∫ t1

−T
e−α(t1−t2)ψk(t2)dt2 +N

∫ T

t1

e−α(t2−t1)ψk(t2)dt2. (16)

The first derivative is

λk
dψk(t1)
dt1

= −Nαe−αt1
∫ t1

−T
eαt2ψk(t2)dt2 +Nαeαt1

∫ T

t1

e−αt2ψk(t2)dt2. (17)

Combining the two expressions, the second derivative can be written as

λk
d2ψk(t1)

dt21
= Nα2

∫ T

−T
e−α|t1−t2|ψk(t2)dt2 − 2Nαψk(t1)

Noting that the first term on the right is α2λkψk(t1) (cf. (15)), we can write

d2ψk(t1)
dt21

=

(
α2(λk − 2N/α)

λk

)
ψk(t1).

Rewrite this equation as
d2ψk(t1)

dt21
+ b2ψk(t1) = 0 (18)

where

b2 = −α
2(λk − 2N/α)

λk

=
2Nα

λk
− α2.
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Solving for the eigenvalue λk in terms of b gives

λk =
2Nα

α2 + b2
=

2Nα

(a+ ib)(a− ib)
. (19)

(c) Now assume a solution of the form of

ψk(t1) = c1e
ibt + c2e

−ibt.

Substitute this form into the original integral equation and perform the integration for each
of the two regions.

Solution
Suppose that

0 < λk <
2N

α
,

so that b2 is real with 0 < b2 <∞. The solution to (18) is then be written in the following
form

ψk(t1) = c1e
ibt + c2e

−ibt. (20)

Substitute this general solution into (16) and perform the integration

λk
(
c1e

ibt1 + c2e
−ibt1

)
= Ne−αt1

∫ t1

−T

(
c1e

(α+ib)t2 + c2e
−(−α+ib)t2

)
dt2

+Neαt1
∫ T

t1

(
c1e

(−α+ib)t2 + c2e
−(α+ib)t2

)
dt2

Evaluating the integrals and collecting terms gives

2Nα

(α+ ib)(α− ib)
(
c1e

ibt1 + c2e
−ibt1

)
= Nc1e

ibt1
(
e−αt

e−(α+ib)T

α+ ib
− eαt e

−(α−ib)T

−α+ ib

)
︸ ︷︷ ︸

A

+ Nc2e
−ibt2

(
−e−αt e

−(α−ib)T

α− ib
+ eαt

e−(α+ib)T

−α− ib

)
︸ ︷︷ ︸

B

.

In order for the equation to be satisfied the two terms labeled A and B must be equal to
each other and equal to the term on the left side of the equation. Equating these terms and
reordering gives

e−αt1
(
c1e

−(α+ib)T

α+ ib
+
c2e

−(α−ib)T

α− ib

)
− eαt1

(
c1e

−(α−ib)T

−α+ ib
+
c2e

−(α+ib)T

−α− ib

)
= 0.

67



(d) Show that the resulting expression can be satisfied for all time only if c1 = c2 or if
c1 = −c2.
Solution
This condition can be directly verified.

(e) Setting t1 = T , derive the expression that must be satisfied if c1 = c2.
Solution
When c1 = c2 and t1 = T , the following equation must be satisfied

4e−αT sinh(αT )(b sin(bT )− α cos(bT ))
α2 + b2

= 0,

which means that
b sin(bT )− α cos(bT ) = 0

or
tan(bT ) =

α

b
.

(f) Setting t1 = T , derive the expression that must be satisfied if c1 = −c2.
Solution
When c1 = −c2, the equation is

−4ieα(−T ) cosh(αT )(α sin(bT ) + b cos(bT ))
α2 + b2

= 0

or
tan(bT ) = − b

α
.

(g) A solution to either of the two previous equations will produce an eigenvalue. By com-
bining these two equations, show that(

tan(bkT ) +
bkT

αT

)(
tan(bkT )−

αT

bkT

)
= 0.

Solution
Combining these equations and multiplying the top and bottom by T gives(

tan(bT ) +
bT

αT

)(
tan(bT )− αT

bT

)
= 0.
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(h) Using the relationship between bk and λk derived in part (b), plot the eigenvalues λk
on a log plot. Compare the distribution of the eigenvalues for lorentzian-filtered noise for
αT = 5 to the eigenvalues for an ideal bandpass filter for TB = 5 given in Figure 6.8.

Solution
The solutions to this equation can be determined graphically as is shown in the figure for
the value of αT = 1.
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Once the values bk are determined, the corresponding eigenvalues are given by (19) with
b→ bk. A plot of the eigenvalues for several values of αT are shown in the figure below.

0 10 20 30 40

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Eigenvalue Index k 

Lo
g 

Ei
ge

nv
al

ue
 

αT=1

αT=2
αT=3

Now compare the eigenvalues for this plot to the plot of the eigenvalues for the ideal
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rectangular filter given in Figure 6.8 and repeated here.
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It can be seen that the eigenvalues of the lorentzian-filtered noise roll off much more
slowly compared to the eigenvalues for a rectangular filter.

(i)) Comment on the distribution of the eigenvalues for both kinds of filters with respect
to the distribution of the entropy, which defines the ability of each degree of freedom to
convey information.

Solution
The distribution of entropy per degree of freedom tracks the distribution of the eigenvalues.
For an ideal rectangular passband filter, the distribution of the eigenvalues (or entropy) is
flat up to TB and then rapidly rolls off. Therefore, for this kind of filter, the number of de-
grees of freedom is well-approximated by TB with the entropy for each degree of freedom
being nearly the same because the distribution of eigenvalues is nearly the same. This is
not the case for the lorentzian filter. For this case, every degree of freedom has a different
entropy.

6.10 Sum of Poisson random variables
Prove that if the sum of two random variables m3 = m1 + m2, is Poisson and either of the
two summands, m1 or m2, is Poisson, then the other summand is Poisson as well.

Solution
Let p1(m), and p3(m) be two Poisson probability distributions with mean values E1 and E3
respectively. Then the probability distribution p3(m) for m3 is the convolution
p3(m) = p1(m) ⊛ p2(m). The convolution property of a Fourier transform states that the
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two characteristic functions satisfy

C3(ω) = C1(ω)C2(ω),

so that
C2(ω) =

C3(ω)

C1(ω)
.

Substituting C1(ω) = eE1(e
iω−1) and C3(ω) = eE3(e

iω−1) gives

C2(ω) =
eE3(e

iω−1)

eE1(e
iω−1)

= e(E3−E1)(e
iω−1)

which is the characteristic function of a Poisson random variable with mean E3 − E1.

6.11 Circular symmetry
A product bivariate random variable with bivariate probability density function f(x, y) =
g(x)g(y) is known to be circularly symmetric in the (x, y) coordinate system. Does this
mean that it is a bivariate gaussian random variable?

Solution
Working with the squared magnitude instead of the amplitude, the probability density func-
tion for the squared magnitude of circularly symmetric function can be written as

f(x, y) = Ah
(
x2 + y2

)
,

where A normalizes the distribution. If this function is separable, then

Ah
(
x2 + y2

)
= B2g(x)g(y)

where B normalizes the one-dimensional probability density functions g(·). This equation
can only be satisfied when both g(·) and h(·) are exponential functions because the expo-
nential function as the unique property that the product of two exponential terms is a single
exponential with an exponent that is the sum of the arguments the separate terms. This
property is the inverse of the property of logarithms that the logarithm of a product is the
sum of the logarithms of the terms in the product. Therefore, the squared magnitude must
be an exponential function. Applying the constraint of circular symmetry means that the
exponential function for the squared magnitude can be written as a product distribution with
the joint probability density in polar coordinates given by (6.2.10)). Transforming from po-
lar coordinates to cartesian coordinates recovers the bivariate gaussian distribution given in
(6.2.8).
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6.12 Derivation of the negative binomial probability mass function
Using the integral∫ ∞

0

e−E(1+Nsp−1)E(K−1+m)dE =
(
1 + Nsp−1

)−(K+m)

Γ(K + m),

show that the Poisson transform of a gamma probability density function is equal to the
negative binomial probability mass function.

Solution
The integral is

pm(m) =
1

Γ(K)

1

⟨m⟩m!

∫ ∞

0

Em (E/⟨m⟩)K−1
e−E(1+⟨m⟩−1)dE.

The integral may be written as

pm(m) =
1

Γ(K)

1

⟨m⟩Km!

∫ ∞

0

E(m+K−1)e−E(1+⟨m⟩−1)dE.

Using the integral given in the problem statement yields

pm(m) =
1

Γ(K)

1

⟨m⟩Km!
(
1 + ⟨m⟩−1

)−(K+m)
Γ(K + m)

Collecting terms and using m! = Γ(m+ 1) gives

Γ(K + m)
Γ(K)Γ(m+ 1)

1

⟨m⟩K

(
⟨m⟩

1 + ⟨m⟩

)K+m
.

Separating the last term into a term for K and a term for m and using Γ(K+m)
Γ(K)Γ(m+1) =(

K − 1 + m
m

)
︸ ︷︷ ︸ we have(

K − 1 + m
m

)(
1

1 + ⟨m⟩

)K ( ⟨m⟩
1 + ⟨m⟩

)m

which is (6.5.11).

6.13 Derivation of the mean and the variance of the number of counts
Starting with

Cm(ω) =

∫ ∞

0

eE(e
iω−1)f(E)dE

=
⟨
eE(e

iω−1)⟩
= CE

(
−i
(
eiω − 1

))
,
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as given in (6.3.7), derive the mean and variance of p(m) in terms of ⟨E⟩ and σ2
E . The prob-

ability mass function p(m) is the Poisson transform of the probability density function f(E)
for the mean number of counts. The result should agree with the terms in (6.3.8).

Solution
The characteristic function is given in (6.3.7)

Cm(ω) =
⟨
exp

(
Eeiω − 1

)⟩
The moments are determined using (2.2.17)

⟨xn⟩ =

∣∣∣∣ 1in dn

dωn
Cx(ω)

∣∣∣∣
ω=0

The mean value is then

⟨m⟩ =

∣∣∣∣ 1in dn

dωn
Cm(ω)

∣∣∣∣
ω=0

=

⟨∣∣∣∣1i d
dω

exp
(
Eeiω − 1

)∣∣∣∣
ω=0

⟩
=

⟨∣∣∣∣1i (iE)eiω exp (E (eiω − 1
))∣∣∣∣

ω=0

⟩
= ⟨E⟩

where the order of the expectation and differentiation has been interchanged. This expres-
sion is (6.3.8a). The mean square-value is

⟨m2⟩ =

⟨∣∣∣∣ 1i2 d2

dω2
exp

(
Eeiω − 1

)∣∣∣∣
ω=0

⟩
=

⟨
eE(e

iω−1)
[
Eeiω +

(
Eeiω

)2]∣∣∣
ω=0

⟩
= ⟨E⟩+ ⟨E2⟩

The variance is then

σ2
m = ⟨m2⟩ − ⟨m⟩2

= ⟨E⟩+ ⟨E2⟩ − ⟨E⟩2

= ⟨E⟩+ σ2
E ,

which is (6.3.8b).
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6.15 Filtered shot noise and thermal noise
An electrical waveform r(t) is generated by the direct photodetection of a random light-
wave signal with a nonstationary arrival rate given by R(t) = e−t/Tu(t) where u(t) is the
unit-step function. The photodetector has an impulse response given by h(t) = e−t/4Tu(t).
Using Campbell’s theorem, derive the mean and the variance of the output electrical wave-
form r(t).

Solution
The mean and the variance are given by Campbell’s theorem (6.7.2)

p(T ) = ⟨R(t)⟩⊛ h(t)|t=T
σ2(T ) = ⟨R(t)⟩⊛ h2(t)

∣∣
t=T

The mean is

p(T ) = e−t/Tu(t)⊛ e−t/4Tu(t)

=

∫ t

0

e−τ/4T e−(t−τ)/T dτ

∣∣∣∣
t=T

=
4
(
e3/4 − 1

)
T

3e
.

The variance is

σ2(T ) = e−t/Tu(t)⊛ e−t/2Tu(t)

=

∫ t

0

e−τ/2T e−(t−τ)/T dτ

∣∣∣∣
t=T

=
2 (
√
e− 1)T

e
.

6.16 Isserlis theorem
Isserlis theorem states that the expectations of four jointly gaussian random variables,X1,
X2, X3, and X4, satisfy

⟨X1X2X3X4⟩ = ⟨X1X2⟩⟨X3X4⟩+ ⟨X1X3⟩⟨X2X4⟩+ ⟨X1X4⟩⟨X2X3⟩.

Using the asserted Isserlis theorem, prove (6.4.2) for circularly-symmetric gaussian random
variables.
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Solution
The power autocorrelation function is

RPn(τ) = ⟨Pn(t)Pn(t+ τ)⟩
= ⟨n(t)n∗(t)n(t+ τ)n∗(t+ τ⟩

Now set X1 = n(t), X2 = n∗(t), X3 = n(t+ τ), and X4 = n∗(t+ τ). This gives

1

4
⟨n(t)n∗(t)n(t+ τ)n∗(t+ τ⟩ = 1

4
⟨n(t)n∗(t)⟩︸ ︷︷ ︸

2Pn

⟨n(t+ τ)n∗(t+ τ⟩︸ ︷︷ ︸
2Pn

+

1

4
⟨n(t)n∗(t+ τ)⟩︸ ︷︷ ︸

2Rn

⟨n∗(t)n(t+ τ)⟩︸ ︷︷ ︸
2Rn

+

1

4
⟨n(t+ τ)n(t)⟩︸ ︷︷ ︸

0

⟨n∗(t+ τ)n∗(t)⟩︸ ︷︷ ︸
0

= Pn +Rn,

where the last two terms are pseudocovariance functions of circularly-symmetric gaussian
random variables and so are zero (cf. Section 2.2.1).
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Chapter 7 Selected Solutions
7.1 Three-dB coupler
The governing equations for a symmetric directional coupler with inputs s1(t, z) and s2(t, z)
are

ds1(t, z)
dz

= −iκs2(t, z)

ds2(t, z)
dz

= −iκs1(t, z),

where κ is the coupling coefficient between the modes in each waveguide, and each mode
has a z dependence given by e−iβz . The output signals are defined as z1(t)

.
= s1(t, L) and

z2(t)
.
= s2(t, L).

(a) Let the two inputs to the two paths of the directional coupler be s1(t, 0) = s and
s2(t, 0) = 0. Solve for z1(t) and z2(t) and determine the length L such that the two output
signals are in phase quadrature.

Solution
Taking the derivative of the first equation, substituting the second equation on the right side
and solving for s1(t, z) using the boundary condition s1(t, 0) = s yields

s1(z) = s cos(κz).

Taking the derivative of this equation yields

s2(z) = −si sin(κz).

(b) Plot the power in each mode as a function of L and determine the minimum value of L
that produces a 3-dB coupler.

Solution
The power for each waveguide is s2 cos2(κz) and s2 sin2(κz). The plot is on the next page
using κ = π/2.
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The value for κL that produces a 3-dB coupler is 1/
√
2.

(c) Determine the minimum value of L that produces a power splitter with 10% of the
lightwave power coupled into one path and 90% of the lightwave power coupled into the
other path.

Solution
The value for κL that produces a 10% coupler is cos−1(1/

√
10).

(d) let the input to one path be s1(t, 0) = A, and let the input to the other path be s2(t, 0) =
B. Show that for a proper choice of L, the output signals can be expressed as[

z1(t)
z2(t)

]
=

1√
2

[
1 i
i 1

] [
A
B

]
,

which is the relationship for a 180-degree hybrid coupler given in (7.1.2).

Solution
For inputs A and B, the coupling matrix can be written as[

s1(t, L)
s2(t, L)

]
=

[
cosκt −i sinκt
−i sinκt cosκt

] [
A
B

]
Setting κL = π/4 yields the desired result.
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7.2 Lossless couplers
For a coupler to be lossless, the output power in the two output waveguides must equal the
input power in the two waveguides so that

Pin1 + Pin2 = Pout2 + Pout2

where P = |s|2 is the root-mean-squared lightwave power and s is the complex lightwave
amplitude. Let

s =

[
s1(t)
s2(t)

]
,

be the vector of the two signals defined at either the input or the output of the coupler.
(a) Show that when the coupler is lossless,

s†insin = s†outsout,

where † denotes the conjugate transpose and sout = Tsin.

Solution
We must show that Pin1 + Pin2 = Pin2 + Pin2 . Forming the matrix product we have

[s∗in1 s
∗
in2 ]

[
sin1
sin2

]
= |s∗in1 |

2 + |s∗in2 |
2 = Pin1 + Pin2 .

The same result holds for the output.

(b) Show that T =

[
1 1
0 0

]
does not satisfy the condition derived in part (a). This means

that combining two spatially-distinct input modes at the same carrier frequency into a single
output mode cannot be implemented by a lossless transformation.
Solution
If sout = Tsin then sout† = (Tsin)† = s†inT†. Form the product

Pout = s†outsout = s†inT
†Tsin.

In order for the power to be conserved, the product T†T must be an identity matrix or
equivalently, T must be a unitary matrix that satisfies T−1 = T†. When

T =

[
1 1
0 0

]
then

T† =

[
1 0
1 0

]
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and

T†T =

[
1 0
1 0

] [
1 1
0 0

]
=

[
1 1
1 1

]
̸=
[

1 0
0 1

]
.

The transformation does not conserve power because it is not unitary.

7.4 The output of a balanced photodetector
The output of the balanced photodetector given in (7.3.2) is based on the coupling matrix
T given in (7.1.5). Rederive the output of the balanced photodetector using the alternative
form of the coupling matrix T given in (7.1.2). Comment on the result.

Solution
The quarter-square multiplier given in (7.3.1) requires a coupling matrix of the form given
in (7.1.4). This form of coupling matrix can be derived from the symmetric directional cou-
pler matrix given in (7.1.3) by appropriate phase delays on the inputs and outputs as shown
in the figure below.

s1(t)

s2(t)

z1(t)

z2(t)

   Symmetric directional coupler 

a

b d

c

Using the symmetric coupling matrix given in (7.1.2) and repeated here

T =
1√
2

[
1 i
i 1

]
,

and the phase terms a, b, d, d shown in the figure, the coupling matrix

T =
1√
2

[
1 1
1 −1

]
,

given in (7.1.4) can be obtained from (7.1.2) when

a c s1 + ib c s2 = s1 + s2

ia d s1 + d b s2 = s1 − s2.
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This system of equations has a solution when

b = −ia
c = 1/a

d = −i/a.

Setting a = 1 gives b = −i, c = 1, and d = −i, which are simply phase shifts on the input
and output ports. The overall transform can be expressed as a unitary transformation of the
symmetric coupling matrix given in (7.1.3).

7.9 Lightwave amplifier noise terms
For a wavelength of λ = 1500 nm, let nsp = 1.25, B = 2 nm, BN = 25 GHz, G = 30 dB,
FN = 5 dB, and R = 50Ω. The output lightwave signal is measured with a photodetector
that has a responsivity of 0.8 A/W.

(a) Suppose the stimulated-emission cross section σe is twice the absorption cross section
σa. What is the ratio of the mean upper state density N2 to the mean lower state density
N1 that will produce nsp = 1.25?

Solution
The spontaneous emission noise factor nsp is

nsp = 1.25 =
σeN2

σeN2 − σaN1

When σe = 2σa, a ratio ofN2/N1 = 2.5 will produce the desired spontaneous emission
factor.

(b) Determine the incident lightwave power Pin for which:

(i) The power density spectrum of the shot noise generated by the signal is equal to the
power density spectrum generated by thermal noise.

Solution
The thermal power is kBT0BN where BN is the noise bandwidth. The signal shot noise
power is determined using 2eRPinBN (cf. (6.7.8)). This term has units of A2 where we
assume that Pin is the optical power after the amplifier. Multiplying this term by the load
resistance R to convert into Watts gives

kBT0 = 2eRRPin.
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Solving for Pin we have

Pin =
kBT0
2RRe

=
4× 10−21

2× 50× 0.8× 1.6× 10−19
= 312.5µW.

(ii) The signal-spontaneous emission noise is equal to the spontaneous-spontaneous emis-
sion noise.

Solution
Equating the two terms and using (8.2.36) gives

GPinNspBN +N2
spBBN

where B is the bandwidth of the optical noise-suppressing filter. Solving for Pin

Pin =
NspB

G
=
hf nsp(G− 1)B

G
≈ hf nspB ≈

1

2
hfFNPB,

where the noise figureFNP is defined in (7.7.17). The optical filter bandwidthB in frequency
units is B = ∆λc/λ2 = 2.67 × 1011 GHz. Putting in the other numbers using f = c/λ
gives

Pin =
6.64× 10−34 × 3× 108 ×

√
10× 2.67× 1011

2× 1.5× 10−6
= 55.8 nW = −42.5 dBm.

(c) For what value of the input power Pin does neglecting all the noise terms except the
signal-spontaneous emission noise term result in a relative error in the total electrical power
that is less than 1%?

Solution
The plot of all the noise terms is shown below. The amplified power that produces < 1%
error (or 20 dB) is approximately 7 dBm.
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7.11 Light-emitting diode noise statistics
A light-emitting diode has a −3 dB spectral bandwidth of 40 nm at 850 nm and mean
power of P . This lightwave source is incident on a photodetector with a responsivity of
R = 0.5 A/W.

(a) Derive the probability mass function p(m) for the number of photoelectrons over an
integration time of T .

Solution
The coherence time is

τc =
λ2

∆λc
= 6× 10−14 s.

The number of coherence intervals is

TB =
T

τc
=

10−9

6× 10−14
≈ 16, 600.

The expected generation rate R is

R =

(
R
e

)
P =

0.5

1.6× 10−19
= 3.125× 1018P counts per second.

Therefore, the mean number E of counts per coherence interval is

E = Rτc = 6× 10−14 × 3.125× 1018P ≈ 1.88× 105P.

In general, the probability distribution form is a negative binomial distribution (cf. (6.5.11))
characterized by the the expected generation rate R per coherence interval and the number
K = ⌈TB⌉ of coherence intervals. For power levels such that the mean E is much less
than one and TB is much greater than one, the negative binomial distribution probability
distribution reduces to a Poisson distribution.

(b) For what values of PT = E can this source be modeled using a Poisson probability
distribution such that the number of photoelectrons is within 5% of the number of photo-
electrons calculated using the exact probability distribution?

Solution
Scaling the energy E by the energy per photon to produce the mean number of counts
E = E/hf , the negative binomial distribution with mean E and K = ⌈TB⌉ degrees of
freedom is

p(m) =

(
K − 1 + m

m

)(
1

1 + E

)K ( E
1 + E

)m
for m = 0, 1, 2, . . .
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When E ≪ 1 and K ≫ 1, the negative binomial distribution can be approximated by a
Poisson distribution with meanKE.
Using K ≈ TB ≈ 16, 600, and determining the relative error for only the value m = 0,
a relative error of less than 5% between the negative binomial distribution and the Poisson
distribution requires E to be less than 2.488× 10−3.

(c) Based on the results of part (b) and in a regime for which the data rate is greater than 1
Mb/s and the power is less than 1 W, is the approximation of p(m) by a Poisson distribution
appropriate?

Solution
A data rate of 1 Mb/s corresponding to a signaling interval T equal to 1 µs. For this time
interval and the same bandwidthB, the number of coherence intervals is TB = 1.66×107

with the expected rate for 1 W given by R = 3.125 × 1018 (see part (a)). Therefore, the
mean number of counts E per coherence interval is, from part (a) E = 1.88× 105. Because
this value is much greater than one, approximating the negative binomial distribution by a
Poisson distribution may not appropriate for this case.

7.12 Characteristics of a laser diode
An idealized laser diode is described by conditions that relate both the lightwave power PL

to the injected current iin and the injected current to the applied voltage Vin as follows:

PL = 0.1iin for iin < 5 mA (21a)
PL = 1.5iin − 7 for iin > 5 mA (21b)

iin = 0.1eV /0.5−1 for Vin > 0 volts (21c)
iin = 0 for Vin < 0 volts (21d)

where PL is the laser power in milliwatts (mW), iin is the current in milliamps (mA), and
Vin is the voltage in volts (V).

(a) Determine the lasing threshold current and voltage.

Solution
The threshold current is 5 mA. Solving for the voltage when iin = 5 mA, V = (loge(50)+
1)/2 =2.46 V. Plots of the PL versus iin and iin versus V are shown in the figure on the
next page.
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(b) Determine the differential resistance dVin/diin at the lasing threshold current and at
twice the lasing threshold current.

Solution
Rewriting (21c), the voltage is V = 1

2 (loge(10iin) + 1). The differential resistance is
(dV /diin) =

1
2iin

1000, where the factor of 1000 converts mA to A so that the units of re-
sistance are in Ω and not kΩ. The differential resistance at threshold is 100 Ω, and at twice
the threshold current, it is 50 Ω.

(c) Determine the ratio of the lightwave power out of the laser to input electrical power
in
(
PL/(iinVin)

)
for iin = 3 mA and iin = 10 mA.

Solution
For the first case, iin = 3 mA, and the laser is operating below the lasing threshold. Using
(21a) for PL and solving for V in terms of iin in (21c) gives

PL

iinVin
=

0.1iin
iin × 0.5(loge(10iin) + 1)

=
0.1(3)

3× 0.5(loge(10× 3) + 1)

= 4.54%.

When iin = 10 mA, the laser is operating above the lasing threshold. Using (21b) gives

PL

iinVin
=

1.5iin − 7

iin × 0.5(loge(10iin) + 1)

= 28.5%.

(d) A 4 mA peak-to-peak sinusoidal signal plus a bias current ibias is applied to the laser
diode. Sketch PL versus iin for ibias = 4 mA and ibias = 8 mA. Comment on the result.
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Solution
The plots of the two modulated lightwave waveforms are shown in the figure below. At a
bias of 4 mA, the lower part of the modulating current waveform drives the laser below the
lasing threshold and the output lightwave waveform is “clipped”, producing distortion. The
extinction ratio for this case is equal to 1/10. At 8 mA, the lower peak of the modulating
current waveform is above the lasing threshold and the output lightwave waveform is not
clipped. The extinction ratio for this case is equal to 1/4.

0 0.5 1 1.5 2
Current In (mA)

0

2

4

6

8

Li
gh

tO
ut

(m
W

)

7.14 Characterization of a laser diode
A conventional resonator structure for a laser diode is a Fabry-Perot resonator. This is a
resonator constructed using two parallel reflective surfaces. The spacing between the al-
lowed frequencies∆f of a resonator of length d is given by∆f = c0/2nd where c0 is the
speed of light in free space and n is the index of refraction. This value of ∆f is called the
free spectral range of the resonator.

A semiconductor laser is fabricated with a Fabry-Perot resonator of a length d = 250 µm
and an index n = 3.5.

(a) What is the free spectral range of the resonator?

Solution
The free spectral range is

∆f =
c

2dn
=

3× 108

2(250× 10−6)(3.5)
= 171.4 GHz.

85



(b) Determine the number of possible lasing modes over a −3 dB bandwidth of 0.1 nm.

Solution
The number of possible modes within the specified bandwidth can be determined by ex-
pressing the free spectral range in wavelength units. Let ∆λmode be the resonator spacing
in wavelength units and suppose that the operating wavelength λ is 850 nm. Then

∆λmode =
c

f2
∆f =

λ2

c
∆f =

(850× 10−9)2

3× 108
× 171.4× 109 = 0.4 nm.

Because the spacing of the resonator modes is four times larger than the 3 dB bandwidth
B, there will be at most one lasing mode.

(c) What is the length d of the resonator for which only one mode can lase over this band-
width?

Solution
For there to be only one lasing mode,∆λmode must be greater than B. Therefore

∆λmode =
λ2

2dn
> B ⇒ d <

λ2

2Bn
=

(850× 10−9)2

2(0.1× 10−9)(3.5)
⇒ d < 1mm.

(d) When the power density spectrum of the relative intensity noise has a constant value of
−145 dB/Hz over the frequency range of 0 to 2 GHz, determine the electrical noise power
from the relative intensity noise over an integration time T =1 ns for a mean lightwave sig-
nal power of 1 mW.

Solution
The noise power from the RIN is given by integrating the noise power density spectrum
NRIN(f) given in (7.8.10). Assuming a responsivity of 1 A/W, this gives

σ2
P =

∫ 2×109

0

NRIN(f)df

= ⟨P ⟩2
∫ 2×109

0

RIN(f)df.

= (10−3)2 × 2× 109 × 10−14.5

= 6.32× 10−12 A2

(e) Compare this noise power to the thermal-noise power generated over the same frequency
range. Comment on the result.
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Solution
At a temperature of 290K, the available thermal noise power σ2

therm in A2 over the same
bandwidth into a 50 Ω load is

σ2
therm = kT0B/50 = 1.38× 10−23 × 290× 2× 109/50 = 1.6× 10−13A2.

For this case, the noise from the RIN is larger than the thermal noise.

7.16 Dark current
Let µdark be the stationary dark-current arrival rate within a photodetector.

(a) Using this value, modify the power density spectrum of the emission Nopt generated
by direct photodetection given in (6.5.3) and repeated here:

Nopt
.
= RPnτc = RNsp,

to include the effect of the dark current in the photodetector.

Solution
The expression becomes

Nopttotal = (RPn + eµdark) τc

where the second term is the noise current inoise = eµdark from the dark-current arrival rate.

(b) Modify the characteristic function Cr(ω) of the sample value r given in (6.7.16) and
repeated here:

Cr(ω) = exp
(∫ ∞

−∞
R(τ)

(
eiωGh(T−τ) − 1

)
dτ
)

to include the effect of dark-current arrival rate µdark.

Solution
Viewing R(τ) as the expected photogeneration rate, adding the dark current rate gives

Cr(ω) = exp
(∫ ∞

−∞

(
R(τ) + µdark

)(
exp [iωGh(t− τ)]− 1

)
dτ

)
.

(c) Determine the mean and the variance of the probability density function for the sample
value r when the signal photogeneration rate is given by Rs(t).
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Solution
The mean and variance are given by Campbell’s theorem given in (6.7.18). Including the
dark current arrival rate, these equations are modified to read

⟨r⟩ = (Rs(t) + µdark)⊛ h(t)
∣∣∣
t=T

and

σ2
r = (Rs(t) + µdark)⊛ h2(t)

∣∣∣
t=T

.

7.17 Noise terms
A lightwave signal generated from a direct-current-modulated laser diode has a power
P = −23 dBm and a relative intensity noise of −120 dB/Hz. This signal is incident on a
photodetector with a responsivity of 0.5 A/W. The output of the photodetector is connected
to an electrical amplifier with a noise-equivalent bandwidth BN = 15 GHz and a root-
mean-squared thermal-noise current of σi = 250 nA at the input to the electrical amplifier.
The amplified signal is then integrated over a time interval T and sampled.

(a) Determine the variance in the sample value due to shot noise.

Solution
The shot noise variance is given by (6.7.5)

σ2
r = 2e ⟨i⟩BN

= 2eRPBN
= 2(1.6× 10−19)× 0.5× 10−5.3 × 15× 109

= 1.2× 10−14 A2.

(b) Determine the variance in the sample value due to relative intensity noise.

Solution
Assuming that the RIN is constant over the noise bandwidth, the variance from the RIN is
given by (7.8.10)

σ2
RIN = R2P 2RINBN

=
(
0.5× 10(−5.3

)2
10−12 × 15× 109

= 9.42× 10−14 A2.

(c) Determine the variance in the sample value due to the thermal noise.

88



Solution
Squaring the root-mean square current noise σi = 250 nA gives σ2

i = 6.25× 10−14 A2.

(d) Determine the total variance in the sample value.

Solution
For independent noise sources, the variances add. The total variance is 16.9× 10−14A2 or
a root-mean squared noise current of 411 nA referred to the input of the electrical amplifier
for the specific lightwave power used in this problem.

(e) Determine which noise source has the largest contribution to the overall variance and
calculate the relative error in evaluating the root-mean-squared noise when only the most
significant noise source is used. Is this a good approximation?

Solution
The relative intensity noise has the largest contribution. It has root-mean squared value
equal to 307 nA. The relative error when only this noise noise is used to calculate the root-
mean squared current noise is 100 × (411 − 307)/411 = 25.22%. This is not a good ap-
proximation.

7.21 Mean and variance of avalanche photodiode probability distribution
Starting with the characteristic function Cm(ω) for the output distribution of an avalanche
photodiode given by (7.6.3) and repeated here,

Cm(ω) = exp
[

wsF

(F − 1)2

(
1−

√
1− 2iωG(F − 1)

)
− iω

wsG
F − 1

]
,

and using (2.2.17), show that the mean of the probability mass function is equal to Es, and
that the variance is given by

σ2
m = G2ws (F + ws)− (wsG)2 = wsG2F = EsGF,

where G .
= ⟨G⟩ is the mean gain of the avalanche photodiode.

Solution
The expression for the characteristic function is

Cm(ω) = exp
[

wsF

(F − 1)2

(
1−

√
1− 2iωG(F − 1)

)
− iω

wsG
F − 1

]
,

Using

⟨mn⟩ =
∣∣∣∣ 1in dn

dωn
Cm(ω)

∣∣∣∣
ω=0
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the mean value is ⟨m⟩ = wsG. The mean square value is ⟨m2⟩ = G2ws (F + ws). Therefore,
the variance is

σ2
m = ⟨m2⟩ − ⟨m⟩2

= G2ws (F + ws)− (wsG)2

= wsG2F

= EsGF

where Es = wsG is the mean number of counts after the internal gain process.
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Chapter 8 Selected Solutions
8.2 Propagation of a chirped gaussian pulse
An input lightwave pulse s(t) is given as

s(t) = Ae−t
2/2σ2

c (22)

where 1/σ2
c = (1− iK) /σ2

in is complex with the constant K called the chirp parameter.
(Note that there is a sign change in this definition of the chirp parameter compared to the
original problem statement so as to be consistent with the literature.) The corresponding
real-passband lightwave pulse is

s̃(t) = Ae−t
2/2σ2

in cos
(
2πfct+

(
K/2σ2

in
)
t2
)

(23)

with the instantaneous frequency given by

f =
1

2π

dθ(t)

dt
= fc +

(
K

4πσ2
in

)
t,

where θ(t) is the argument of the cosine function. When K is positive, increasing time
corresponds to increasing frequency. This is called blue-shifting. When K is negative,
increasing time corresponds to decreasing frequency. This is called red-shifting. These two
kinds of chirped pulses are shown in the figure below (The ratio of carrier frequency to the
spectral width is small enough to show the effect of the chirp.) The pulse passes through a
fiber with a transfer function at a distance z = L given by (8.1.3), which is repeated here

H(f) = H0e
−i2πτfe−i2π2β2Lf

2

, (24)

Blue-shifted chirp Red-shifted chirp

(a) Determine the input spectral content S(f) of the chirped pulse at z = 0.

Solution
The spectral content of the pulse envelope S(f, z) at z = 0 is determined by taking the
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Fourier transform of complex-baseband pulse given in (22) where 1/σ2
c = (1− iK) /σ2

in
is complex. Using the Fourier transform pair given by (2.1.37), the frequency spectrum of
the chirped pulse is

S(f, 0) = A
√
2πσ2

c exp
(
− (2πσinf)

2

2(1− iK)

)
.

(b) Determine the root-mean-squaredwidth∆ωrms of themagnitude of the spectrumS(f)
in terms ofK and σ2

in.

Solution
The spectrum at z = 0 is given by

S(f) = A
√

2πσ2
cexp

(
−σ

2
c (2πf)

2

2

)
(25)

= A

(
2πσ2

in
1− iK

)1/2

exp
(
− σ

2
in(2πf)

2

2(1− iK)

)
. (26)

Separate into real and imaginary parts

exp
(
− σ

2
in(2πf)

2

2(1− iK)

)
= exp

(
−σ

2
in(2πf)

2(1 + iK)

2(1− iK)(1 + iK)

)
= exp

(
− σ

2
in(2πf)

2

2(1 +K2)

)
exp

(
−iσ

2
in(2πf)

2K)

2(1 +K2)

)
. (27)

The root-mean squared width of magnitude of the spectrum |S(f, 0)| can be determined
from inspection by writing the real part of (27) in standard form

S(f) = A
√

2πσ2
rmse

−(2πf)2/σ2
rms ,

so that

σ2
rms = (2πσin)

−1
√

(1 +K2).

This is the root-mean squared bandwidth in frequency. The root-mean squared width in
angular frequency is multiplied by 2π.

(c) Determine the output spectral content Sout(f) of the chirped pulse at z = L.

Solution
Suppose that coherent carrier is used so that the spectrum of the pulse envelope dominates
the overall transmitted linewidth σλ. Working in the frequency domain, use S(z, f) =
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H(z, f)S(z, 0). Using (26), the spectral content of the chirped pulse after a distance z is
then

S(z, f) = S(f)H(z, f)

= A

(
2πσ2

in
1− iK

)1/2

×

exp (−i2πfτ) exp
[
− (2πf)2

2

(
σ2
in

(1− iK)
+ iβ2z

)]
where the constantH0 is incorporated into A.
Define the “ variance” σ2

t after propagation distance of z as

σ2
t

.
=

σ2
in

(1− iK)
+ iβ2z

=

(
σ2
in + (1− iK) iβ2z

)
1− iK

=

(
σ2
in +Kβ2z + iβ2z

)
1− iK

Multiply and divide by σt and rearrange

S(z, f) = Aσin
√
2πσt

(
1

1− iK

)1/2(
1− iK

(σ2
in +Kβ2z + iβ2z)

)1/2

×

exp (−i2πfτ) exp
[
− (2πf)2σ2

t

2

]
=

Aσin

(σ2
in +Kβ2z + iβ2z)

1/2︸ ︷︷ ︸
constant in frequency

[√
2πσtexp (−i2πfτ) exp

[
− (2πf)2σ2

t

2

]]
︸ ︷︷ ︸

form for inverse transform

The function is now in a form that can be inverse Fourier transformed noting that phase
term transforms to time shift

s(z, t) =
Aσin

(σ2
in +Kβ2z + iβ2z)

1/2
exp

(
− (t− τ)2

2σ2
t

)

= C(z)exp

[
− (1− iK) (t− τ)2

2 (σ2
in +Kβ2z + iβ2z)

]
,

where C(z) is a z dependent constant. Separate s(z, t) to determine the magnitude of the
pulse

C(z)exp

[
− (1− iK) (t− τ)2

2 (σ2
in +Kβ2z + iβ2z)

]
=
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C(z)exp

[
−

(1− iK) (t− τ)2
(
σ2
in +Kβ2z − iβ2z

)
2 (σ2

in +Kβ2z + iβ2z) (σ2
in +Kβ2z − iβ2z)

]
Rewriting gives

s(z, t) = C(z)exp

[
− (t− τ)2 /

(
2
[((

σ2
in +Kβ2z

)2
+ (β2z)

2
)
/σ2

in︸ ︷︷ ︸
σ2
out(z)

])]
× phase term.

This expression is in the form of a magnitude and a phase with the magnitude determining
the output pulse width.

(d) Show that the square of the ratio of the output timewidth σout(z) to the input timewidth
σin can be written as

σ2
out(z)

σ2
in

=
(
1 +K

(
z/LD

))2
+ (z/LD)

2

where LD = σ2
in/β2 is the dispersion length (cf. (5.3.23)).

Solution
Using the expression for σ2

out(z) shown above, the mean-squared timewidth of the output
pulse can be written as

σ2
out(z) =

(
σ2
in +Kβ2z

)2
+ (β2z)

2

σ2
in

= σ2
in

[(
1 +K

β2z

σ2
in

)2

+

(
β2z

σ2
in

)2
]

or

σ2
out
σ2
in

=
(
1 +K

(
z/LD

))2
+ (z/LD)

2
,

where LD = σ2
in/β2 is the dispersion length (cf. (5.3.23)).

(e) Show that when β2 and K have the same sign, the pulse timewidth increases mono-
tonically with the distance L.

(f) Show that when β2 and K are opposite in sign, the pulse comes to a “focus” as the
pulse propagates in z with the minimum timewidth occurring at a distance given by

zmin =
|K|

1 +K2
LD.
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Solution
These two cases differ on the signs of β2 and K. The choice of signs depends on the time
convention for the transfer function H(f) and for the phase chirp. For the sign conven-
tion stated in the (modified) problem, the pulse timewidth increases monotonically with the
distance L when β2 and K have same sign. (The original problem statement assumed a
different sign convention.) For part (f), for the sign convention chosen for the problem,
when β2 andK have the same sign, the effect of the chirp is to “focus” the pulse in time as
the pulse propagates in z with the minimum width occurring at a distance

zmin =
|K|

1 +K2
LD

where LD is the dispersion distance. At this distance, the imaginary part of the exponential
vanishes. For wavelengths longer that the zero dispersion wavelength (≈1.3 µm for stan-
dard fiber), the dispersion is anomalous and β2 < 0. 1 When K = 0 and there is no chirp
and σ2

out(L) = σ2
in

[
1 + (z/zc)

2
]
For large z, the RMS width of the pulse increases linearly

with distance.
Using the reciprocal relationship for the RMS width in frequency and time, the RMS

width of a(t, z) at zmin is given by σout = σ2
in/
√
1 +K2. In this case, the RMS width of

the pulse at zmin is less than the input temporal width of σin leading to “temporal focusing”.
Plots of the RMS width as function of L/LD are shown in the figure below. For the sign
convention used in the modified problem, whenK ≥ 0, the RMS width increase monoton-
ically. WhenK < 0, the pulse width decreases to a minimum value at zmin and then begins
to increase after the pulse reaches a minimum pulse width.
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1Self phase-modulation creates a chirp with K > 0 and thus these two effects can cancel for specific pulse
shapes and power levels leading to the propagation of stable waveforms called solitons.
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8.3 Variance in the photodetected output
With the expected power ⟨P ⟩ collected by direct photodetection held constant, show that the
output signal-to-noise ratio (SNR) is proportional to the numberM of coherence regions at
the output face of the fiber. (Note: the mean and variance of the gamma probability density
function areM⟨P ⟩ andM⟨P ⟩2, respectively)
Solution
The total power is given by the sum ofM independent coherence regions so that

P total =
M∑
m=1

Pm,

where the set {Pm} of random variables is identically distributed. Because the random
variables are independent, the mean power is ⟨P total⟩ = M⟨Pm⟩. The electrical SNR is
given by

SNR =
M2⟨Pm⟩
M⟨Pm⟩

= M.

This expresson shows that the SNR increases as the number of independent coherence in-
tervals because of averaging over the coherence regions.

8.4 Modal noise for a single photodetector
The output light of a multimode fiber is collected using a single direct photodetector that
has an overlap regionAoverlap whose area is equal to the total area of the regionAfiber of the
output face of the fiber including the core and the cladding.

(a) Is there modal noise when there is no mode-selective attenuation? Explain.

Solution
No. When all of the signal power is collected from every mode that contains power, there
is no modal noise.

(b) Is there modal noise when the photodetector is misaligned and collects only a portion
of the power in the fiber and there are no other mode-selective attenuation mechanisms?
Explain.

Solution
Yes. For this case, a random portion of the incident lightwave power is coupled into the
photodetector as the speckle pattern randomly shifts across the output aperture. This form
of mode-dependent loss is modal noise.
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8.6 Output pulse for a fiber that supports two modes
Consider a fiber that supports two spatial modes. The output lightwave pulse in the first
mode before photodetection is a unit-amplitude gaussian pulse with unit variance. The out-
put lightwave pulse before photodetection in the second mode is a unit-amplitude gaussian
pulse also with unit variance, but is delayed in time by a value equal to one-half the vari-
ance. Determine an expression for the electrical signal energy E when:

(a) The pulses in each mode are noncoherent.
Solution
When the pulses are noncoherent, the directly photodetected electrical signal r(t) is is the
sum of the power in each pulse and is given by (1.2.4)

r(t) = R (P1(t) + P2(t))

=
R
2

(
e−t

2

+ e−(t−1/2)2
)
,

where Pj(t) = |sj(t)|2/2 for j = 1, 2, s1(t) = e−t
2/2, s3(t) = e−(t−1/2)2/2, andR is the

responsivity. The electrical energy E over an interval T is

E =

∫
T

r2(t)dt

=
R2

4

∫
T

(
e−t

2

+ e−(t−1/2)2
)2

dt

=
R2

4

∫
T

(
e−2t2 + 2e−t

2−(t−1/2)2 + e−2(t−1/2)2
)
dt

(b) The pulses in each mode are coherent.

Solution
When the pulses are coherent, the directly photodetected electrical signal r(t) is is the square
of the sum of the amplitudes in each pulse so that

r(t) =
R
2

(
e−t

2/2 + e−(t−1/2)2/2
)2

=
R
2

(
e−t

2

+ 2e−
t2

2 − 1
2 (t−1/2)2 + e−(t−1/2)2

)
,
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showing additional cross term. The corresponding electrical energyE over an interval T is

E =

∫
T

r2(t)dt

=
R2

4

∫
T

(
e−t

2/2 + e−(t−1/2)2/2
)4

dt

=
R2

4

∫
T

(
e−2t2 + 4e−

3t2

2 − 1
2 (t−1/2)2 + 6e−t

2−(t−1/2)2 + 4e−
t2

2 − 3
2 (t−1/2)2 + e−2(t−1/2)2

)
dt

(c) Comment on the result.

Solution
The coherent cross terms can cause either constructive interference between the pulses de-
pending on the relative phase between the pulses.

8.7 Amplitude-phase coupling in a dispersive fiber
Suppose that a lightwave signal s(t) at the input to a dispersive fiber is sinusoidally phase-
modulated so that

s(t) = eiµ sin(2πfmt),

where µ is the modulation index, and fm is the modulation frequency with period T =
1/fm. This periodic signal can be expressed in terms of an exponential Fourier series given
by

s(t) = eiµ sin(2πfmt) =
∞∑

n=−∞
Fne

in2πfmt,

with the Fourier series coefficients Fn given by Jn(µ), the Bessel function of the first kind
and order n.

(a) Derive an expression for the output lightwave signal s(t) at a distance L in terms of
the Fourier series coefficients and the complex-baseband transfer function given in (8.1.3).

Solution
Given that the input signal is already expressed in terms of a superposition of exponential
functions of the form of ein2πf0t, the output can immediately be written as

r(t) =
∞∑

n=−∞
Jn(M)ein2πf0tH(nf0)

= H0

∞∑
n=−∞

Jn(M)ein2πf0(t−τ)e−iπβ2(nf0)
2L,
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where H(f) is given in (8.1.3).

(b) By equating terms of the same frequency, determine an expression for the output light-
wave power P .

= |s(t)|2 /2 at frequency fm.

Solution
The form of the photodetected signal is the product of two summation with differing indices.
Therefore,

i(t) =
1

2
|r(t)|2 = H0

∞∑
n=−∞

Jn(M)ein2πf0(t−τ)e−iπβ2(nf0)
2L

×
∞∑

m=−∞
Jm(M)eim2πf0(t−τ)e−iπβ2(mf0)

2L

The term at f0 is generated when the difference in the two indices is equal to one. This
gives

i(t) ∝ J0(M)J1(M) cos
(
πβ2f

2
0L
)

+ J1(M)J2(M) cos
(
3πβ2f

2
0L
)
+ ...

where the factor of three is from 22 − 12. The problem shows that a dispersive medium
such as a fiber will convert a constant amplitude phase modulated signal into amplitude
fluctuations at the output.
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Chapter 9 Selected Solutions
9.4 Exact and approximate thresholds
(a) Derive the threshold expression given in (9.5.21).

Solution
Rewrite the equation as

σ2
0 (r − s1)

2 − σ2
1 (r − s0)

2
+ 2σ2

1σ
2
0 (loge (p0σ1)− loge (p1σ0)) = 0.

Using the quadratic formula and noting the term
(
s0σ

2
1 − s1σ2

0

)
2−
(
σ2
0 − σ2

1

) (
s21σ

2
0 − s20σ2

1

)
inside the square root function can be factored into (s0 − s1)2 σ2

0σ
2
1 gives (9.5.21).

(b) Show that for (s1 − s0)2 much larger than 2(σ2
1 − σ2

0) loge(σ1/σ0), that p1|0 and p0|1
are approximately equal, which demonstrates that the channel is approximately a binary
symmetric channel.

Solution
Using the approximation stated in the problem, the second term inside the square-root func-
tion can be neglected. Using the larger of the two thresholds then gives

Θ =
s0σ

2
1 − s1σ2

0 + σ1σ0(s1 − s0)
σ2
1 − σ2

0

=
s1σ0(σ1 − σ0) + s0σ1(σ1 − σ0)

(σ1 + σ0)(σ1 − σ0)

=
s1σ0 + s0σ1
σ1 + σ0

which is the threshold Θ that produces for a binary symmetric channel when the variances
are equal and prior p1|0 = p0|1 = 1/2 is equiprobable.

9.6 Gaussian probability density function with signal-independent and
signal-dependent variances
Let the expected sample value s1 when a mark is transmitted be equal to 200. Let the
expected sample value s0 when a space is transmitted be equal 20. The system has addi-
tive signal-independent gaussian noise characterized by σ2 = 900, and signal-dependent
noise characterized by σ2

ℓ = sℓ, where sℓ is the expected sample value. Using (9.5.27) and
(9.5.28) determine the following:
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(a) The probability of a detection error pe and the thresholdΘwhen only the signal-dependent
additive noise term is included.

Solution
When only signal-dependent shot noise is included, the Q parameter is

Q =
s1 − s0√
s1 +

√
s0

=
200− 20√
200 +

√
20

= 9.67.

Using (9.5.26) we have

pe =
1

2
erfc

(
Q√
2

)
=

1

2
erfc

(
9.67√

2

)
= 2× 10−22.

The threshold is the geometric mean so that

Θ =
√
200× 20 = 20

√
10.

(b) The probability of a detection error pe and the thresholdΘwhen only the signal-independent
additive noise term is included.

Solution
When only signal-dependent shot noise is considered then

Q =
s1 − s0
2σ

=
200− 20

60
= 3,

and

pe =
1

2
erfc

(
Q√
2

)
=

1

2
erfc

(
3√
2

)
= 1.35× 10−3.

The threshold is the arithmetic mean so that

Θ =
200 + 20

2
= 110.

(c) The probability of a detection error pe and the threshold Θ when both noise terms are
included.

Solution
When both noise sources are considered

Q =
s1 − s0√

σ2 + s1 +
√
σ2 + s0

=
200− 20

60
= 2.83,
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and

pe =
1

2
erfc

(
Q√
2

)
=

1

2
erfc

(
2.83√

2

)
= 2.29× 10−3.

The threshold is given by (9.5.25)

Θ =
σ1s0 + σ0s1
σ1 + σ0

=
s0
√
σ2 + s1 + s1

√
σ2 + s0√

σ2 + s0 +
√
σ2 + s0

=
20
√
900 + 200 + 200

√
900 + 20√

900 + 200 +
√
900 + 20

= 106,

which is slightly less than the threshold derived using only additive noise.

(d) Based on this analysis, which noise source is more significant?

Solution
The system is additive-noise limited.

9.8 Thresholds for a multilevel system
(a) A multilevel system with L levels, with σℓ = σ being a constant, is indexed by ℓ. Show
that, for this system, γℓ is a constant and that the minimum probability of a detection error
pe is achieved for uniformly spaced signal levels sℓ.

Solution
Start with (9.6.8), which is repeated here

pe =
L− 1

L
erfc

(√
γ/2
)
,

where γ = Q2. Suppose for simplicity that L = 4. The argumentsRi of the error functions
can be written as

pe =
3

4
(erfc(R1) + erfc(R2) + erfc(R3)) , (28)

with a constraintR1+R2+R3 = K whereK is related to the average power. To determine
the minimum probability pe of a detection error in terms of the mean signal levels, use
Lagrange multipliers. Taking the gradient of (28) with respect to {R1, R2, R3} generates an
equation for each of the three componentsRℓ. Each of these equations equals the Lagrange
multiplier λ. Including the constraint of R1 +R2 +R3 = K gives four equations and four
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unknowns (R1, R2, R3, λ)

− 2√
π
e−R

2
1 = λ

− 2√
π
e−R

2
2 = λ

− 2√
π
e−R

2
3 = λ

R1 +R2 +R3 = K,

where d/dx erfc(x) = −2e−x2

/
√
π has been used. The symmetric nature of these equa-

tions gives the solution as R1 = R2 = R3 = K/3 showing the minimum pe is achieved
for equal spacing between the levels.

(b) Now consider an ideal shot-noise-limited system with σℓ =
√
sℓ, supposing that the

square root√sℓ of the expected signal levels are uniformly spaced. Show that for this sys-
tem γℓ is again a constant that does not depend on ℓ.

Solution
For signal-dependent noise, the expression for the argument error function is proportional
to Q as given in (9.7.2) and repeated here

Qℓ =
sℓ+1 − sℓ
σℓ+1 + σℓ

=
sℓ+1 − sℓ√
sℓ+1 +

√
sℓ

=
(
√
sℓ+1 +

√
sℓ)(
√
sℓ+1 −

√
sℓ)√

sℓ+1 +
√
sℓ

=
√
sℓ+1 −

√
sℓ.

Given that the problem states that the square roots are uniformly spaced, the term√sℓ+1−√
sℓ is a constant. ThereforeQ is a constant and γℓ = Q2 is a constant that does not depend

on the specific level ℓ.

(c) Show that the uniform spacing of the square root of the signal levels for a shot-noise-
limited system produces a minimum probability of a detection error pe.

Solution
The same Lagrange multiplier method used in part (a) can be used for this problem.
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9.14 Sensitivity of the probability of a detection error
This problem quantifies the sensitivity of the probability of a detection error pe to the value
of γ.

(a) Using (9.5.30), determine the value of γ that produces pe = 10−9.

Solution
Using (9.5.26) we have

pe =
1

2
erfc

(√
γ/2
)
.

Setting pe = 10−9 and solving, the value of γ is 36.

(b) Determine pe when the value of γ determined in part (a) is halved, and comment on
the result.

Solution
For γ = 36/2 = 18, we have

pe =
1

2
erfc

(√
18/2

)
= 1.1× 10−5.

The probability of a detection error changes by over four orders of magnitude.

(c) Let γ = γ0 + δγ. Expand the approximate expression for pe(γ) given in (9.5.30)
keeping only terms of order zero and order δ.

Solution
Using (2.2.20), the approximate expression for pe is

pe ≈ 1√
γπ/2

e−γ/2.

Ignoring the scaling factor in front of the exponential,

e−(γ0+δγ)/2 = pe(γ0)δpe,

where δpe is simply

δpe = e−δγ/2,

where it is assumed that δ is negative so that it increases the error probability.
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(d) Using this expansion and a nominal value of γ0 = 9, determine the change in the
probability of a detection error when the value of γ changes by 5%.

Solution
Using δγ = 9(0.05) = 0.45 gives the error as

δpe = e0.45/2 = 25%,

The exponential sensitivity of the error rate with respect to the argument of the erfc function
means that if there are multiple terms to evaluate for the total probability of a detection error,
the term with the smallest value will dominate unless the terms are nearly identical or there
is a large multiplicity of the same type of term.

9.16 Unequal prior probabilities
Consider two systems. The first system determines the threshold knowing the priors by us-
ing the ratio of the posterior probability density functions u(r) given in (9.5.6). The second
system determines the threshold using the likelihood ratio λ(r) based on an equiprobable
prior.

(a) Derive an expression for the relative error in the probability of a detection error using
λ(r) compared to using u(r) as function of the ratio of the prior probabilities p0/p1 when
the two conditional probability density functions are gaussian probability density functions
with unit variance.

Solution
The exact threshold Θ is given by the solution to (9.5.21) and is repeated here setting
σ1 = σ0 = 1

1
2

(
(r − s1)2 − (r − s0)2

)
+ loge(p0)− loge(p1) = 0.

Because σ1 = σ0 = 1, there is only single threshold given by

Θ =
s1 + s0

2
+

loge r
s1 − s0

= Θ0 + δΘ

where r = p0/p1 is the ratio of the priors (cf. (9.5.11)),Θ0 is the threshold for an equiprob-
able prior and δΘ is the change in the threshold because of the unequal probabilities. This
threshold is then used in (9.5.23) to derive the corresponding conditional probabilities p1|0
and p0|1 of a detection error. The total probability of a detection error is given by (9.5.25).
Using p1 = 1/(r+ 1), p0 = r/(r+ 1), and σ1 = σ0 = 1 gives

pe =
1

2(r+ 1)
erfc

(
Θ− s0√

2

)
+

r

2(r+ 1)
erfc

(
s1 −Θ√

2

)
.
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(b) Plot the relative error over the interval 1 < (p0/p1) < 10 for s0 equal to one and
s1 equal to: (i) 2, (ii) 3, and (iii) 6. Comment on the result with regard to the dependence
of the relative error on the prior probability ratio and the signal-to-noise-ratio.

Solution
The relative error using the approximate thresholdΘ0 based on equiprobable prior as com-
pared to the exact threshold Θ based on the posterior probability is shown in the figure
below.
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The error is zero for p0/p1 = 1 and monotonically increases for any value of s1. The
curves for s1 = 2 and s1 = 3 cross over because for these small mean values, an accurate
calculation of the probability of a detection error requires the use of both detection regions
(cf. Figure 9.11).

9.17 Local oscillator power required for shot-noise-limited performance
A phase-synchronous demodulator uses a photodetector with a responsivityR = 1 A/W at
1.5 µm and a dark current of 1 nA. The photodetector is connected to a preamplifier with
a root-mean-squared current noise density spectrum σ = 1 pA/

√
Hz at the input to the am-

plifier. If BN = 0.75R where R is the data rate in bits/s and BN is the noise bandwidth,
derive an expression for the required local oscillator power as a function of the data rate R
so that the sum of the electrical thermal noise and the dark current noise is one percent of
the shot noise generated by the local oscillator.
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Solution
The thermal noise current variance σ2

i in units of A2 is given by

σ2
i = σ2BN A2

The dark noise current variance σ2
d in units of A2 is

σ2
d = 10−18 A2

because the variance is equal to the mean value for a Poisson random variable. The shot
noise variance σ2

shot in units of A2 is

σ2
shot = 2e⟨i⟩BN

= 2eRPLOBN ,

where PLO is the mean local oscillator power. Solving for the LO power gives

PLO =
σ2
shot

2eRBN

.

Setting the shot noise variance σ2
shot equal to 100 times the sum of the thermal noise vari-

ance and the dark current variance gives σ2
shot = 100(σ2

i + σ2
d) = 100(σ2BN + 10−18).

Substituting the numerical values gives

PLO =
100(10−24(0.75R) + 10−18)

2(1.6× 10−19)(0.75R)

where BN = 0.75R where R is the data rate in bits/s. For data rates greater than 1 Gb/s,
the thermal noise from the amplifier dominates the dark current from the photodetector so
that

PLO ≈ 100(10−24)

2(1.6× 10−19)
≈ 3.125× 10−4W ≈ −5 dBm.

For the conditions stated in this problem, the required local oscillator power is independent
of the data rate R.

9.19 Detection thresholds
This problem compares the probability of a detection error based on three different meth-
ods of detection: the first uses the two thresholds defined by the solutions to (9.5.21), the
second uses only the larger of the two value given in (9.5.22), and the third uses a threshold
chosen to produce a binary symmetric channel with pe given by (9.5.30).
(a) Let s0 = 0, σ0 = 1, σ1 = 10, and p0 = p1 = 1/2. Plot the logarithm of pe versus the
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logarithm of the expected value of a mark s1 for values of s1 up to 40. Comment on the
result.
(b) Let s0 = 0, s1 = 10, σ0 = 1, and p0 = p1 = 1/2. Plot the logarithm of pe versus the
ratio σ1/σ0 from values slightly greater than one up to ten. Comment on the result.
(c) Based on these plots, comment on the range of validity of modeling the channel as a
binary symmetric channel.

Solution
The difference between the probability of a detection error pe for detection based on using
two optimal thresholds, detection based on using one threshold, and detection based on us-
ing a threshold chosen to produce a binary symmetric channel is shown in the figure on the
next page as a function of the expected value r1 for a mark. The lower plot is the same set
of curves plotted as a function of the ratio σ1/σ0. The marked points are the same for each
curve. The difference between the three methods of detection is most pronounced when the
variances σ2

0 and σ2
1 of the two probability density functions are significantly different and

the expected signal levels s0 and s1 are small. Referring to the lower plot, all three methods
of detection produce the same pe as the variances become comparable as is evident in the
figure. All three methods also produce the same pe for conditions that produce a binary
symmetric channel. These conditions are satisfied by nearly all current lightwave commu-
nication systems and thus detection probabilities based on a binary symmetric channel is
widely used.
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Chapter 10 Selected Solutions
10.1 The photocharge and the electrical energy in a pulse
For direct photodetection, the photochargeW in an electrical pulse p(t) is given by

W
.
=

∫ ∞

−∞
p(t)dt,

and is directly proportional to the lightwave energy with the responsivityR (cf. Table 6.2)
as the proportionality constant. The electrical energy in the same pulse for a unit resistance
R is

E
.
=

∫ ∞

−∞
p2(t)dt.

Using R = 1 and R = 1, compare the lightwave signal energy and the electrical signal
energy for the pulses following:

(a) p(t) = A rect(t)

Solution

W =

∫ ∞

−∞
A rect(t)dt = A E =

∫ ∞

−∞
A rect2(t)dt = A2.

(b) p(t) = A sinc(t)

Solution

W =

∫ ∞

−∞
A sinc(t)dt = A E =

∫ ∞

−∞
Asinc2(t)dt = A2.

(c) p(t) = A√
2π
, e−t

2/2

Solution

W =

∫ ∞

−∞

A√
2π
e−t

2/2dt = A E =

∫ ∞

−∞

(
A√
2π
e−t

2/2
)2
dt =

A2

2
√
π
.

Examining the three pulses there is no general relationship between the lightwave signal
energy and the electrical signal energy.
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10.3 The effect of a constant bias signal on the optimal threshold
Consider the two three-point signal constellations shown below. In each constellation, the
three points form an equilateral triangle with side of length d.

(b)(a)

(a) Determine the mean symbol energy E in terms of d when each of the three signal
points is equidistant from the origin as part (a) of the figure. Repeat for part (b). In this
case, the three signal points do not have the same energy.

Solution
For the constellation shown in part (a), every symbol has the same energy, which is E =
d/
√
3. For figure (b), the three signal points do not have the same energy. The two points

on the horizontal axis have an energy of d/2, and the third point has an energy of
√
3d/2,

which is simply the height of the triangle.

(b) Partition the plane for each constellation into three optimal decision regions when the
noise is additive white gaussian noise.

Solution
The partitioning is shown in part (a) of the figure on the next page. For the second case, the
decision regions are displaced, but are still straight lines.

(c) Partition the plane for the constellation shown in part (a) of the figure into three optimal
decision regions for the case of zero-mean gaussian noise with a variance that is propor-
tional to the mean signal. Compare your answer with the results of part (b) of this problem.

Solution
Because the signal point are equidistant from the origin, the variance of each of these prob-
ability density functions is the same. Therefore, the partitions for the decision regions do
not change and are shown in part (a) of the figure on the next page.
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(d) Repeat part (c) using figure (b) and sketching the approximate decision regions. Com-
pare these regions with the results for a white additive gaussian noise channel. Are the de-
cision regions the same for both signal constellations?

Solution
In this case, the distance of the the point along the vertical axis is

√
3 larger than the distance

the other two points along the horizontal axis. This leads to a larger noise variance for this
point. Consequently, the decision regions are not straight lines. These decision regions are
shown in part (b) of the figure for the solution.

10.8 Multilevel intensity modulation
A four-level Gray-coded intensity-modulated system is designed to achieve a probability of
detection error pe. It has a mean background noise term s0 and a signal-independent noise
variance σ2. Using (9.6.8), determine:

(a) The required value for Q.

Solution
The levels are determined iteratively. Using the symbol error rate stated in (9.6.8) gives

pe =
(L− 1)

L
erfc(Q/

√
2).

Setting L = 4 and solving for Q (or γ2) we have

Q =
√
2erfc−1(4pe/3).
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(b) The required expected signal levels s1 through s3 in terms of s0, σ2, and pe.

Solution
Under the constraint that noise is signal independent,Qℓ = (sℓ+1− sℓ)/2σ is the same for
all ℓ (See Problem 9.8). Starting with s0 the remaining values si are given by

sℓ+1 = 2
√
2σerfc−1(4pe/3) + sℓ,

for ℓ = 0, 1, 2.

(c) The threshold values Θ1 through Θ3.

Solution
Using (9.6.3a) with equal variances for all ℓ gives

Θℓ+1 =
1

2
(sℓ+1 + sℓ) ,

for ℓ = 0, 1, 2.

(d) The expected number of photoelectrons m per symbol.

Solution
The received sample rℓ is the photocharge W in an interval T . Therefore, the average
number of photoelectrons per symbol interval is simply

mℓ = sℓ/e.

(e) The power penalty compared to an on-off-keyed intensity-modulated system operating
at the same data rate.

Solution
The energy efficiency of multilevel intensity modulation is given in (10.5.10) and is re-
peated here

E =
dmin/2

(L− 1)dmin/2
=

1

L− 1
.

ForL = 4, this is a factor of one-third, or about−4.8 dB, compared to binary on-off keying.

10.9 The effect of the extinction ratio on the optimal threshold
Consider a single carrier system that transmits a mean power P at a symbol rate R. The
length of the span is L km, and has an attenuation of κ dB/km. The receiver is an ideal
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photon-counting receiver (η = 1).

(a) Determine the expected number of photons for a mark E1 and the expected number
of photon for a space E0 in terms of the expected number of photoelectrons per bit Wb and
the transmitter extinction ratio ex defined in (7.5.6).

Solution
For ideal photodetection the expected number of photons E is equal to the expected number
of photocounts W. The mean number of photocounts per bit is Wb = (W1 + W0)/2 and
ex = W0/W1. Therefore W1 = 2Wb/(1 + ex) and W0 = 2Wbex/(1 + ex).

(b) Derive an expression that relates the extinction ratio ex to the error-rate pe.

Solution
The solution requires the expression for the error rate in terms of Wb and ratio ex. The
expression for the γ2 = Q-factor is given by

γ2 =
√

W1 −
√

W0 =

√
2Wb

1 + ex
(1−

√
ex) .

(c) Now suppose that the dark current in the photodetector is 10% of the mean photode-
tected electrical signal. Determine the modified extinction ratio required to achieve the
same probability of error as in part (b).

Solution
The presence of dark current modifies the quantities as follows:

W′
1 = W1 +Wdark

W′
0 = W0 +Wdark

e′x =
W′

0
W′

1
=

W0 +Wdark
W1 +Wdark

=
2exWb + (1 + ex)Wdark
2Wb + (1 + ex)Wdark

=
2ex + 0.1(1 + ex)

2 + 0.1(1 + ex)
=

2.1ex + 0.1

0.1ex + 2.1
(29)

W′
b =

W′
1 +W′

0
2

= Wb −Wdark

= 0.9Wb

whereWdark = 0.1Wb has been used. Equating the expressions for γ2 derived in part (b) and
cancelling common terms gives
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√
1.8

1 + e′x

(
1−

√
e′x

)
=

√
2

1 + exmod

(
1−√exmod

)
,

where exmod is the modified extinction ratio required to have the same probability of detec-
tion error. Given that e′x can be expressed in terms of the original extinction ratio ex using
(29), this expression relates the original extinction ratio and the modified extinction ratio
exmod .

10.11 Photon noise
Let the power density spectrum for the spontaneous emission Nsp expressed in terms of the
expected number of photons have a value of two at a wavelength of 1550 nm.

(a) Determine the power density spectrum Nsp from spontaneous emission in dBm/Hz and
evaluate the noise power over a bandwidth of 25 GHz.

Solution
The power density spectrum in dBm/Hz is

Nsp = log10
(

2︸︷︷︸
Nsp

×hc
λ

)
=

(
2× 6.626× 10−34 × 3× 108

1.55× 10−6

)
= −155.9 dBm/Hz.

The noise power in a bandwidth of 25 GHz is then −155.9 + 10 log10(25× 109) = −55.9
dBm.

(b) Compare the power density spectrum Nsp to the power density spectrum for thermal
noise N0 = kT0 assumingR = 1, and R = 50Ω.

Solution
At a temperature of 290 K, the thermal noise power density spectrum in dBm is

Nth = 10 log10
(
103kT0

)
= −174 dBm/Hz

so that an optical amplifier with an equivalent noise of two photons per mode has a power
density spectrum that is about 20 dB larger than the thermal noise power density spectrum
at room temperature. This is one reason why thermal noise can be often be neglected when
a lightwave amplifier is used.

(c) Let the expected number of signal photons Eb for a bit also have the value of two. De-
termine the probability of a detection error pe for both heterodyne and homodyne detection
including shot noise and spontaneous emission noise for an ideal photodetector (η = 1).

115



Solution
For homodyne demodulation with ideal photodetection we have

pe =
1

2
erfc

(√
2Eb

2Nsp + 1

)

=
1

2
erfc

(√
2(2)

2(2) + 1

)
= 0.103.

For heterodyne demodulation with ideal photodetection we have

pe =
1

2
erfc

(√
Eb

Nsp + 1

)

=
1

2
erfc

(√
2

3

)
= 0.124.

(d) Repeat the last question neglecting photon noise and determine the relative error in pe
when photon noise is neglected.

Solution
Neglecting shot noise gives

pe =
1

2
erfc

(√
Eb
Nsp

)

=
1

2
erfc(1) = 0.0786

The relative error for each form of demodulation is

Error(homo) = 100× 0.103− 0.0786

0.103
= 23%.

Error(hetero) = 100× 0.124− 0.0786

0.124
= 37%,

showing that the shot noise must be included for this example for an accurate calculation.
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10.14 Detection probabilities
Consider a constellation that consists of three signal points as shown in figure below with
one point at the origin.

(a) (b)

√
E

√
E φ

√
E cosφ

(a) Referring to part (a) of the figure, suppose that the noise is additive with E/N0 = 5
where E is the expected value for the symbol energy.

(i) Determine the optimal thresholds for detection.

Solution
Because the noise is additive, the thresholds are set halfway between the signal points with
the two thresholds given as Θ1 = −

√
E/2 and Θ2 =

√
E/2.

(ii) Calculate the exact probability of a detection error.

Solution
The probability of a symbol error is given by (10.2.3) and repeated below

pe =
L− 1

L
erfc

(√
3

L2 − 1

E

N0

)

where the symbol energy E is equal to Eb log2 L. Substituting L = 3 and E/N0 = 5 gives

pe =
2

3
erfc

(√
3

8
(5)

)
= 3.52× 10−2.

(iii) Calculate the approximate probability of a detection error using the minimum distance.

Solution
The union bound in terms of dmin is given by (10.2.13) and repeated below

pe ≤ n

2
erfc

√ d2min
4N0

 ,

For the three point signal constellation the average number of nearest neighbors n is (1 +
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2 + 1)/3 = 4/3, dmin =
√
E so that

pe ≤ 2

3
erfc

(√
E

4N0

)

≤ 2

3
erfc

(√
5

4

)
= 7.60× 10−2,

which overestimates the probability of a detection error by about a factor of two compared
to the exact expression.

(b) Suppose that the demodulation occurs with a fixed phase error ϕ shown in part (b)
of the figure. Repeat part (a) using the same thresholds.

Solution
With a phase error ϕ and the same thresholds, the amplitude of the signal along the x axis
is reduced by

√
E cosϕ as is shown in part (b) of the figure. Therefore, the probability of a

symbol error pe is given by (10.2.3) and repeated here

pe =
2

3
erfc

(√
3

8
(5) cosϕ

)
.

The probability of a detection error using the union bound is

pe ≤ 2

3
erfc

(√
E

4N0

)

≤ 2

3
erfc

(√
5

4
cosϕ

)
.

10.19 Phase-synchronous demodulation versus direct-photodetection
demodulation in the presence of background noise
This problem compares the probability of a detection error pe of a shot-noise-limited phase-
synchronous homodyne demodulation and photon counting in the presence of background
noise.The background noise is modeled as a constant photogeneration arrival rate µ. For
dark current, this term is rdark = eµdark where µdark is a constant arrival rate and Wdark =
µdarkT is the number of background photoelectrons in an interval T for a constant dark cur-
rent arrival rate µdark.
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(a) Using an appropriate wave-optics model for the background noise, derive an expres-
sion for the bit error rate for the phase-synchronous homodyne demodulation of binary
phase-shift keying in the presence of background noise.

Solution
Including a background term generated from the dark current in the photodetector, the ex-
pression for Ep/N0 for shot-noise-limited homodyne demodulation given in (8.2.16) is
modified to read

Ep
N0

=
4eiLOWp

Wdark + 2eiLO

=
Wp

Wdark/WLO + 1/2

where Wb is the mean number of photocounts photons in a bit, Wdark is the number of noise
counts, andWLO = 4eiLO is the mean number of photocounts generated from the local oscil-
lator. This expression shows that the background noise term generated from dark current
in the photodetector is reduced by the mixing gain.

(b) Compare this expression to the bit error rate for photon counting in the presence of
a background noise term W0 given in (9.5.40) when W1 = 2Wb and W0 = Wdark.

Solution
For photon counting with a background term, the optimal threshold is given in (9.5.38) and
repeated here for W1 = 2Wb and W0 = Wdark

Θ =

⌊
2Wb −Wdark

loge 2Wb − logeWdark

⌋
.

The probability of a detection error is given in (9.5.40), which is repeated here for an
equiprobable prior

pe =
1

2
− 1

2

Θ∑
m=0

1

m!
(
(Wdark)

me−Wdark − 2(Wb)
me−2Wb

)
.

For this case, the effect of the background term is not scaled by the mixing gain (cf. Figure
9.15).

(c) Which modulation format is more robust to the presence of background noise?

Solution
Because of the mixing gain, phase synchronous detection is more tolerant of background
noise generated from dark current in the photodetector compared to direct photodetection.
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10.21 Nearest neighbors for quadrature amplitude modulation
The interior points, the exterior points, and the corner points of a square quadrature am-
plitude modulation constellation have a different numbers of nearest neighbors. Account-
ing for these differences, show that the mean number of nearest neighbors n̄ for QAM is
4
(
1− 1/

√
L
)
.

Solution
The four corner points have two nearest neighbors. Excluding the four corner points, the
four “edges” of length (

√
L−2) have three two nearest neighbors. The remaining (

√
L−2)2

interior point have four nearest neighbors so that

n̄ = 1
L

(
4(2) + 4(

√
L− 2)(3) + (

√
L− 2)2(4)

)
= 4

L

(
2 + 3

√
L− 6 + L− 4

√
L+ 4

)
= 4

(
1− 1/

√
L
)
.
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Chapter 11 Selected Solutions
11.1 Minimum distance for coherent and noncoherent carriers
(a) On a sketch or copy of Figure 11.14b, draw a line indicating the maximum amplitude
for a space using a noncoherent carrier.
(b) Repeat for the maximum amplitude for a space using a coherent carrier.
(c) Repeat for the minimum amplitude for a mark using a coherent carrier.
(d) Repeat for the minimum amplitude for a mark using a noncoherent carrier. (This is the
same value as for part (c).
(e) Using these values, determine which system has the largest minimum distance.

Solution
The heavy line shown in the figure is for noncoherent.

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

A
m

pl
itu

de

(a) Max space noncoherent
(b) Max space coherent
(c) Min mark noncoherent
(d) Min mark coherent

(1) dmin noncoherent
(2) dmin  coherent

Coherent

Time

(c) & (d)

(a)

(b)
(2) (1)

For this specific case, dmin for the noncoherent case is larger than dmin for the coherent
case. For other patterns of pulses, this may not be true.

11.3 Uncompensated intersymbol interference for intensity modulation
For simple on-off keyed intensity modulation, the effect of intersymbol interference is to
reduce the minimum sample value for a mark and increase the maximum sample value for
a space thereby reducing the minimum separation deye compared to the minimum distance
dmin in the absence of interference.

(a) The minimum high sample s′1 without noise occurs for an isolated mark because the
neighboring spaces do not add to the value. Show that this worst-case value is

s′1 = s1 − ϵ∆s,
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where d10 = ∆s = s1 − s0 is the minimum distance in the absence of intersymbol inter-
ference, and

ϵ = 1− 1

S

∫ T

0

s(t)dt

is the proportion ϵ of the sample value for a mark that is lost because the pulse has spread
to other symbol intervals, where S =

∫∞
−∞ s(t)dt is the total signal in one pulse.

Solution
For a mark surrounded by spaces the worst case value s′1 is reduced by the proportion ϵ of
the pulse that is lost to other signaling intervals as given above.

(b) Show that the maximum value s′0 for a space is

s′0 = s0 + ϵ∆s.

Solution
The same line of reasoning holds for a space. In the worst case, the proportion of the pulse
ϵ that is lost is added to the space as given above.

(c) Show that the minimum separation deye
.
= s′1 − s′0 in the presence of intersymbol inter-

ference is

deye = d10(1− 2ϵ).

Solution
Subtracting the two expressions gives the separation deye between the two worst-case values
as

deye = s′1 − s′0
= s1 − ϵ∆s− s0 − ϵ∆s
= d10(1− 2ϵ).

(d) Using d10 = 2, compare the minimum separation for intensity modulation to the min-
imum separation for binary phase-shift keying dmin = 2

∑
j ̸=k |sk−jqj | given in (11.1.6).

Comment on the result. In what way is the interference similar? In what way is the inter-
ference different?

Solution
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Using d10 = 2, the expression for intensity modulation is dmin = 2(1 − 2ϵ) which shows
that the term

∑
j ̸=k |sk−jqj | for BPSK is replaced by the term (1−2ϵ) for intensity modula-

tion. These expressions are similar because an isolated amplitude value of +1 surrounding
by neighboring symbols of −1 has the same form as a mark value of two surrounded by
neighboring space symbols of value zero. However, the expressions are not directly com-
parable because the values of BPSK are s ∈ {−1, 1} whereas for intensity modulation,
s ∈ {0, 2}. This means that neighboring BPSK symbols may add or subtract to any given
symbol

11.6 Worst-case intersymbol interference
Consider the illustration shown below

Threshold

r1r0 r1-xr0+x

for which the probability density functions for a mark and a space can be resolved into
four separate probability density functions. Each of the four probability density functions
is a gaussian distribution with the same variance σ2. The probability density functions with
means r1 and r0 represent symbols of the sequence that are not affected by intersymbol
interference. The two other probability density functions with means r1−x and r0+x rep-
resent symbols of the sequence that have significant intersymbol interference. The threshold
is set at (r1 + r0)/2.

(a) Determine the relationship between x and the intersymbol interference parameter ϵ de-
fined in Problem 3.

Solution
The expressions for the mean values including the effect of ISI were derived for the solution
to Problem 3 and are

r′1 = r1 − ϵ∆r
r′0 = r0 + ϵ∆r,

where∆r = r1 − r0, and x = ϵ∆r.

(b) Determine the conditional error probability p1|0 using only the probability density func-
tion for a mark with an expected value r1 and the probability density function for a space
with an expected value of r0+x. Repeat for the conditional probability p0|1 using r0 and r1.
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Solution
The expression for p1|0 is

p1|0 ≈
1√
2πσ0

∫ ∞

Θ

e−(y−r0)2/2σ2
0dy,

where r0 → r0 + x because a shifted space distribution is used with the same threshold
Θ = (r1 + r0)/2. Then substitute r′ = r−(r0+x)

σ , dr′ = dr/σ and change the lower limit
to dr′ = Θ−(r0+x)

σ = (r1+r0)/2−r0−x
σ = Q− x/σ. Therefore

p1|0 ≈ 1
2erfc

(
Q− x/

√
2σ
)
.

The probability p0|1 is 1
2erfc(Q/

√
2) because the mean value for the mark distribution has

not changed. Therefore, the total probability of error for an equiprobable prior is

pe =
1

4
erfc
(
Q− x/

√
2σ
)
+

1

4
erfc(Q/

√
2).

(c) Repeat part (b) using the probability density function for a mark with an expected value
of r1 − x and the probability density function for a space with an expected value of r0.

Solution
Using symmetry arguments, the expression for p0|1 for the shifted mark distribution is the
same as part (b).

(d) Using the two conditional probability density functions from part (b) and the two con-
ditional probability density functions from part (c), determine the probability of a detection
error pe when the priors are equal.

Solution
There are two mark distributions and two space distributions and thus there are four dis-
tributions in total. We have calculated three of them. The fourth is symmetric about the
threshold with a mean mark value of r1 − x and a mean space value of r0 + x so that the
error from this term is 1

2erfc
(
Q− 2x/

√
2σ
)
. The total probability pe of an error is

pe = 1
4erfc(Q/

√
2) + 1

4erfc
(
Q− x/

√
2σ
)
.

(e) Let∆r = r1 − r0 = 10 and σ = 1. Find the total probability of a detection error when
x = 1 and determine the relative contribution from each of the four error terms—two from
part (b) and two from part (c). Which term has the largest contribution? Why?

Solution
Using the values Q = 5, and Q − x/σ = 4 . The probability of an error for the first
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term is 0.25erfc(5/
√
2) = 1.43× 10−7. The probability of an error for the second term is

0.25erfc(4/
√
2) = 1.59× 10−5. This results show that part of composite distribution that

is “closest” dominate the total error calculation (>99% for this case).

(f) Using the results of part (e) and (a), compare this result with the probability of a detection
error derived using (11.9.2) and thus comment on the conditions for which the minimum
separation deye can be used to accurately determine the effect of the intersymbol interfer-
ence.

Solution
Using the given values and the expression from part (a), the ISI parameter ϵ = x/∆r =
1/10. Therefore, pe = 1

2erfc
(
Q(1−2ϵ)/

√
2
)
= 1

2erfc(4/
√
2) = 3.17×10−5. Comparing

this value to the “exact” expression from part (e), shows that using ϵ to estimate the error
overestimates the error by about a factor of two for the parameters used in this problem.
This overestimate is because ϵ is based on a worst-case pattern of a mark surrounded by
spaces and a space surrounding by marks.

11.7 Effect of group-velocity dispersion and laser linewidth on the
intersymbol interference
A system transmits R bits/second over a span of L km. A mark is represented by a gaus-
sian pulse with a root-mean-squared timewidth Trms. The modulated lightwave pulse has
a root-mean-squared spectral width σλ. The intensity modulator has an extinction ratio
ex = E0/E1 (cf. (7.5.6)). The expected number of photons per bit is Eb. There are no other
noise sources. Derive an expression for pe in terms of Eb, ex, and the intersymbol interfer-
ence parameter ϵ defined in Problem 3.

Solution
In order to determine the ISI power penalty, we need an expression for E1 in terms of Eb.

E1 =
2Eb

1 + ex
(30a)

E0 =
2Ebex
1 + ex

. (30b)

The expression for the intersymbol interference parameter ϵ defined in Problem 3 is

ϵ = 1− 1

S

∫ 1/2R

−1/2R

e−t
2/2T 2

rms

= erfc(RTrms/2
√
2).
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The value of E1 in the presence of ISI is E1ISI = E1 − ϵEb and E0ISI = E0 + ϵEb so that

E1ISI = Eb
(

2

1 + ex
− ϵ
)

(31a)

E0ISI = Eb
(

2ex
1 + ex

+ ϵ

)
, (31b)

where (30) has been used. Using the gaussian approximation given in (9.6.10), the proba-
bility pe of a detection error when only signal-dependence noise is considered is

pe =
√

E1ISI −
√

E0ISI,

where the terms E1ISI and E0ISI are expressed in terms of Eb, ex, and ϵ in (31).

11.8 Minimum distance for coherent and noncoherent carriers
Referring to Figure 11.14, let rp(t) = e−t

2/2T 2
rms .

(a) Assuming that only the adjacent symbols contribute to the interference, determine the
minimum electrical amplitude of an isolated mark surrounded by spaces using the follow-
ing methods:

(i) Adding the amplitude of pulses and then squaring the resulting amplitude of the se-
quence of pulses. This method is appropriate for a coherent carrier.
(ii) Squaring the amplitude of each isolated pulse and then adding the sequence of squared
pulses.This method is appropriate for a noncoherent carrier.

(b) Repeat part (a) for an isolated space is surrounded by marks.

Solution
For the isolated mark, the value for coherent and noncoherent is the same and is equal to
one. For an isolated space for coherent detection we sum and then square two shifted marks
and then evaluate at t = 0

r(0) =
(
e−(t+T )2/2T 2

rms + e−(t−T )2/2T 2
rms

)2 ∣∣∣
t=0

= 4e−T
2/T 2

rms .

For a noncoherent system we square and then add so that

r(0) =
(
e−(t+T )2/2T 2

rms

)2
+
(
e−(t−T )2/2T 2

rms

)2 ∣∣∣
t=0

= 2e−T
2/T 2

rms .

(c) Using the results of the previous two parts, derive an expression for the minimum sep-
aration deye for both a coherent carrier and a noncoherent carrier. Comment on the result
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with respect to Figure 11.14.

Solution
For the coherent carrier, we have

deye = 1− 4e−T
2/T 2

rms .

For the noncoherent carrier we have

deye = 1− 2e−T
2/T 2

rms .

For this specific example the minimum separation is smaller for the coherent carrier be-
cause the interference from the adjacent symbol intervals adds constructively.

(d) Form the difference between the minimum separation derived using a coherent car-
rier and the minimum separation derived using a noncoherent carrier. Plot this difference
over the range of T/8 < Trms < 7T/8. Comment on the result.

Solution
The difference between the separations is 2e−T

2/T 2
rms . A plot over the range 1/8 < T/Trms <

7/8 is shown below
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The difference decreases as the symbol interval T becomes large with respect to the pulse
width Trms because there is less interference between the pulses.

(e) Describe how you could estimate the minimum separation deye for a partially coher-
ent carrier. What additional information is needed?

Solution
The degree of coherence of the source is required to estimate the minimum separation.
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11.9 Shot Noise Error
Using Campbell’s theorem, determine the contribution σ2

shot(kT ) to the variance of the sam-
ple caused by the shot noise for the kth symbol interval. Note that when shot noise is present
in an intensity-modulated waveform, the time-varying mean r(t) used to evaluate the shot
noise is given by

r(t) = i0 + ⟨s⟩
∞∑

j=−∞
p(t− jT ),

where ⟨s⟩ is the expected value of a stationary datastream of intensity-modulated symbols,
p(t) is the received pulse, and i0 is a constant characterizing a background term.

Solution
Substituting the expression for the time-varying mean into the expression for the variance
given in Campbell’s theorem (cf. (6.7.18b)), the variance is

σ2
shot(kT ) =

∫ ∞

−∞
r(kT − t)f2(t)dt

∣∣∣
t=kT

=

∫ ∞

−∞

(
i0 + ⟨s⟩

∞∑
j=−∞

p(t− jT )
)
f2(t)dt

∣∣∣
t=kT

,

where f(t) is the impulse response of the detection filter.
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Chapter 12 Selected Solutions
12.1 Second-order phase-locked loops
A loop filter used in a second-order phase-locked loop has the transfer function

HL(f) = 1 +
a

i2πf

where a is a constant. The phase-locked loop response under a linear approximation is
described by

Z(f) = C1HL(f)
(
Φ(f)− Φ̂(f)

)
where Φ(f) is the Fourier transform of the phase and Φ̂(f) is the Fourier transform of the
output of the controlled oscillator.

(a) Starting with (12.2.12), and using the properties of the Fourier transform, show that

Φ̂(f) =
C2

i2πf
Z(f).

Solution
Taking the Fourier transform of (12.2.12), which is repeated here

dϕ̂(t)
dt

= C2z(τ),

and solving for Z(f) gives

Z(f) = C1HL(f)
(
Φ(f)− Φ̂(f)

)
(32)

(b) Define H(f) = Φ̂(f)/Φ(f) as the ratio of the phase estimate Φ̂(f) to the input phase
Φ(f). Show that H(f) can be written in the form

H(f) =
2i ζ (f/fn) + 1

−(f/fn)2 + 2 iζ (f/fn) + 1
. (33)

Express the natural frequency fn and the damping parameter ζ in terms of the parameters
a, C1, and C2.

Solution
Let A = C2/i2πf and B = C1(1 + a/i2πf). Then substituting Z(f) into (32) gives

Φ̂(f) = AB
(
Φ(f)− Φ̂(f)

)
.

129



Solving for the ratioH(f) = Φ̂(f)/Φ(f) gives

Φ̂(f)

Φ(f)
=

AB

AB + 1

=
C1C2(a+ 2iπf)

−4π2f2 + C1C2(a+ 2iπf)

=
2iπf/a+ 1

−4π2f2/aC1C2 + 2iπf/a+ 1

Equating terms with (33) gives fn =
√
aC1C2 and ζ =

√
aC1C2/2a.

(c) The error transfer functionHe(f) is defined as the difference between the ideal transfer
function H(f) = 1 and the actual transfer function HL(f) so that He(f) = 1 − HL(f).
Derive He(f) and show, in the absence of noise, that ϕ̂ = ϕ in steady state.

Solution
The error transfer functionHe(f) is

He(f) = 1−HL(f) = − a

i2πf

The corresponding impulse response for the loop error is a simply a derivative and goes to
zero in the steady state.

12.2 Nonlinear analysis of a phase-locked loop (requires numerics)
A phase-locked loop that is not well-locked does not satisfy sin θe ≈ θe. The loop response
is nonlinear, and the phase-noise probability density function is no longer gaussian. For a
first-order phase-locked loop, the phase-noise probability density function is2

f(θe) =
eα cos θe

2πI0(α)
,

where α = 1/σ2
θe
and I0(x) is the modified Bessel function of the first kind and order zero.

Suppose that this probability density function is approximated by a zero-mean gaussian
distribution f(θe) characterized by a root-mean-squared phase error σθe expressed in terms
of degrees. Determine σθe such that the squared error√∫ π

−π
|fexact(θe)− fgauss(θe)|2 dθe, (34)

2See Tikhonov, V. I., Phase-lock automatic frequency control application in the presence of noise, Automatika
i Telemekhanika, 21(3):209–14, 1960.
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is less than five percent. Determine the approximate range of the validity of using a gaus-
sian distribution for the probability density function of the phase noise.

Solution
A plot of (34) along with a gaussian approximation is shown in the figure below for root-
mean squared phase errors of 5o, 10o, and 20o.
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The relative error using (34) is shown below
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The relative error is less than 5% for a root-mean squared error of 37o.
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12.7 Comparing polarization demodulation to I/Q demodulation
Suppose that the estimated polarization basis is misaligned so that the block sample value
r after the misalignment is related to the block input s at the transmitter by

r = Ts,

where T is the polarization transformation given in (2.3.59) with χ = 0 so that the mis-
alignment is described by only the angle ξ. Compare the functional form of this kind of
misalignment to the effect of a constant phase error θe in the estimate in the I-Q axes for
the demodulation of the two quadrature signal components.

Solution
The general lossless polarization transformation R(ξ, χ) is given by (2.3.59), which is re-
peated below

R(ξ, χ) = [J1, J2] =

[
a b
−b∗ a∗

]
.

where a = cos ξ cosχ − i sin ξ sinχ, and b = − sin ξ cosχ + i cos ξ sinχ. For χ = 0,
a = cos ξ and b = − sin ξ so that

R(ξ, χ = 0) =

[
cos ξ − sin ξ
sin ξ cos ξ

]
.

This matrix is identical to the matrix used for an I-Q rotation given in (12.2.7). When
χ ̸= 0, this correspondance is not valid because the (lossless) polarization misalignment
must then be described on the surface of the Poincaré sphere and not on a circle (or the
equator of the Poincaré sphere).

12.12 Polarization control
Let the received lightwave with bit energyEb be linearly polarized along a direction defined
by the unit vector p̂c. Let the local oscillator be linearly polarized along a direction defined
by the unit vector p̂lo. Let the loc and p̂lo be the unit vectors for a linearly-polarized carrier
and the local oscillator, respectively.

(a) Derive an expression for the demodulated bit energy Eb(θ) in terms of the angle θ be-
tween p̂c and p̂lo.

Solution
The energy is

Eb(θ) =

∫
T

|r(t)p̂c · p̂lo|2dt

= Eb cos2 θ.
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(b) Suppose that a polarization estimator can track the angle so that the probability density
function of θ after estimation is a zero-mean gaussian with a variance σ2

θ . Determine the
maximum variance allowed for the estimator to limit the power penalty in the received sig-
nal to <1 dB for 99% of the cases.

Solution
The solution requires the probability density function of cos2 θwhere θ is a zero-mean gaus-
sian random variable. For small errors, an estimate of the probability density function can
be obtained by expanding cos2 θ in a power series so that

cos2 θ ≈ 1− θ2.

Using 1 dB = 0.794, to have a 1 dB power penalty greater than 99∫ 1/5

0

pθ2(θ
2)dθ2 ≥ 0.99,

where the upper limit of 1/5 ≈ 1− 0.794 is the value of θ2 that produces a power penalty
of 1 dB. When θ is a zero-mean real gaussian random variable, θ2 is a central chi-square
random variable with one degree of freedom. The probability density function is given by
(2.2.37) and is repeated here

f(z) =
1√
2πσ2

z−1/2e−z/2σ
2

,

where z = θ2 and σ is the variance of the zero-mean gaussian. Evaluating the integral∫ 0.2

0

1√
2πσ2

z−1/2e−z/2σ
2

dz

gives erf(1/
√
10σ). Setting this term equal to 0.99, the maximum variance in the estimator

is given as σ = 0.173. This variance will depend on the signal-to-noise ratio over the time
interval used for the estimation.
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Chapter 13 Selected Solutions
13.4. Relationship between euclidean distance and Hamming distance
(a) Show that for codebit energy Ec equal to 1, the relationship between the minimum
Hamming distance dmin and the minimum euclidean distance dmin for binary phase-shift
keying is given by

dmin = 2dmin.

Solution
For BPSK, each codebit in the codeword is mapped to one of two antipodal values ±

√
Ec.

ForEc equal to 1, this is the bipolar alphabet {−1, 1}. For each component at which the two
codewords differ, the corresponding components of the BPSK signal are separated by the
single-letter euclidean distance 2

√
Ec = 2. Multiplying the minimum Hamming distance

dmin by the single-letter euclidean distance 2 gives the minimum euclidean distance dmin for
the codeword as

dmin = 2dmin.

(b) The expression relating the squared euclidean distance d2min and the Hamming distance
dmin is given by (13.2.20). For Ec equal to one it is

d2min = 4dmin.

The left side of the second equation is the square of the left side of the first equation How-
ever, the right side of the second equation is not the square of the right side of the first
equation. Why?

Solution
The Hamming distance describes the difference between codewords in terms of the num-
ber of components that are different. This metric is not defined in terms of the euclidean
distance or to the euclidean distance squared, which is related to the energy in each symbol.
Therefore, the same Hamming distance scales both the single-letter euclidean distance and
the single-letter euclidean distance squared. For this reason, the right side of the second
equation is not the square of the right side of the first equation

13.6 Coding gain for a repetition code
(a) Determine the probability of a block error pe for an uncoded sequence of three bits each
with an energy Eb and independent bit error ρ.
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Solution
The probability of a correct detection event is repeated here

pc(uncoded) = (1− ρ(uncoded))n.

For BPSK, ρ(uncoded) = 1
2erfc

√
Eb/N0 and n = 3 so that

pc(uncoded) =
(
1− 1

2erfc
√
Eb/N0

)3
.

(b) Determine the probability of a block error pe for hard-decision decoding using a (3, 1, 3)
repetition code.

Solution
The (3, 1, 3) repetition code can correct one error so that t = 1. Therefore, probability of a
correct detection event is

pc(coded) =
1∑
ℓ=0

(
n

ℓ

)
ρ(coded)ℓ (1− ρ(coded))n−ℓ

= (1− ρ(coded))3 + 3ρ(coded) (1− ρ(coded))2 ,

where
(
3
0

)
= 1 and

(
3
1

)
= 3 have been used and ρ(coded) = 1

2erfc
√
Eb/3N0 with

Ec = REb = Eb/3.

(c) Determine the value of Eb/N0 for which the probability of a block error for an un-
coded block is equal the probability of a block error for a coded block.

Solution
A plot of pc(coded)− pc(uncoded) is shown below.
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The two methods produce the same probability when Eb/N0 is about 3.7.

(d) For values of Eb/N0 larger than the value determined in part (c), is there a coding
gain? Explain.

Solution
For values of Eb/N0 greater than 3.7, the difference pc(coded)− pc(uncoded) is negative
meaning that the probability of a correct detection event using the repetition code is less
than the probability not using a code. This is a negative coding gain.

(e) Show that the hard-decision coding gain of any (n, 1, n) code is negative for a large
value of Eb/N0. Explain why.

Solution
For large values of Eb/N0, the probability of a block error for an uncoded block can be
approximated by (cf. (13.2.15b))

pe(uncoded) ≈ nρ(uncoded).

Using ρ(uncoded) = 1
2erfc

√
Eb/N0 and the approximation erfc(x) ≈ e−x

2

for large x
gives

pe(uncoded) ≈ n

2
e−Eb/N0 .

For a coded block, pe can be approximated by (13.2.19), which is repeated here

pe(coded) ≈ nt+1

2
e−(Eb/N0)Rcdmin/2,

where nt+1
.
=
(
n
t+1

)
is the number of error patterns with t+1 errors. For (n, 1, n) repetition

with code rate Rc = 1/n and dmin = n the expression reads

pe ≈ nt+1

2
e−Eb/2N0 .

Because e−Eb/2N0 > e−Eb/N0 , and nt+1 > n for n > 3, pe(uncoded) > pe(uncoded) for
any (n, 1, n) code.
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13.8 Pareto random variable
(a) Show that if y is a random variable with an exponential probability density function
given by

fy(y) =

{
λe−λy y ≥ 0
0 y < 0

,

then the random variable x = ey has a Pareto probability density function given by

fx(x) =

{
λx−(λ+1) x ≥ 1
0 x < 1

Solution
The transformation x = ey must preserve probabilities on intervals so that fx(x)dx =
fy(y)dy. Using this expression, the transformed distribution is given by (see Problem 2.15)

fx(x) = fy

(
T−1(x)

) ∣∣∣∣dydx
∣∣∣∣ ,

where T is equal to an exponential function so that T−1(x) = logx for x ≥ 1 and 0
otherwise. Given logx = y, |dy/dx| = x−1. Substituting T−1(x) = logx and |dy/dx| =
x−1 into the previous equation gives

fx(x) = fy

(
T−1(x)

) ∣∣∣∣dydx
∣∣∣∣

= λe−λ log xx−1 x ≥ 1

= λx−(λ+1) x ≥ 1.

(b) Derive the mean and the variance of the Pareto probability density function.

Solution
The mean is ∫ ∞

1

xλx−(λ+1)dx =
λx1−λ

1− λ

∣∣∣∞
1
.

The upper limit is equal to zero when λ is greater than one. Otherwise it is undefined or is
infinite. Therefore the mean is

⟨fx(x)⟩ =
λ

λ− 1
for λ > 1.

137



The mean-square value is ∫ ∞

1

x2λx−(λ+1)dx =
λx2−λ

2− λ

∣∣∣∞
1
.

The upper limit is equal to zero when λ is greater than two. Otherwise it is undefined or is
infinite. Therefore the mean square value is

⟨f2x(x)⟩ =
λ

λ− 2
for λ > 2.

The variance is

σ2 = ⟨f2x(x)⟩ − ⟨fx(x)⟩2

=
λ

λ− 2
− λ2

(λ− 1)2

=
λ

(λ− 2)(λ− 1)2
for λ > 2.

13.13 The cutoff rate and capacity for phase-shift keying
Using the large-signal approximation for the capacity of the phase-shift-keyed information
channel given in (14.3.15), repeated here as

C ≈ 1
2 log(4πE/eN0), (35)

and the large-argument expansion for the modified Bessel function I0(x) of the first kind
of order zero, which is given by

I0(x) ≈ 1√
2πx

ex,

do the following.

(a) Show that, for the same value of E/N0, the offset in the rate between the curve for
the capacity and the curve for the cutoff rate shown in Figure 13.9 approaches the constant
value 1

2 log2(4/e) ≈ 0.28.

Solution
The cutoff rate for phase shift keying is given in (13.4.7) and repeated here

R0 = − log
(
e−E/2N0I0(E/2N0)

)
.

Substituting the approximation for I0(x) given in the problem gives

R0 ≈ − log(πE/N0)
−1/2 = 1

2 log(πE/N0). (36)
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The difference between the capacity C and the cutoff rate R0 in bits is then

C−R0 ≈ 1
2 log2(4πE/eN0)− 1

2 log2(πE/N0)

=
1

2
log2

(
4π(E/N0)

eπ(E/N0)

)
=

1

2
log2(4/e).

(b) Show that for the same rate, the offset in E/N0 between the curve for capacity and the
curve for the cutoff rate approaches the constant value 4/e ≈ 1.68 dB.

Solution
Examining the expression for the capacity C given in (35) and the expression for the cutoff
rate R0 for a large value of E/N0 given in (36), the argument of the logarithm function for
the capacity C is a factor of 4/e larger compared to the argument of the logarithm function
for the cutoff rate R0. Therefore, for large values of E/N0 and the same information rate,
this leads to an offset in E/N0 that is approximately 4/e ≈ 1.68 dB between C and R0.
This offset is shown in Figure 13.10.
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Chapter 14 Selected Solutions
14.3 Discrete capacity using an exponential probability density function
The large-signal limit for the capacity of a Poisson channel can be approximated as

C = H(r)−H(r|s)
≈ 1

2 log E
≈ 1

2Cw.

This limit can be derived using a central chi-square probability density function with one
degree of freedom. Show that when this probability density function is replaced by an ex-
ponential function for p(s), the resulting capacity is smaller than 1

2Cw by the constant term
1
2 (loge 2π − γ), where Euler’s constant γ is 0.5772.

Solution
The information rate for an exponential prior with mean E is given by

R = H(r)−H(r|s),

where the conditional entropy is based on an exponential prior.
To achieve capacity, the received entropy must be maximized. This requires a Gordon

distribution at the receiver (cf. Section 14.2). For large signal values, the Gordon distribu-
tion can approximated by a continuous exponential distribution (cf. Section 6.3.4) with the
received entropyH(r) given by

H(r) = 1 + log E = loge(eE) nats.

The conditional entropy is (cf. (14.1.3))

H(r|s) = −
∑
s
p(s)

∑
r
p(r|s) log p(r|s),

For large signal levels, p(r|s) is well-approximated by a one-dimensional gaussian distribu-
tion with a variance σ2 equal to the mean signal value s so that (cf. (14.3.1))

−
∑
r
p(r|s) log p(r|s) ≈ 1

2 log(2πes).

Substituting this expression intoH(r|s) gives

H(r|s) = − 1

2E

∫ ∞

0

e−s/E log(2πes)ds,
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where e−s/E/E is the exponentially-distributed prior. Let x = s/E so that dx = ds/E.
Using this change of variable, write log(2πes) = log(2πeE) + logx. Substituting these
expressions and using loge gives

H(r|s) =
1

2
loge(2πeE) +

1

2

∫ ∞

0

e−x loge xdx.

The integral evaluates to −γ where γ is the Euler constant. Using this expression, the rate
for an exponential prior is

R = H(r)−H(r|s)
= loge(eE)− 1

2

(
loge(eE) + loge(2π)− γ

)
= 1

2Cw − 1
2

(
loge(2π)− γ

)
.

This expression is slightly different than the one given in the problem statement.
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14.5 Entropy of a Poisson probability mass function
(a) Show that the entropy of the Poisson probability distribution

H(E) = −
∞∑
k=0

p(k) loge p(k)

= −
∞∑
k=0

Eke−E

k! loge

(
Eke−E

k!

)
can be written as

H(E) = E− E loge E+ e−E
∞∑
k=2

Ek loge k!
k! nats.

Solution

H(E) = −
∞∑
k=0

Eke−E

k!
loge

(
Eke−E

k!

)

= −e−E
∞∑
k=0

Ek
k!

(
loge

1

k!
+ k loge E− E

)

= E× e−E
∞∑
k=0

Ek
k!︸ ︷︷ ︸

eE

−E loge Ee−E
∞∑
k=1

E(k−1)

(k − 1)!︸ ︷︷ ︸
eE

+e−E
∞∑
k=0

Ek loge k!
k!

= E (1− loge(E)) + e−E
∞∑
k=0

Ek loge k!
k!

nats

where units of nats are convenient because the probability distribution is defined in terms
of exponentials.

(b) Using this expression, derive an approximation for the entropy of a Poisson probability
mass function for E much smaller than one.

Solution
For E much smaller than one, the first term inH(E) dominates with

H(E) ≈ E (1− loge E) ,

which is (14.2.8a). A further approximation may be obtained by neglecting one compared
to − loge E leading to H(E) ≈ −E loge E, which is (14.2.8b).
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14.9 Binary capacity in a small-signal regime
Consider the binary detection of a lightwave signal in a small-signal regime for which the
expected number of photons Eb is much smaller than one.

(a) Derive the optimal threshold Θ in terms of Eb and the prior probability p1.

Solution
The system has a mean number of signal photons E1 = Eb/p1 for a mark. This signal is
added to a background noise term N for a space. When there is no additive nise, this is a Z
channel. For this case, the threshold Θ is equal to zero.

(b) Derive the terms required to form the mutual information as a function Eb and the prior
probability p1.

Solution
For a Z-channel with the threshold Θ set to zero, the four condition probabilities required
to evaluate the mutual information are

p0|1 = e−Eb/p1

p1|1 = 1− p0|1
p0|0 = 1

p1|0 = 0

(c) Determine the capacity for Eb = 1. (Requires numerical root finding.)

Solution
The mutual information for a binary channel is given in (14.2.14). Substituting the expres-
sions for the conditional probabilities gives

I(Eb, p1) = −p1
(
1− eEb/p1

)
log p1

−
(
1− p1(eEb/p1)

)
log
(
1− p1(eEb/p1)

)
+p1e

Eb/p1 log eEb/p1

This expression is plotted in Figure 14.6 as a function of p1 for several values of Eb. When
Eb = 1, the mutual information is maximized when p1 = 0.41, and gives the capacity as
C = 0.44 bits.
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(d) Expand the expression for the mutual information in a power series in Eb keeping
only the first term.

Solution
Using the power series expansions e−x ≈ 1− x and log(1− x) ≈ −x gives

I(Eb, p1) ≈ Eb
(
−Eb
p1

+ Eb − log p1
)
. (37)

(e) Using the term from part (d), determine the value of p1 that maximizes the mutual in-
formation for a given value of Eb.

Solution
Taking the derivative of the appropriate form of the mutual information I(Eb, p1) derived
in part (d) with respect to p1 and setting the resulting expression equal to zero gives

Eb2

p21
− Eb
p1

= 0.

This equation has a solution when p1 = Eb.

(f) For the optimal prior probability determined in part (e) and Eb much smaller than one,
show that the expression for the mutual information reduces to

−Eb log2 Eb bits,

which is the small-signal limit of the entropy of a Poisson probability distribution.

Solution
Substituting p1 = Eb into (37) gives the channel capacity as

C ≈ Eb(Eb − 1)− Eb log Eb.

For Eb ≪ 1, the second term is the most significant term so that

C ≈ −Eb log2 Eb, bits,

which is the small-signal limit of the entropy of a Poisson probability distribution (cf.
(14.2.17)).

14.11 Water filling and the capacity of multi-input multi-output channel
Consider a multi-input multi-output additive gaussian noise channel that supports three sub-
channels. The effective noise energy Nk = N0/ξk for each of these subchannels is shown
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in the figure below where ξk is the kth eigenvalue of the matrix HH† with H being the
channel matrix.

N1

N2

N3

(a) Suppose that the total energy E available for transmission satisfies E >
∑3
k=1Nk

where Nk is the effective noise power density spectrum in each subchannel. Graphically
solve for the optimal energy allocation per subchannel using water filling and determine the
optimal value of the energy Ek for each subchannel in terms of E and Nk.

Solution
The graphical solution is shown on the left side of the figure below with the total energy E
available for transmission set to a value a convenient value of 15 in the same units as that
for the noise energy.
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(b) Determine the capacity Ck of each subchannel.

Solution
The capacity for each subchannel is given by (cf. (14.4.1))

Ck = log
(
1 +

Ek
Nk

)
Starting with the subchannel that has the most signal gives
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C1 = log
(
1 + 6

1

)
= 2.8 bits

C2 = log
(
1 + 5

2

)
= 1.81 bits

C3 = log
(
1 + 4

3

)
= 1.22 bits

(c) Determine the overall capacity.

Solution
The total capacityC is just the sumof the capacities for each subchannel withC = C1 + C2 + C3 =
5.84 bits.

(d) Now suppose that there is a fourth subchannel with an effective noiseN4. Determine the
capacity for this system. Compare this result to the result for the three-subchannel system
using the same total energy.

Solution
Water-filling the four subchannels, which is shown on the right side of the figure, the ca-
pacity for each subchannel is
C1 = log

(
1 + 5

1

)
= 2.58 bits

C2 = log
(
1 + 4

2

)
= 1.58 bits

C3 = log (1 + 1) = 1 bit
C4 = log (1 + 1) = 1 bit
with the total capacity equal to by C = C1 + C2 + C3 + C4 = 6.17 bits. This result shows
that even when an additional subchannel is noisy, it is better to allocate some energy to that
subchannel rather than to ignore the noisy subchannel.

14.12 Maximum information rate in terms of the arrival rate
The expression for the maximum information rate of an ideal photon-optics channel is given
by (cf. (14.4.27))

C = fmax
π2

loge 8
,

and is expressed in terms of the frequency fmax of a photon with average energy E. In this
problem, an equivalent expression is derived expressing the capacity in terms of the signal
power Ps by relating the arrival rate of signal photons fmax to the signal power Ps.
(a) Integrate the power density spectrum

S(f) = hf

(
1

ehf/E − 1

)
,

over an infinite bandwidth to derive an expression that relates the total signal power Ps to
the energy E. The definite integral

∫∞
0
x/(ex + 1)dx = π2/6 will be useful.
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Solution
Let x = hf/E so that hf = Ex and df = (E/h)dx. Making these substitutions into the
expression for S(f), the total signal power Ps is

Ps =
E2

h

∫ ∞

0

x

ex + 1
dx

=
π2E2

6h
.

(b) Use the expression derived in part (a) to show that fmax = E/h is equal to
√
6Ps/(π2h).

Solution
Rearrange the expression for Ps derived in part (a) to give

E2

h2
=

6Ps
π2h

.

Using E/h
.
= fmax and taking the square-root of each side gives

E

h

.
= fmax =

√
6Ps
π2h

.

(c) Substitute the expression derived in part (b) into the expression for the bandlimited
capacity to show that

C =
π

loge 2

√
2Ps
3h

bits per second,

which is (14.4.30).

Solution
Using the expression for the bandlimited capacity and substituting fmax =

√
6Ps/π2h gives

C =

√
6Ps
π2h

π2

loge 8

=
π

loge 2

√
2Ps
3h

bits per second,

where loge 8 = 3 loge 2 has been used. This expression is (14.4.30).
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14.14 Bandlimited capacity
The bandlimited capacity for a wave-optics channel can be written in terms of a scaled
wave-optics information rate Rw

.
= REb/N0

C = B log2 (1 +Rw/B) .

(a) Using a small-signal expansion of this expression, show that when B is much smaller
than Rw, the bandlimited capacity scales linearly in B.

Solution
WhenB is much smaller thanRw, the termRw/B is much greater than one. Therefore, the
value of one inside the argument of the logarithm function can be ignored. This gives

C ≈ B log2 (Rw/B)

≈ B log2Rw −B log2B.

WhenB is much smaller thanRw, the first term dominates and the capacity is nearly linear
in the bandwidth B for B ≪ Rw as is shown in the figure below with Rw = 100.
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(b) Using a large-signal expansion of this expression, show that when B is much larger
than Rw, the bandlimited capacity saturates to a value given by Rw/ loge 2.

Solution
Using the small argument expansion of a log function

log(1 + x) ≈ x,
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with x = Rw/B and a base two for the logarithm gives

B log(1 +Rw/B) ≈ Rw/ loge 2.

This limiting value is also shown in the figure.

14.15 Photon-optics spectral rate efficiency
The spectral rate efficiency of a photon-optics channel including additive noise satisfies the
following inequality (cf. (14.2.6) and (14.5.1))

r ≤ log2

(
1 +

rEb
1 + N0

)
+ (rEb + N0) log2

(
1 +

1

rEb + N0

)
− N0 log2

(
1 +

1

N0

)
.

(a) Expand the right side of this expression in a power series in rEb up to the linear term.

Solution
Using loge and expanding the right side in a power series in rEb gives(

1

N0
− 1

1 + N0
+ loge

(
1 +

1

N0

))
rEb.

(b) Set the expression derived in part (a) equal to r and solve for Eb in terms of N0. This
expression can be used to determine (Eb)min when r equals zero.

Solution
Setting the expression derived in part (a) equal to r gives

1

N0
− 1

1 + N0
+ loge

(
1 +

1

N0

)
=

1

(Eb)min
.

This expression is the minimum value for (Eb)min given a value for N0.

(c) Set N0 = 1 in the expression derived in part (b) and show that (Eb)min is equal to
loge 2/(1/2+loge 2). This expression is a factor of (1/2+loge 2) smaller than (Eb/N0)min =
loge 2 for a wave-optics channel for the same rate expressed in bits.

Solution
Substituting N0 = 1 in the expression derived in part (b) and scaling the result by loge 2 to
convert from nats to bits gives

(Eb)min =
loge 2

1/2 + loge 2
.
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This expression is a factor of (1/2+ loge 2) smaller than (Eb/N0)min = loge 2 for a wave-
optics channel.

(d) Show that when N0 is much smaller than one, (Eb)min goes as N0.

Solution
Solving for (Eb)min for the expression derived in part (b) gives

(Eb)min =
N0(1 + N0)

1 + N0 log(1 + 1/N0) + N0
2 log(1 + 1/N0)

.

The first term of the power series expansion of this expression is N0. This means that for
small N0, the minimum mean number of photons (Eb)min required for reliable communica-
tion is linear in N0.
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Chapter 15 Selected Solutions
15.2 Coherent states as a basis
Prove (15.3.37) by writingα in polar coordinates and performing the resulting integrations
using

∫∞
0
re−r

2

rn+mdr = 1
2Γ[(n + m + 2)/2] where Γ(k) =

∫∞
0
xk−1e−xdx is the

gamma function. Note that Γ(j + 1) = j! where j is an integer.3

Solution
The closure property given in (15.3.37) is

Î =
1

π

∫
α

|α⟩ ⟨α| dα.

To proof this statement, write the Glauber number in polar coordinates as α = αeiϕ and
dα = rdrdϕ where α is the magnitude of α and ϕ is the phase. Using (15.3.34), the
coherent state |α⟩ in a photon-number state representation can be written as

|α⟩ = e−|α|2/2
∞∑

m=0

αm
√
m!
|m⟩ .

Similarly,

⟨α| = e−|α|2/2
∞∑
n=0

(α∗)n√
n!
⟨n|.

Substituting these expressions into the integral gives

1

π

∫
α

|α⟩ ⟨α| dα =
1

π

∞∑
m=0

∞∑
n=0

|m⟩ ⟨n|√
m!n!

∫
α

e−|α|2αm(α∗)ndα

=
1

π

∞∑
m=0

∞∑
n=0

|m⟩ ⟨n|√
m!n!

∫ ∞

0

e−r
2

rm+nrdr
∫ 2π

0

ei(m+n)ϕdϕ.

The integral on ϕ evaluates to 2πδmn where δij is the Kronecker impulse. Setting n equal to
m gives

1

π

∫
α

|α⟩ ⟨α| dα =
∞∑

m=0

|m⟩ ⟨m|︸ ︷︷ ︸
Î

2

m!

∫ ∞

0

e−r
2

r2m+1dr.

3Note that the problem statedΓ(j−1) = j!where j is an integer. This is a typo. This should readΓ(j+1) =
j! where j is an integer.
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Now use the formula given in the problem to write∫ ∞

0

e−r
2

r2m+1dr = 1
2Γ(m+ 1) = 1

2m!.

Using this expression gives the closure relationship as

1

π

∫
α

|α⟩ ⟨α| dα = Î .

15.5 Eigenstates and eigenvalues of a quantized harmonic oscillator
The differential equation

d2ϕn(y)
dy2

+
(
1 + 2n− y2

)
ϕn(y) = 0

where n is an integer has the solution

ϕn(y) = Hn(y)e
−y2/2,

where Hn(y) is the nth Hermite polynomial (cf. (3.3.50)). The functions are normalized
so that ∫ ∞

−∞
ϕn(y)ϕm(y)dy = 2n

√
πn!δmn

with δmn being the Kronecker impulse. Using this solution and the orthogonality relation,
show that the eigenvalues of the quantized harmonic oscillator are given by

E = ℏω
(
n+

1

2

)
which is (15.3.25) with the quantum wave function in the in-phase component representa-
tion given by

un(αI) =

√
1

2n
√
πn!

Hn(αI)e
−α2

I/2.

Solution
Compare the equation given in this problem to the Schrödinger equation for a quantized
harmonic oscillator given in Problem 15.4, which is repeated here as

d2u(αI)

da2I
+
(
2E/ℏω − a2I

)
ψ(αI) = 0.
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Examining the two equations we can associate y with aI . Moreover, we can write

1 + 2n =
2E

ℏω
or

E = ℏω
(
n+

1

2

)
.

These eigenvalues are the allowed energies. The eigenfunctions are

un(aI) = KHn(aI)e
−a2I/2,

where K is a normalization constant. Applying the normalization condition given in the
problem gives ∫ ∞

−∞
un(aI)un(aI)daI = 2n

√
πn! = K2,

or
K =

√
2n
√
πn!

The normalized eigenfunctions are then given by

u(αI) =

√
1

2n
√
πn!

Hn(αI)e
−α2

I/2.

15.7 Commutation relationships
(a) Prove that [N̂ , â] = −â where N̂ = â†â.

Solution

[N̂ , â] = â†ââ− ââ†â
= −

(
ââ† − â†â

)︸ ︷︷ ︸
=1 (15.3.8)

)â

= −â.

(b) Prove that [N̂ , â†] = â†.

Solution

[N̂ , â†] = â†ââ† − â†ââ†

= â†
(
ââ† − â†â

)︸ ︷︷ ︸
=1 (15.3.8)

= â†.
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15.9 Commutation in an enlarged signal space
Let A and B be two n by n hermitian matrices for which [A,B] ̸= 0.

(a) Prove that the two 2n by 2n matrices[
A B
B A

]
and

[
B A
A B

]
do commute. This shows that operators that do not commute can be embedded into a larger
signal space, called an ancilla embedding, in which they do commute. This motivates the
definition of an ancilla state.

Solution
Let

C =

[
A B
B A

]
and D =

[
B A
A B

]
,

then

[CD] = CD− DC =

[
A B
B A

] [
B A
A B

]
−
[

B A
A B

] [
A B
B A

]
=

[
AB+ BA A2 + B2

B2 + A2 BA+ AB

]
−
[

BA+ AB B2 + A2

A2 + B2 AB+ BA

]
= 0

showing that a noncommuting tranformation in a smaller signal space can always be embed-
ded in a larger signal space using ancilla states with the embedded transformation commut-
ing in the larger signal space. For this reason, a generalized measurement defined using a
set of noncommuting measurement operators {Ŷn} in a smaller signal space, which ignores
how ancilla states may interact with the signal state during the measurement process, can
always be expressed using a set of commuting measurement operators defined in a larger
signal space defined using the ancilla states even when those states have no signal.
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(b) Prove that trace
(
AB
)
= trace

(
BA
)
(cf. 2.1.84c) even if [A,B] is not equal to zero.

Solution
From the definition of the trace operation we have

trace
(
AB
)

= (AB)11 + (AB)22 + · · ·+ (AB)nn
= a11b11 + a12b21 + · · ·+ a1nbn1

+ a21b12 + a22b22 + · · ·+ a2nbn2
...

...
...

+ an1b1n + an2b2n + · · ·+ annbnn

and

trace
(
BA
)

= (BA)11 + (BA)22 + · · ·+ (BA)nn
= b11a11 + b12a21 + · · ·+ b1nan1

+ b21a12 + b22a22 + · · ·+ b2nan2
...

...
...

+ bn1a1n + bn2a2n + · · ·+ bnnann

Each of these summations contains the same set of terms, which can be seen by transposing
the rows and columns of one of the summations. Therefore, trace

(
AB
)
= trace

(
BA
)
.

15.10 Phase operator
Consider a phase operator êiϕ defined by the two equations

â =

√
N̂ + 1 êiϕ

â† = ê−iϕ
√
N̂ + 1.

(a) Write the two phase operators êiϕ and ê−iϕ in terms of â, â†, and N̂ .

Solution
Using N̂ = â†â and [â, â†] = 1, the term N̂ + 1 is equal to ââ†. Using this expression, the
two phase operators can be formally written as4

êiϕ = (N̂ + 1)−1/2â = (ââ†)−1/2â

ê−iϕ = â†(N̂ + 1)−1/2 = â†(ââ†)−1/2.

4For further details see L. Susskind and J. Glogower,”Quantummechanical phase and time operator”. Physica,
1: 49, 1964.
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(b) Prove that [N̂ , êiϕ] = −êiϕ. (Note that the problem statement was missing a negative
sign on the second expression.)

Solution
Compare the expressions for the phase operators to the lowering operator given in (15.3.29)
and repeated below

â |m⟩ = m−1/2 |m− 1⟩

and the and raising operator given in (15.3.30) and repeated below

â† |m⟩ = (m+ 1)−1/2 |m+ 1⟩ .

The normalization constants given in these equations can be incorporated by treating ê−iϕ

as a normalized raising operator and êiϕ as a normalized lower operator with

êiϕ |m⟩ = |m− 1⟩

ê−iϕ |m⟩ = |m+ 1⟩ .

Now use the correspondance between êiϕ and â and ê−iϕ and â†, and the results of Problem
7 to write

[N̂ , â†] = â†ââ† − â†ââ† = â†
(
ââ† − â†â

)
= â†

and

[N̂ , â] = â†ââ− ââ†â = −
(
ââ† − â†â

)
â = −â.

Using these expressions leads to

[N̂ , ê−iϕ] = ê−iϕ

and

[N̂ , êiϕ] = −êiϕ.

15.16 Shannon and von Neumann entropies
A two-by-two density matrix is given by

ρ̂ =

[
0.5 0.1
0.1 0.5

]
.
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Compute the Shannon entropy and the von Neumann entropy. Comment.

Solution
When appropriate, the Shannon entropy is simply the entropy of the diagonal elements of
the matrix and is given by

H =
∑
n

pn log pn = 0.5 log 0.5 + 0.5 log 0.5 = log2 0.5

= 1 bit

because the equiprobable prior p = 1/2 achieves the capacity of a binary symmetric chan-
nel.

The von Neumann entropy is the Shannon entropy of the eigenvalues of the density ma-
trix ρ̂, which are λ1 = 0.4 and λ2 = 0.6. Therefore

H =
∑
n

λn logλn = 0.6 log 0.6 + 0.4 log 0.4 = 0.6 log2 0.6 + 0.4 log2 0.4

= 0.971 bits

showing that the von Neumann entropy is less than the Shannon entropy whenever the
matrix is a nondiagonal matrix. Physically, the nondiagonal nature of the density matrix
indicates that the system has quantum uncertainty in the chosen measurement basis used to
express the density matrices.

15.18 Partial trace
The partial trace of the product state ρ̂ = σ̂ ⊗ µ̂ that recovers the density matrix of the
component signal state µ̂ is given by (15.4.9a). Determine an explicit expression for the
partial trace of ρ̂ that recovers the density matrix of the component signal state σ̂.

Solution
Let σ̂ = ρ̂A and let µ̂ = ρ̂B. These density matrices are formed using two signal states |A⟩
and |B⟩. Suppose that one state is an element of a signal space A spanned by one set of
basis states {|ai⟩} so that

|A⟩ =
∑

ai|ai⟩.

Similarly, |B⟩ is an element of a signal spaceB spanned by different set of basis states{|bi⟩}

|B⟩ =
∑

bk|bk⟩.
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Let the density matrix ρ̂AB = ρ̂A ⊗ ρ̂B of a composite signal state be the outer product of
the two constituent signal states given by

ρ̂AB =
∑
ijkℓ

aijbkℓ|ai⟩⟨aj | ⊗ |bk⟩⟨bℓ|.

The partial trace over the basis states of the constituent signal space B is given by

traceBρ̂AB =
∑
ijkℓ

aijbkℓ|ai⟩⟨aj | ⊗ trace|bk⟩⟨bℓ|

=
∑
ijkℓ

aijbkℓ|ai⟩⟨aj |⟨bℓ|bk⟩

where the trace converts the outer product to an inner product (cf. (2.1.85)). Similarly,

traceAρ̂AB =
∑
ijkℓ

aijbkℓ|bk⟩⟨bℓ| ⊗ trace|ai⟩⟨aj | =
∑
ijkℓ

aijbkℓ|bk⟩⟨bℓ|⟨ai|aj⟩.

When expressed using matrices, ρ̂AB is given by the Kronecker product (cf. (2.1.99))

[
a11 a12
a21 a22

]
⊗
[
b11 b12
b21 b22

]
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 , (38)
which can be written as a11

[
b11 b12
b21 b22

]
a12

[
b11 b12
b21 b22

]
a21

[
b11 b12
b21 b22

]
a22

[
b11 b12
b21 b22

]
 .

The partial trace traceAρ̂AB over the constituent signal space A is then

traceAρ̂AB = a11

[
b11 b12
b21 b22

]
+ a22

[
b11 b12
b21 b22

]
= (a11 + a22)

[
b11 b12
b21 b22

]
=

[
b11 b12
b21 b22

]
= ρ̂B,
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where traceρ̂A = 1 has been used. Similarly, traceBρ̂AB over the constituent signal space
B is

traceBρ̂AB =

 a11 trace
[
b11 b12
b21 b22

]
a12 trace

[
b11 b12
b21 b22

]
a21 trace

[
b11 b12
b21 b22

]
a22 trace

[
b11 b12
b21 b22

]


=

[
a11 a12
a21 a22

]
= ρ̂A,

where traceρ̂B = 1 has been used. These expressions show that the partial trace for a
product state marginalizes the state because it “traces out” the density matrices of the other
constituent signals states in the product state. In this sense, the partial trace operation for
product states is equivalent to the marginalization of a classical product distribution. This
statement only applies to product states.
As a side note, the partial trace can be generalized to nonproduct states in the composite

signal space by writing

traceBρ̂AB =
∑
ijkℓ

cijkℓ|ai⟩⟨aj |trace|bk⟩⟨bℓ|

where cijkℓ need not factor into a product of the form aijbkℓ as would be the case for a
product state.
Now consider the partial trace of an arbitrary density matrix ρ̂ in a composite signal space

given by

ρ̂ =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 .
Noting the elements in (38) that are used to construct the partial trace over each constituent
signal space gives

traceBρ̂ =

 trace
[
ρ11 ρ12
ρ21 ρ22

]
trace

[
ρ13 ρ14
ρ23 ρ24

]
trace

[
ρ31 ρ32
ρ41 ρ42

]
trace

[
ρ33 ρ34
ρ43 ρ44

]


=

[
ρ11 + ρ22 ρ13 + ρ24
ρ31 + ρ42 ρ33 + ρ44

]
.
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Similarly, noting that a different set of matrix elements is used for traceBρ̂ gives

traceAρ̂ =

 trace
[
ρ11 ρ13
ρ31 ρ33

]
trace

[
ρ12 ρ14
ρ32 ρ34

]
trace

[
ρ21 ρ23
ρ41 ρ43

]
trace

[
ρ22 ρ24
ρ42 ρ44

]


=

[
ρ11 + ρ33 ρ12 + ρ34
ρ21 + ρ43 ρ22 + ρ44

]
.

These expressions show that for the general case, a partial trace does not recover one of
the constituent signal states and is not equivalent to marginalization. This situation can
occur when a unitary transformation is applied to a product signal state. Constructing a
composite signal state from constituent signal states, applying unitary transformations and
then applying a partial trace on a constituent signal space are the basic operations of quantum
computing.

15.19 Large-signal regime
Suppose that a coherent state is regarded as orthogonal when the pairwise inner product
κ = e−4Eb is 10−5 where Eb is the mean number of photons.

(a) Determine the signal power density spectrum required to achieve this condition for the
following wavelengths: 1 nm, 1000 nm (1 micron), 106 nm (1 mm).

Solution
Solving e−4Eb = 10−5 gives Eb as 2.88 photons. The energy per photon is equal to hf =
hc/λ. The signal power density spectrum is equal to the energywhich is given by energy/photon×mean
number of photons. The energy per photon is equal to hf = hc/λ. Using this expression
gives

S(1 nm) = Ebhc/10−9 = 1.9878× 10−16 W/Hz
S(1 micron) = Ebhc/10−6 = 1.9878× 10−19 W/Hz
S(1 mm) = Ebhc/10−3 = 1.9878× 10−22 W/Hz

(b) Determine thermal noise power density spectrum at 290 K given by N0 = kT0 where
k is Boltzmann’s constant and T0 is the temperature in Kelvin.

Solution
The thermal energy is N0 = kT0 = 290× 1.38× 10−23 = 4× 10−21 J (or W/Hz), which
is larger than the signal power density spectrum at 1 mm, but is much smaller compared to
the signal power density spectrum for lightwave or higher frequencies.
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(c) Suppose that the nonorthogonal nature of the coherent states is evident when κ is larger
than one half and that the signal to thermal noise ratioE/N0 is larger than 20 dB. For these
parameters, what is the largest wavelength for which the nonorthogonal nature of a coherent
state is evident?

Solution
Solving e−4Eb = 1/2 gives the mean number of photons as Eb = 0.17. The signal energy
when E/N0 is equal to 20 dB with N0 = kT0 determined in part (b) is

S = 100N0 = 4× 10−19 J.

The largest wavelength λmax for which the nonorthogonal nature of a coherent state may be
evident is then

λmax =
hcEb
S

≈ 86 nm.

This expression states for the value of κ and E/N0 given in the problem, the nonorthogo-
nality of the coherent states would not be evident for optical wavelengths on the order of
0.4 to 1.5 microns because for this range of wavelength, the mean number of photons E is
sufficiently large so the nonorthogonality of the signal states is not evident. For the same
parameters, the nonorthogonality might be evident in ultraviolet regime of the spectrum
within the range of 10-400 nm because for the same mean energy, there are, on average,
fewer photons.

15. 20 Noise from phase-insensitive amplification
Let the two operators

x̂ = âI + n̂I

ŷ = âQ + n̂Q

be noisy versions of the in-phase operator and the quadrature operator where the terms n̂I

and n̂Q account for the additional noise from phase-insensitive amplification.

(a) Write down the necessary condition for x̂ and ŷ to be jointly observed without addi-
tional uncertainty.

Solution
For the variables described by the operators x̂ and ŷ to be measured without additional error
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requires that x̂ and ŷ commute so that

[x̂ŷ] = x̂ŷ − ŷx̂
= (âI + n̂I) (âQ + n̂Q)− (âQ + n̂Q) (âI + n̂I)

= (âI âQ + âIn̂Q + n̂I âQ + n̂In̂Q)− (âQâI + âQn̂I + n̂QâI + n̂Qn̂I)

= [âI , âQ] + [âI , n̂Q] + [n̂I , âQ] + [n̂I , n̂Q] . (39)

(b) Using this condition, solve for the relationship between n̂I and n̂Q such that the con-
dition in part (a) is satisfied.

Solution
The two middle terms in (39) are zero because the signal and noise are independent so the
operators describing these terms commute. However, in contrast to heterodyne demodula-
tion (cf. (15.5.12) and (15.5.13)), the two remaining terms in (39) must be zero so that the
operators commute. This means that two commutators [âI , âQ] and [n̂I , n̂Q]must go to zero.
This condition occurs in a large signal regime for which the inherent dependancies between
the signal and noise components are not evident. Therefore, the noisy in-phase quadrature
lightwave components after phase insensitive amplification can be jointly observed without
additional error.

15.24 Even and odd coherent states
(a) An even coherent state is defined as

|even⟩ .
=

1√
N+

(|α⟩+ |−α⟩) ,

where N+ is a normalization constant. When ⟨even|even⟩ equals one, using (15.3.38), re-
peated here as

⟨α1|α0⟩ = e−|α1−α0|2/2,

show that N+ = 2(1 + e−2|α|2).

Solution
Using the normalization condition gives

⟨even|even⟩ =
1

N+
((⟨α|+ ⟨−α|) ((|α⟩+ |−α⟩)

= ⟨α|α⟩+ ⟨α|−α⟩+ ⟨−α|α⟩+ ⟨−α|−α⟩
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The first and last terms evaluate to one. Using the expression for the inner product stated
in the problem with α1 = α and α0 = −α gives

⟨α|−α⟩ = e−|α−(−α)|2/2

= e−|2α|2/2.

The same expression is obtained for ⟨−α|α⟩. Combining the these expressions gives

N+ = 2
(
1 + e−|2α|2/2

)
.

(b) Repeat for the odd coherent state given by

|odd⟩ =
1√
N−

(|α⟩ − |−α⟩) .

Solution
The only difference is a negative sign for the two “cross terms” which gives

N− = 2
(
1− e−|2α|2/2

)
.

(c) Derive approximate expressions for the even and odd coherent states when α is large
and comment on the result.

Solution
The addition and subtraction operations on the coherent states that specify the even and odd
coherent states are defined in the signal space for which coherent states are defined. These
operations are not defined on the complex plane where the Glauber numbers are defined.
For this reason, it is not correct to represent each large-amplitude coherent state as a single
complex number s and then add the complex numbers. Doing so would result in the even
coherent state being identically zero. To show this explicitly, use (15.3.34) to express both
|α⟩ and |−α⟩ in a photon number state representation. The sum can be written as

|even⟩ =
1√
N+

(|α⟩+ |−α⟩)

=
1√
N+

(
e−|α|2/2

∞∑
m=0

αm
√
m!
|m⟩+ e−|−α|2/2

∞∑
m=0

(−α)m√
m!
|m⟩
)

=
e−|α|2√
N+

∞∑
m=0

αm + (−α)m√
m!

|m⟩ .
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For m even αm = (−α)m and for m odd αm = −(−α)m. Therefore,

|even⟩ =
2e−|α|2√

N+

∞∑
m=0

αm
√
m!
|m⟩ for m even

= 0 for m odd,

which does not go to zero for large values of |α|. A similar expression can be derived for
the odd coherent states.
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Chapter 16 Selected Solutions
16.2 Probability of error for orthogonal states
This problem compares classical orthogonal signals to quantum orthogonal signal states.
An example of orthogonal quantum-lightwave signals are polarization states or nonover-
lapping temporal states. Derive the large-signal limit for the probability of a detection error
for L-level orthogonal state modulation when all pairwise distances between the symbols
are equal and d2 = 2E where E is the mean number of photons per symbol.

Solution
The probability of a detection error in a large-signal limit can be estimated using the quan-
tum union bound given in (16.3.8) and repeated here

pe ≈ 1
4ne

−d2min ,

where n = 1
L

∑L−1
ℓ=0 nℓ is the average number of coherent-state symbols at distance dmin,

where the distance is defined using the corresponding Glauber numbers for the coherent
states (cf. (10.2.13)). When the signaling states are not coherent states but are still nearly
orthogonal, the term e−d

2
min is replaced by the minimum pairwise inner product κmin

.
=

mini,j κij . ForL-level orthogonal state modulation, there areL−1 nearest neighbor symbol
states. For an orthogonal signal-state constellation, each of these signal states has the same
minimum pairwise inner product κmin with every other signal state. Therefore,

pe ≈ L− 1

4
κmin

≈ L− 1

4
e−2E,

where κmin = e−d
2
min for coherent-state symbols with d2min = 2E and E given as the mean

number of photons per symbol.

16.3 Optimal orientation of a binary sampling basis
(a) Referring to Figure 16.2(a), define ζ = π/2 − θ. Derive an expression for the proba-
bility of a correct decision pc for binary pure-signal-state modulation in terms of ζ and the
generalized angle ϕ1 shown in Figure 16.2(a).

Solution
Referring Figure 16.2(a), ζ = π/2 − θ = ϕ0 + ϕ1 so that ϕ0 = ζ + ϕ1. Using the
conditional probabilities p0|0 = cos2 ϕ0 and p1|1 = cos2 ϕ1, the probability for a correct
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detection event pc is

pc = p cos2 ϕ1 + (1− p) cos2 ϕ0
= p cos2 ϕ1 + (1− p) cos2(π/2− θ − ϕ1).

(b) Determine the maximum probability of a correct decision pc by differentiating this ex-
pression with respect to ϕ1 and setting the resulting expression equal to zero.

Solution
For an equiprobable prior p = 1/2 and the derivative of pc with respect to ϕ1 is given by

dpc
dϕ1

= sin(θ + ϕ1) cos(θ + ϕ1)− sinϕ1 cosϕ1.

Setting this expression equal to zero gives the optimal value of ϕ1 as

ϕ1 = π/4− θ/2.

When θ = π/2, the two signal states are orthogonal and ϕ1 = ϕ0 = 0. When θ = 0, the
two signal states are coincident ϕ1 = ϕ0 = π/4 and pc = pe = 1/2. For any value of θ, pc
is maximized and pe is minimized when ϕ0 = ϕ1 so that the channel is a binary symmetric
channel with p1|1 = p0|0.

(c) Show that the resulting probability of error pe is given by the same expression as (16.2.12).

Solution
For an equiprobable prior with ϕ1 = ϕ0, the channel is a binary symmetric channel with
p1|1 = p0|0. Then

pc = 1
2

(
p1|1 + p0|0

)
= p1|1

= cos2 ϕ1
= cos2(π/4− θ/2)
= 1

2 (1 + cos(π/2− θ))
= 1

2 + 1
2 sin θ.

The probability of error is then

pe = 1− pc
= 1

2 (1− sin θ) ,

which is (16.2.12).
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16.6 Methods of detection
Referring to Table 16.1, compare the error performance of classical homodyne detection
with that of a displacement receiver. Determine the range of the mean number of photons
per bit Eb for which one detection technique outperforms the other method of detection.

Solution
Referring to Table 16.1, the probability of a detection error for classical shot-noise-limited
homodyne demodulation is

pe = 1
2erfc

√
2Eb,

and that for the displacement receiver is given by

pe = 1
2e

−4Eb .

Plots of both functions are shown in the figure below. For Eb < 0.384, shot-noise-limited
homodyne demodulation produces a lower probability of a detection error than displace-
ment demodulation. For Eb > 0.384, the displacement receiver has better performance.
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16.7 Von Neumann entropy
Suppose the density matrix of an ensemble of two pure signal states is given as

ρ̂
.
=

[
p

√
p(1− p)κ√

p(1− p)κ 1− p

]
,

where p is the prior, and where κ .
= ⟨ψ0|ψ1⟩ is the inner product between the two pure

states with κ real.

167



(a) Determine an expression for the von Neumann entropy of this density matrix.

Solution
The eigenvalues of the density matrix ρ̂ are the solutions to

det

[
p− λ

√
p(1− p)κ√

p(1− p)κ 1− p− λ

]
= 0,

or

λ2 − λ+ κ2p2 − p2 − κ2p+ p = 0.

The solution to this equation gives the eigenvalues as

λ0,1 = 1
2

(
1±

√
1 + 4p

(
κ2(1− p) + p− 1

))
.

(b) Compare this result with the von Neumann entropy of the density matrix given in
(15.4.16). How are they related? Why?

Solution
The eigenvalues are the same because the two density matrices are related by a unitary trans-
formation. This means that the two density matrices are expressed in two different bases
related by a generalized rotation described by the unitary transformation. This rotation does
not affect the eigenvalues or the von Neumann entropy.

16.8 Von Neumann entropy
Using the relationship between a density matrix and a probability distribution for a set of or-
thogonal signal states, show that when the signal states are pairwise orthogonal, the Holevo
information χ given in (16.5.9) and repeated below

χ
.
= S

(∑
s
p(s)ρ̂s

)
−
∑
s
p(s)S (ρ̂s) ,

is equal to the Shannon entropyH(s).

Solution
For a constellation of orthogonal pure signal states, the density matrix ρ̂s for each pure sig-
nal state has no quantum uncertainty, and has a single eigenvalue equal to one. Therefore
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S (ρ̂s) = 0. This density matrix ρ̂s is a projection matrix P̂s = |ψs⟩⟨ψs| which can be
written as

P̂s =


0 0 0 . . . 0
...

. . .
...

...
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 .

This matrix has one diagonal element equal to one and all other elements, both diagonal
and off-diagonal, equal to zero. The summation ρ̂ =

∑
s p(s)ρ̂s over all the pure states in

the signal constellation can then be written as

∑
s
p(s)ρ̂s = p(1)


1 0 0 . . . 0
...

. . .
...

...
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

+ p(2)


0 0 0 . . . 0
0 1 0 . . . 0
...

. . .
...

...
...

...
...

...
. . .

...
0 0 0 . . . 0

+

· · · +p(n)


0 0 0 . . . 0
...

. . .
...

...
...

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



=


p(1) 0 0 . . . . . . 0
0 p(2) 0 . . . . . . 0
...

...
. . .

...
...

...
...

...
...

...
. . .

...
0 . . . . . . . . . . . . p(n)

 ,

which is a diagonal matrix D with diagonal elements that comprise the probability distribu-
tion p(s). For this diagonal matrix, the eigenvalues λi of the density matrix ρ̂ =

∑
s p(s)ρ̂s

are simply the diagonal elements p(s). Therefore, using (15.4.23), which is repeated here

S(ρ̂) = −
∑
i

λi logλi,
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and setting λi equal to p(s) gives

S(ρ̂) = −
∑
s
p(s) log p(s)

= H(s),

which is the Shannon entropy. When the states are not orthogonal, the sum ρ̂ =
∑

s p(s)ρ̂s
is not a diagonal matrix. For this case, the matrix has off-diagonal elements so that the
eigenvalues of that matrix will not be equal to the diagonal elements of the matrix and will
not be equal to p(s). Accordingly, the von Neumann entropy will be less than the Shannon
entropy, as state in (15.4.25).

16.9 Von Neumann entropy
A signal state is given by

|ψ⟩ = 1
2 |0⟩+

1
2 (cos θ|0⟩+ sin θ|1⟩)

(a) Determine the corresponding density matrix ρ.

Solution
View the given signal state as a statistical mixture of two pure states expressed in column
form as

|ψ0⟩ =

[
1
0

]
|ψ1⟩ =

[
cos θ
sin θ

]
.

Forming the outer product |ψ⟩⟨ψ| for each signal state, the corresponding density matrix ρ̂
is

ρ̂ =
1

2

([
1 0
0 0

]
+

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

])
=

1

2

[
1 + cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

]
.

(b) Determine the eigenvalues of ρ.

Solution
The eigenvalues are the solutions to

det
1

2

[
(1 + cos θ)− λ cos θ sin θ

cos θ sin θ sin2 θ − λ

]
= 0.

with λ1,2 given by

λ1,2 = 1
2 (1± cos θ).
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(c) Derive an expression for the von Neumann entropy as a function of θ.

Solution
Using (15.4.23) repeated here as

S(ρ̂) = −
∑
i

λi logλi,

the von Neumann entropy is the Shannon entropy of the set of eigenvalues {λi} with

S(ρ̂(θ)) = −1
2 ((1 + cos θ) (log(1 + cos θ)− log 2) + (1− cos θ) (log(1− cos θ)− log 2)) .

(d) Determine the value of θ that maximizes the entropy.

Solution
Taking the derivative of the von Neumann entropy gives

dS(ρ̂(θ))
dθ

= 1
2 sin θ log

(
1
2 (cos θ + 1)

)
− 1

2 sin θ log
(
1
2 (1− cos θ)

)
.

Setting this expression equal to zero and simplifying gives

cos θ = 0,

which has a solution θ = π/2+nπ where n is an integer. For this set of angles, the density
matrix is an equiprobable mixture of two orthogonal signal states with the von Neumann
entropy equal to the Shannon entropy.

(e) Plot the von Neumann entropy for 0 < θ < 2π and demonstrate that the result de-
termined in the previous step is correct.

Solution
A plot of the von Neumann entropy in bits as a function of θ is shown below.
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The maxima for the range [0, 2π) of angles shown on the figure occur at π/2 and 3π/2
confirming the result derived in part (d).

16.10 Small-signal expansion of the von Neumann entropy
The von Neumann entropy of an antipodal coherent state is given by (16.6.5) and is repeated
here

S (ρ̂) = Hb

(
1
2 (1− e

−2Eb)
)

= −(1− e−2Eb) log(1− e−2Eb)− (1 + e−2Eb) log(1 + e−2Eb).

Using the power series expansion log(1 + x) = x− x2

2 +O
(
x3
)
and ex = 1 + x+ x2

2 +

O
(
x3
)
, show that the small-signal limit of the von Neumann entropy is given by

S (ρ̂) ≈ Eb (1− log Eb) ,

which is (16.6.7) and is the small-signal limit of the entropy of a Poisson probability mass
function (cf. Problem 14.5).

Solution
The second expression in the problem statement is missing a factor of one half. Including
this factor and using e−x ≈ 1− x gives

Hb

(
1
2 (1− e

−2Eb)
)
≈ (Eb − 1) log(1− Eb)− Eb log Eb.

Using log(1− x) ≈ −x for the first term and discarding a term of order Eb2 gives

S (ρ̂) = Hb

(
1
2 (1− e

−2Eb)
)
≈ Eb (1− log Eb) .

This expression shows that the small-signal limit of the von Neumann entropy for a antipo-
dal coherent state approaches the entropy of a Poisson distribution.
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16.12 Codeword detection
This problem works through the steps that derive the probability of a block-symbol-state
detection error given in Section 16.4.3.

(a) Starting the Gram matrix K given in (16.4.9), derive the matrix A and its inverse A−1.

Solution
The Gram matrix K given in (16.4.9) has the following form

K =


1 κblk κblk κblk
κblk 1 κblk κblk
κblk κblk 1 κblk
κblk κblk κblk 1

 .
The eigenvalues are the solution to (K− λI)x = 0 where x is column vector. This system
of equations has a nontrivial solution when the determinant of the left side is equal to zero
which gives

λ4 − 4λ3 + 6λ2
(
1− κ2blk

)
− 4λ

(
2κ3blk − 3κ2blk + 1

)
− 3κ4blk + 8κ3blk − 6κ2blk + 1 = 0.

This fourth-order polynomial factors into

(λ− λ1)3(λ− λ2) = 0,

where λ1 = 1− κblk and λ2 = 1+ 3κblk. Therefore, the eigenvalues are 1− κblk, 1− κblk,
1 − κblk and 1 + 3κblk. For the eigenvalue λ1, the corresponding eigenvector x1 is any
solution to the following set of homogeneous equations

(K11 − λ1)x1 + K12x2 + K13x3 + K14x4 = 0
K21x1 + K22x2 + K23x3 + K24x4 = 0
K31x1 + K32x2 + K33x3 + K34x4 = 0
K41x1 + K42x2 + K43x3 + K44x4 = 0

One solution to this set of equations is x1 = (0, 0,−1, 1)T and is one eigenvector for the
eigenvalue 1−κblk. Repeating this process gives two other eigenvectors (0,−1, 0, 1)T and
(−1, 0, 0, 1)T for the eigenvalue 1− κblk and (1, 1, 1, 1)T for eigenvector corresponding to
1 + 3κblk. Organizing the column eigenvectors into a matrix gives

A =


0 0 −1 1
0 −1 0 1
−1 0 0 1
1 1 1 1

 .
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The inverse of this matrix is

A−1 =
1

4


1 1 −3 1
1 −3 1 1
−3 1 1 1
1 1 1 1

 .

(b) Using these expressions, show that the matrixM can be written as

M =


a b b b
b a b b
b b a b
b b b a

 ,
where a = 3

√
1− κblk +

√
3κblk + 1 and b =

√
3κblk + 1−

√
1− κblk. (Note the original

problem statement had a typo of an additional square on each term containing κblk.)

Solution
The diagonal matrix D with diagonal elements that are the eigenvalues of the Gram matrix
can be written as D = AKA−1. Taking the square root of each eigenvalue, the matrix M
can be written as

M = A−1D1/2A

=
1

4


1 1 −3 1
1 −3 1 1
−3 1 1 1
1 1 1 1



c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 d




0 0 −1 1
0 −1 0 1
−1 0 0 1
1 1 1 1



=
1

4


a b b b
b a b b
b b a b
b b b a

 ,
where a = 3c+ d, b = d− c, c =

√
1− κblk, and d =

√
3κblk + 1.

(c) Using the result from part (b), derive (16.4.10).

Solution
The conditional probability p(k|ℓ) is the squared magnitude |mℓk|2 of each element of the
matrix M (cf. (16.1.13)) with the squares of the on-diagonal elements |mℓℓ|2 giving the
probability of a correct decision p(ℓ|ℓ). Because every diagonal element ofM has the same
form, p(ℓ|ℓ) = 1

16 |a|
2 = 1

16 (3
√
1− κblk +

√
3κblk + 1)2, which is (16.4.10a). Similarly,

every off-diagonal element has the same form with p(ℓ|ℓ) = 1
16 |b|

2 = 1
16 (
√
3κblk + 1 −√

1− κblk)2, which is (16.4.10b).
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