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Chapter 1 Selected Solutions

1.1 Spectrum of an amplitude-modulated signal

Let s(t) be a bandlimited baseband signal with a frequency content S(f) given by 1 —
| £/ fmax Tor |f] < fmax, Where fiay is the maximum frequency of the baseband signal.
This baseband signal is multiplied by cos(2 f.t) to produce an amplitude-modulated pass-
band signal 5(¢) = s(t) cos(2m f.t), where f. is the carrier frequency and f.. is much larger
than fiax.

(a) Sketch the frequency spectrum S(f) of the baseband signal.

Solution
The baseband frequency spectrum is a triangular function shown in part (a) of the figure
below.
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(b) Sketch the frequency spectrum S(f) of the amplitude-modulated passband signal.

Solution
Applying the modulation property of Fourier transform (see Section 2.1), a sketch of the
modulated spectrum is shown part (b) of the figure with f. = f,.

(c) The amplitude-modulated (AM) signal is demodulated by multiplying $(¢) by a coherent
signal of the form cos(27 f.t). The signal is filtered by an ideal lowpass filter with a cutoff



frequency fiax- Sketch the magnitude of the frequency spectrum of the demodulated signal.

Solution
Applying the modulation property of Fourier transform again yields part (c) of the figure.

1.2 Frequency demodulation errors

This problem considers the effect of a frequency error in the process of demodulation. An
amplitude-modulated signal s(t) = s(t) cos(27 f.t) is demodulated using cos (27 f.(1 +
:c)t) , where x is arelative frequency error, and s(t) is given in Problem 1. Sketch the magni-
tude of the frequency spectrum of the demodulated signal for: (a) x = 0, (b) z = fmax/10f-,
and (¢) © = fiax/fe- Comment on the results.

Solution
(a) This is the same as Problem 1c.

(b) and (¢)
Solution
When x # 0, the two parts of the spectrum do not exactly overlap. This is shown schemat-

ically in the figure below with f. = f,.
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When the offset z is equal to fu,x, the baseband spectrum is “inverted”. The distortion is
caused by the combination of the two parts of the spectrum not being aligned because of the
different demodulation frequencies, and the lowpass filter which removes higher frequency
components of the baseband signal.



1.3 Phase demodulation errors

An amplitude-modulated signal 5(¢) = A cos(27 f..t) is demodulated by using the reference
cos(27 f.t + ¢.) where ¢, is a phase error, and A is a constant amplitude.

(a) Determine an expression for the demodulated signal as a function of the phase error

Pe.

Solution
Application of cos A cos B = %(cos(A — B) + cos(A + B)) gives

35(t) cos pe(t) + 3s(t) cos(4m fot + P (t)).

When the phase variation is slow with respect to the carrier, the second term is filtered out
by the lowpass filter. However, the first term shows that the original signal s(t) is now
multiplied by a phase error term cos ¢, (t) producing distortion in the demodulated signal.

(b) The demodulated signal is now integrated over a time period 7. What is the maximum
phase error ¢, that can be tolerated for the demodulated signal to ensure that the magnitude
is within 10% of the magnitude when there is no phase error?

Solution
To keep the magnitude of the error term within 10% requires cos ¢.(t) to be less than 0.9.
Solving for ¢, gives |¢.| < 0.45 radians or |¢p.| < 25.8°.

1.4 Envelope demodulation

Consider an amplitude-modulated passband signal
5(t) = s(t) cos(2m fet),

where s(t) = cos(27 f1t) and f; is much less than f.. This signal is demodulated using
envelope detection. What is the form of the resulting baseband signal in terms of s(t)?

Solution
This signal does not have a bias term and thus the envelope s(t) is not always positive.
Therefore the original signal cannot typically be recovered as is shown in the figure below.
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1.5 Energy in the passband signal

The energy in a real passband signal $(¢) over an interval T is

T
E = 5(t)%dt.
/0 S(1)2dt

Let 5(t) = Acos(2m fet) and T > 1/ f,.

(a) Determine the energy in 5(¢) in terms of A and 7.

Solution

!
o)

T
(Acos(2rf.t))? d

(=}

= (1 + cos(4m f.t)) dt
O 2

where the second term on the third line is nearly zero when 7" > 1/ f...

(b) Determine the energy in the demodulated baseband signal (cf.(1.3.3))

r(t) = Acos(2nf.t) - cos(2mf.t)

and compare this with the result in part (a).

Solution
When T > 1/ f., r(t) = Acos(2n ft) - cos(2m f.t) = A/2. Then

E = /OT r(t)?dt

T 52
A
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The energy is half that of the incident signal.



(c) Compare both energies to that of a constant signal A over a time 7.

Solution
The electrical energy is 1/4 that of a constant signal One factor of 1/2 is from modulation.
The second factor of 1/2 is from demodulation.

1.6 Sensitivity of a lightwave receiver

Suppose that a phase-asynchronous lightwave communication system using a noncoherent
carrier requires 10,000 photons per bit to achieve a bit error rate equal to 1072,

(a) If the information rate is 10 Gb/s, R = 1, and A = 1500 nm, what is the required
lightwave signal power at the receiver? Express your answer in dBm.

Solution
Using the values given in the problem, the power is mhcg/A =13.3 W which is —18.8
dBm.

(b) Determine the output photocurrent.

Solution
The current is given by PR = 13.3 uA.

(c) Determine the electrical power gain in decibels (dB) required after photodetection to
produce a one volt signal into a 50 ohm resistor.

Solution
Generating a one volt signal into 50 (2 requires a current equal to 1/50 A. Working with the
current, the power gain of the electrical amplifier is 20 log,,((1/50)/13.3x107%) = 64 dB.

(d) A lightwave amplifier is now placed before the photodetector. Determine the light-
wave signal power gain in decibels required to produce the same one-volt signal when no
electrical amplification after photodetection is used.

Solution

Given the square-law nature of the photodetection process, the required gain for the optical
amplifier is reduced by a factor of two when the gain is expressed in decibels. Therefore G
is about 32 dB.



(e) Comment on the results of parts (¢) and (d). (Note that there is a typo in letters de-
noting the problem sections the text.)

Solution

The square-law nature of the photodetection process means for the same photodetected
current, the optical gain before direct photodetection is half the equivalent gain after direct
photodetection in the electrical domain when the gain is expressed in decibels.



Chapter 2 Selected Solutions

2.1 Linear systems

Show that for any constants a and b, the definition of a linear system can be replaced by the
single statement

axi(t)+bxa(t) = ayr(t) + bya(t),
whenever z1(t) — y1(t), and z2(t) — ya(t).
Solution

Using homogeneity, input a 21 (t) has output by, (¢). Letaz1(t) = X1(t) and letay; (¢) =
Y1 (t). Similar expressions can be derived for x5 and y2. Then using superposition gives

Substituting back X (t) = a x(t) and Y (t) = b y(t) yields the desired expression.

2.2 Properties of the Fourier transform

(a) Starting with the definition of the Fourier transform and its inverse, derive the primary
properties of the Fourier transform listed in Section 2.1.

Solution
Modulation Property

0o
/ (L‘(t)e_i27rft€i27rfctdt
—o0

= x(t)e 2r = F)tge,

Time Translation

Start with inverse transform
oo
/ X(f)eiQﬂft67i27rft0df

_ X(f)ei27r(t—to)tdf



Scaling

/ z(at)e 2™t dt.

—0o0
Let ¢ = at, then dt = dt’/a. Substituting gives

_ l / x(t/)e—iQﬂ'(f/a)t/dt/
a

— 00

"X(f/a).

Dif ferentiation

Write 2(t) as inverse transform and take the derivative of each side to give

d d [ i
&x(t) = &/_OOX(JK)G2 ftaf

/ h 27X (f)e?mItdf.

— 00

(b) Using the modulation property of the Fourier transform and the transform pair 1 <—
§(f), show that [7_e2mfite=i2mf2tdt = §(f, — f1), thereby demonstrating that the set

{e~127/it} of time-harmonic functions is orthogonal.

Solution
o0 o0
/ ei27rf1te—i27rf2tdt _ / 6_i27r(f1_f2)tdt
_ / (1)e2n g
= 4(f)
= 5(f1 - f2)7

where 1 «<— J(f) has been used.



2.3 Gram-Schmidt procedure

The Gram-Schmidt procedure is a constructive method to create an orthonormal basis for
the space spanned by a set of IV signal vectors that are not necessarily linearly independent.
Let {x,,(t)} be a set of signal vectors. The procedure is as follows:

(a) Set 11 (t) = w1(t)//E1 where Fj is the signal energy.

(b) Determine the component of z5(¢) that is linearly independent of 1) (¢) by finding the
projection of x4 (t) along 1 (¢). This component is given by [z2(¢) - 11 (¢)]11 (t) where the
inner product is defined in (2.1.65).

(c) Subtract this component from x5 (t).

(d) Normalize the difference. The resulting basis function can be written as

za(t) — [22(t) - a (D] P (1)
|22(t) = [22(t) - Y1 ()] b ()]

Pa(2)

(e) Repeat for each subsequent function in the set forming the normalized difference be-
tween the function and the projection of the function onto each of the basis functions al-
ready determined. If the difference is zero, then the function is linearly dependent on the
previous vectors and does not constitute a new basis vector.

(f) Continue until all functions have been used.

Using this procedure, determine:

(i) An orthonormal basis for the space over the interval [0, 1] spanned by the functions
x1(t) = 1, 22(t) = sin(27t), and x3(t) = cos?(27t).

Solution
The function 1 (¢t) = 1 is already normalized so 11 (t) = x1(t) = 1. Project z2(t) onto
¥1(t) to give

1
/ (1) sin(27t)dt = 0,
0
showing that x4 (t) is orthogonal to ¢ (¢) = 1. Normalizing this term gives

1
V2
sothat 1), (t) = v/2sin(27t). The last basis function is determined by expressing cos? (27t) =
% (14 cos (47t)). Then

lz2(t)] = /Osin2(27rt)dt =

x3(t) - Pi(t) = /0(1)~%(1+cos(47rt))dt = %7



showing that the zero-frequency or DC component of z3(t) is the same as 11 (¢). Repeating
for ¢5(t), we have

z3(t) - a(t) = /01 V2sin (2rt) - = (1 4 cos (47t))dt = 0,

N | —

showing that z3(t) is orthogonal to 15 (t). Therefore, the component of 2:3(¢) that is orthog-
onal to both 11 (¢) and 1) (t) is cos (4t). Normalizing this term gives 13 (t) = v/2 cos (4nt).

(ii) An orthonormal basis for the space over the interval [0, 1] spanned by the functions
x1(t) = €', zo(t) = et and w3(t) = 1.

Solution
Let 21 () = ¢! be the first function. Normalizing this term gives

|l’1 “ 62tdt = \/% 71

Se-1)

Now project this function onto the second function to give

and thus

1
x2(t) -1 (t) = ;/ eletdt = ;
L 1) o L@ 1)
Subtracting from z2(t) gives
Ta(t) — (22(t) - () ¥ (t) = e_t_%(ezll)et'

Normalizing yields

1 1
\// — Niel) at = \/2(N12(621)4N162+1N2,

so that ¢5(t) = Na(e™* — Nye') where N; = %
2
project the third function x3(¢) = 1 onto each of first two functions to give

and N, are given above. Now
1
1’3(t)”§/]1(t) = Nl/ €tdt = N1 (6—1)7
0

10



and

z3(t) - ha(t) = N?A(Ei_qu&::NﬂNw+U@_lx

e
Subtract to produce the part of the third function that is orthogonal to both 1 (¢) and 1o (t)
23(t) — ([23(t) - w1 (O] 1 () + [23(t) - ¥a(t)] P2 (1))

1— (N1 (e —1) Nye t(t) + NQ(Nletl)(e — l)Ng(e_t - Nlet))

= 1-N? (eﬂ*t) - 1) + N2(Nie+1)(e — 1) (e~ D — Nt

This function can then be normalized to determine 5 (t).

2.4 Gaussian pulse

(a) Using the Fourier transform pair e +— e~ and the scaling property of the
Fourier transform, show that

2 2 2 2,2 2 2
e 27 s \ogge 2o S = V2roe 7w /2,

Solution
Let ¢! = v/27o. Using the scaling property of Fourier transforms gives

ey’ L —m(s/0)?

Cc

e

so that
2V 27rae_2”2‘72f2.

Using w = 27 f, this expression shows the exact reciprocal relationship between the root-
mean squared timewidth and the root-mean squared bandwidth expressed in (angular) fre-
quency.

(b) Using an angular frequency w, show that when the root-mean-squared timewidth is
defined using the squared-magnitude of the root-mean-squared bandwidth is defined using
the squared-magnitude of the Fourier transform, TysWims = 1/2.

Solution

When the squared magnitude of the pulse is used, Tyms = o/v/2. Then, using an angular
frequency w, Wims = 1/v/20. Therefore TymsWms = 1/2. This relationship is the basis

11



for the Heisenberg uncertainty relationship discussed in Chapter 15

(c) Derive the relationship between the root-mean-squared bandwidth W,,,s for the signal
power and the —3 dB or half-power bandwidth W, for a pulse whose power P(¢) is given
bye —t?/20% )

Solution

The 3 dB point is defined when the frequency function is half the peak value at f = 0.
Using the Fourier transform pair derived in part (a), and solving for f gives

g _ 1
c 2
1 log (2
= fse = — log,(2)
o 2

(d) A lightwave pulse s(¢) modeled as a gaussian pulse with a root-mean-squared timewidth
Tims 18 incident on a square-law photodetector with the electrical pulse p(t) generated by
direct photodetection given by |s(t)|? /2. Determine the following:

(i) The root-mean-squared timewidth of p(¢) in terms of Tipys.

Solution
Squaring an gaussian reduces the root-mean timewidth by a factor of /2. Therefore, the
root-mean-squared timewidth of p(t) is equal to Tyys/v/2.

(ii) The root-mean-squared timewidth of the electrical power per unit resistance P.(t) =
p(t)? in terms of Typs.

Solution
The signal is squared again so that the root-mean squared width of the electrical power pulse
P.(t) = p*(t) is half the root-mean squared width of the lightwave pulse.

(e) Finally, rank order the root-mean-squared timewidth of the lightwave pulse s(t), the
electrical pulse p(t) generated by direct photodetection, and the electrical power pulse
P.(t). Are these results valid for any kind of pulse?

Solution

The order from largest to smallest is: the lightwave pulse, the photodetected pulse, and then
the electrical power pulse. The results are valid for any kind of smooth pulse such that the
derivative of the pulse does not contain impulses.

12



2.5 Pulse formats

Derive relationships between the root-mean-squared width, the —3 dB width, and the full-
width-half-maximum width in both the time domain and the frequency domain for:

(a) A rectangular pulse defined as p(t) = 1 for —W /2 < t < W /2, and zero other-
wise.

Solution
For the rectangular pulse, the full width half max (FWHM) is equal to the width W of the
pulse. The definition of the root-mean squared width is (cf. (2.1.30))

o2 = ffooo (- E)Qp(t)dt where t = M
' Joo p(t)dt [ p(tydt”

Because it is a square pulse of unit height and base W, the area is W. Because the function
is even, t = 0. Therefore,

o o —1)p(t)dt
% = [ p(t)dt

(b) A triangular pulse defined as p(t) = 1 — |t| /W for |¢t| < W, and zero otherwise.
Solution

For this case, the full width half max (FWHM) is half the base 2W of the triangle, or W.
Because it is a triangular pulse of unit height and base 2W, the area is W as before. Because

13



the function is even, ¢ = 0 as before. Therefore,

) Joo (t=1)*p(t)dt
N O
Jo 2p(t)dt
- W
21— L)dt w?
W 6
5 W
V6

This width is a factor of /2 less than the width of the rectangular pulse. This factor can be
explained by noting that a triangular pulse is the convolution of a square pulse with itself.
(See Problem 2.6)

(b) A lorentzian pulse defined as

) = 2a
p - tz + 042 I

where « is a constant.

Solution
The full-width half-maximum value is defined when p(t) = 1/2. Solving gives tpyuy as
v/a(4 — ). The root-mean-squared width of a lorentzian pulse is

— 1 [~ 2at?
2 _ -
T2 = £ = = /oct2+a2dt,

where E = ffooo |p(t)|?dt is the pulse energy. Because the integrand goes to the constant
2« as t goes to infinity, the integral does not converge and the root-mean squared timewidth
for a lorentzian pulse is not defined or is defined as infinite.

2.6 Pulse characterization

The rectangular pulse p(t) defined in Problem 2.5 is used as the input to a time-invariant
linear system defined by h(t) = p(¢) so that the impulse response is equal to the input pulse.

(a) Derive the full-width-half-maximum timewidth and the root-mean-squared timewidth
of the output y(t) = x(t) ® h(t) and show explicitly that 20> = o7 where o is the root-
mean-squared timewidth.

14



Solution

The convolution of the input square pulse h(¢) with an impulse response g(t) that has the
same functional shape results in a triangular output pulse of the same form as Problem
2.5(b).

Therefore, using the root-mean squared width from part Problem 2.5(a), we have

9 9 w2 w2 w2
fos t 0 = Gyt T G
which is the square of the root-mean squared width ¢(t) from Problem 2.5(b), showing that
the root-mean squared timewidths of optical pulses “add in quadrature” for nonnegative
pulse shapes according to h2,, + g2, = f2...
(b) Let the full-width-half-maximum width be denoted by F'. Determine whether the rela-
tionship 2F} = F holds for each pulse defined in Problem 2.5.

Solution
Using the definition of the full-width-half-maximum width gives
hl?WHM + gFQWHM = W2 + W2 = 2WQ7

which does not equal the full-width-half-maximum width of the output pulse for any pulse
considered in this problem. For this reason, timewidths and bandwidths based on root-mean
squared values are often preferred to full-width-half-maximum widths.

2.7 Passband, baseband, analytic signals, and the Hilbert transform
(a) Using
5(t) = A(t) cos(27r fct + ¢(t))

= Re[(s:(t) +isq(t)) /']
= Relz(t)],

determine expressions for A(t) and ¢(¢) in terms of s,(¢) and sq ().

Solution
The relationship is just the conversion between rectangular and polar coordinates
A(t) = Vsi(t)? +50(1)?
1 [s0(?)
é(t) = tan! [ < ]
(t) (D)

15



(b) Verify the following relationships:

(i) s7(t) = Re [z(t)e~2mfe!]

Solution

When 5(t) = A(t) cos 27 f.t + ¢(t)], then by definition 5(¢t) = Re[z(t)], and z(t) =
A(t)el@mfet+e(1)  Therefore, Re [A(t)el2™fet+ ) e=i2nfet] — Re [A(t)el*()] = A(t) cos p(t) =
s (t).

(i) so(t) = Im [2(t)e 127 et]

Solution
Im [A(t)elCrfetteM)e=i2nfet] — Im [A(t)el*D] = A(t)sing(t) = sq(t).

(i) A(t) = |=(¢)]

Solution
Follows directly from the definition of z(¢).

(iv) (1) = arg (z(t)e’i%fct)

Solution
Follows directly from the definition of z(¢).

(c) Derive a relationship for the Hilbert transform §(¢) in terms of the complex-baseband
signal s, (t) + isq(t) and the carrier frequency f..

Solution
By definition Z(t) = Im|[2(t)] (cf. (2.1.22)) so that Z(t) = Im[A(t)e?®el2mfet] or
Z(t) = Im [(s,(t) +iso (1)) €27/']

2.16 Marginalization
The bivariate gaussian probability density function has the form

Poy(r.y) = Aemrtaia),

16



(a) Express A in terms of a, b, and c.

Solution
Express the joint probability density function in the standard form of a multivariant gaussian
distribution L )
— —5 (x—(x)TCTH (x—(x))
Y CESEETTs

)

where x = [ ;C ] . Comparing this standard form to the expression given in the problem, it

is seen that the means () and (y) are both zero because there is no constant term. Moreover,
the inverse of the covariance matrix C~1 is

-1 _ a b
ci=2| g b

with the covariance matrix given by

and the determinant of C given by

The variances are diagonal terms of the covariance matrix and are given by

c a
[ P — o2 =

¥ 4(ac—b?) Y d(ac—b2)’
Using these expressions, the normalization is

s 1 _ Vac—b?

V(2m)2 detC ™

(b) Find the marginals, p, () and py (y), and the conditionals p,, (z|y) and py |, (y[z). (c)

Find the means (z), (y), the variances 02, 02, and the correlation (zy).
Solution
The means and the variances were derived in part (a). The marginals are given by

1 1

22 /952 42 /202
Fol) = e () = e
V2mog 1/27rcr§
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The correlation (zy) is
Vac—b> [ [ 2 g a? b
— —(ax®+2bzy+cy”) 4o dy = —
<§y> ™ /—OO w/—oo e e 2(CLC - b2) ’

which is simply the off-diagonal element of the covariance matrix. Finally, the conditional
distributions are

Joy(@,y) fz,g(may)

fgg(x\y) = W pg@(ykr) o W

2.18 Joint and marginal gaussian probability density functions

The joint probability density function p(z, y) is given as

! L(s v ifzy > 0
exp|—= [ — + 2= z
p(z,y) = 2mo,0y P 2 \ 202 205 Y
0 ifzy <0

(a) Show that this function is a valid probability density function.

Solution
The integral of the joint probability distribution separates to an integral over x and an inte-
gral over y. The integral on either x or y is half the value over the whole plane. Therefore

1 o0
pale) =5 [ paylo)ds
= ! exp fy—Z /ooexp 7:1@72 dz
A0y, 402 o 402

20,/

1 y?
= €X —= | .
2\/moy P do?
Including an additional factor of two because of symmetry, this marginal probability den-
sity function integrates to one so that the distribution is a valid probability density function.

(b) Sketch p(x,y) in plan view and in three dimensions. Is this joint probability density
function jointly gaussian?

Solution
The plot of the function is on the next page for o, = oy = 1.

18



-2 -1 0 1 2

It is nonzero in the first and third quadrants when xy > 0. It is zero elsewhere.This joint
probability density function is not jointly gaussian.

(¢) Find the marginal probability density functions p, () and p,(y) and comment on this
result. a

Solution

The marginal distribution for y is of the same form as the form derived in part (a) with
each marginal distribution equal to a gaussian distribution. Therefore, knowing that each
marginal distribution is gaussian is not sufficient to infer that the joint distribution is jointly
gaussian.

2.21 Coherence function and the power density spectrum

(a) Let R(1) = e~ |7lei?7feT . Determine the one-sided power density spectra S(f) and
Sa(A).

Solution
The power spectral density Sy (f) is the Fourier transform of the coherence function ()

oo

i) = [ rmeer

— 00

0 00
/ eTei?'/rfcr€7i271'f7'd7_ + / 677'6127rfc7‘67i27rf‘rd7_
—o0 0
B i . i
Can(f-fo) i 2m(fe— f) +i
2
L4+4m2(f — fe)?
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which is a shifted lorentzian spectrum. The one-sided spectrum is twice this value and is
defined for nonnegative frequencies. To find Sy (A), use Sx(A) dA = Sy (f) df to obtain

S0 = 5%
2 c
T Tl An(f - f2 N2
- c 2
a A1 +4n2e(5 — )\%)2
2c

SN A )2

(b) A lightwave carrier has a power density spectrum Sy () given by

7
S\(A) = —m———.
"N A= A2+
Determine the total lightwave signal power P.
Solution
Let x = A — A\, where )\, is a constant. Then d\ = dz. The spectral density is one-sided
so the limits on A are 0 and co. When A = 0, x = — .. The upper limit remains the same

so that the integral is

> T > 1
———d\ = ——dux.
/0 A=)+ W/AC 2 + 72 x

The integral is the form of an arctan function so that

e 1 T
ﬂ'/)\c mdx = /7 |arctan <ﬁ) N
T Ae
= ﬁ(z + arctan(ﬁ>>.

(¢) Determine the full-width-half-maximum width of the spectrum in part (b).

(oo}

Solution
To determine the full-width-half-maximum width, solve S)(\) = oo = 1 to give

A = A £+ /7. Then the full-width-half-maximum width = 2./7.
(d) Estimate the coherence timewidth 7. for the spectrum in part (b).

Solution
At ~ 1/Af = X?/cAN so that 7, = 2 where A\ is the full-width-half-maximum

2cy/m
width value of Sy ().
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2.22 Autocorrelation and the power density spectrum of a random signal
using sinusoidal pulses

A binary waveform consists of a random and independent sequence of copies of the pulse
(1 + cos(2nt/T))rect(t/T’) with random amplitude A,, for the nth term of the sequence.
The start time j of the pulse sequence is a uniformly-distributed random variable over [0, T7].
The symbols transmitted in each nonoverlapping interval of length 7" are independent. The
probability of transmitting a mark with an amplitude A is 1/2. The probability of transmit-
ting a space with an amplitude 0 is 1/2.

(a) Determine the autocorrelation function of the signal.
Solution

The form of solution follows the example shown in Figure 2.10 with the retangular pulse
replaced by (1 + cos(27t/T)). The convolution y(t) is evaluated as

/" (1+ cos(2mr/T)) (1 +cos(2n(t —7)/T))dr T <t <0
y(t) = e (1 + cos(2mr/T)) (1 + cos(2n(t — 7)/T))dr 0 <t<T

0 otherwise
which gives
—(1/4m)3T sin (2nt/T) + ((t+T)/2) cos 2mt/T) +t+T -T <t<O0

y(t) = (1/4m)3T sin (27t /T) — ((t — T)/2) (cos (27t/T) + 2) 0<t<T
0 otherwise

(b) Determine the power density spectrum of the signal.
Solution
The power density spectrum is the Fourier transform of the autocorrelation function. Let

y1(t) be the expression for —T' < ¢ < 0 and let y5(t) be the expression for 0 < ¢t < T
given in the expression listed in part (a). Then setting 7" = 1 for simplicity gives

0 1
Y(f) = / y1 (t)el > tdt + / ya(t)el>™ It
-1 0
Evaluating the integrals separately and then combining gives

sin? (7 f)

YU = Sppoay
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A plot of y(¢) and Y (f) is given below.
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2.23 Covariance matrices

Define z as a vector of N circularly-symmetric gaussian random variables with a complex

covariance matrix V given in (2.2.30b). Define x as a vector of length 2NV that consists of the

real part Re[z] and the imaginary part Im[z] in the order x = {Re[z,], ..., Re[z], Im[z], ..., Im[z ;] }.
Show that the real 2NV x 2N covariance matrix C given by (cf. (2.2.22))

C = (x—(x)x- &),

where X is a random column vector formed by pairwise terms can be expressed in block
form in terms of the N x N complex covariance matrix V as

c - 1] ReV —ImV
~ 2| ImV ReV
Solution
Let the column vector x of length 2N consist of the real part Re[z] and the imaginary
part Im[z] in the order x = {Re[z1], ..., Re[zy], Im[z1], ..., Im[2y]}. For example let z; =

1 + 1y; and 2o = x2 + iys. Now write C as
C = (xx") < N ]> _ { éRe[Z]Re[Z]T> <Re[z}lm[z]T> }

where, for example

welarefa”) = (| 51| [0 o2 )= | o) (s ]
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The four 2 x 2 blocks make up the complete 4 x4 matrix. Now use the following expressions,
which can be directly verified

(Refe]Refr]") = SReV
(Rele]imlz]") = — Im¥
(Im[z]Re[]") = %ImV
(Im[z]Im(z]") = %ReV

For example,

V:<zz*>=<[ Lt i ] [ 21—y 2o — iy ]>

T3 + 1Yz
_ (171 + Y191) (T122 + Y1y2) — i(X1y2 — X2y1)
(T122 + y1y2) +i01y2 — Xoy1) (T2m2 + Y2y2)

When all of the variances are equal, (z121 + y1y1) = 2(z121). This is the origin of the
factor of one half. Substituting gives the desired expression

1 _
C - [ ReV —ImV }

2| ImV ReV.
2.25 Diagonalizing a covariance matrix
A real covariance matrix C of a bivariate gaussian random variable is given by
11
c=|1 4]
(2) Determine a new coordinate system (z’, 3’) such that the joint probability density func-
tion in that coordinate system is a product distribution and express the joint probability den-

sity function in that new coordinate system as the product of two one-dimensional gaussian
probability density functions.

Solution
The inverse of C is
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and the determinant is equal to 3. Using these expressions, the joint distribution is

1 1 Te-1
— -3 (x=()TCTH(x—(x))
(X)) = ——————e"2

fx(x) (2m)N/24/detC

_ 1 e—(4w2—2zy+y2)/6

27T\/§ ’
where x = [ v ]
Y

(b) Plot this probability density function using a contour plot showing the original coor-
dinates (z, y)and the transformed coordinates (z/,y’).

Solution
A plot of the distribution is below

4

—4 2 0 2 4

(c) Determine the angle 6 of rotation defined as the angle between the z axis and the z’
axis.

Solution
The eigenvalues of the autocovariance matrix are

1
5 (5 + \/13) ,
and the eigenvectors are

%(—3%/1‘3)—4} and[ 3(-3-V13) -4
1 1 ’
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The angle of the major axis is the angle that the eigenvector that corresponds to the largest
eigenvalue makes with respect to the z-axis. This is given by

1 (Y -1 1 0
=) = = 73°.
tan (x) tan (;(_3+m)_4>

. This angle is shown in the figure.

2.33 Square-law photodetector

A finite energy lightwave field U(r,t) is directly photodetected to produce an electrical
waveform r(t) given by

r(t) = RP(zt) = ’R/Al(r,t)dA

- R/ U(r, 1)|? dA,
A
where (1.2.4) has been used.

(a) Show that when U(r, t) is bandlimited to the frequency interval — W < f < W, the
electrical waveform r(t) is bandlimited to the interval —2W < f < 2V,

Solution

The intensity is defined as the square of the lightwave field. The Fourier transform of the
intensity is the convolution of the spectrum of the lightwave field with the complex con-
jugate of the Fourier transform of the lightwave field. Because the Fourier transform is
bandlimited to the frequency interval — W < f < W, r(t), the convolution of the Fourier
transform S(w) of s(¢) with the Fourier transform S*(w) of s*(¢). The support of this con-
volution in the frequency domain is twice that of S(w). Therefore, the Fourier transform is
bandlimited to the interval —2W < f < 2W.

(b) Given the coherence timewidth 7, of the lightwave signal, estimate the coherence timewidth
of the directly photodetected electrical signal.

Solution

When the coherence timewidth 7. of the lightwave signal is expressed using a root-mean
squared value, the squaring operation of direct photodetection in the time domain corre-
sponds to a convolution in the frequency domain as was discussed in part (a). The mean-
squared bandwidth (or variance) then doubles (See. Problem 2.6) with the root mean-
squared bandwidth increased by v/2. Using the approximate reciprocal relationship be-
tween the bandwidth and the coherence time, the root-mean-squared coherence timewidth
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of the directly photodetected lightwave signal is reduced by a factor of v/2.

(c) Estimate the associated width of the lightwave signal power density spectrum and the
width of the electrical power density spectrum.

Solution

In the frequency domain, the spectrum is convolved with itself and thus the mean-squared
bandwidths add (See. Problem 2.6) with the root mean-squared bandwidth of the directly
photodetected lightwave signal increased by v/2. The electrical autocorrelation function is
defined using a product of the directly photodetected lightwave signal and a delayed copy
of that signal. Accordingly, there is an additional factor of 1/2. Therefore, the root-mean-
squared width of the electrical autocorrelation function is approximately a factor of two less
than the root-mean-squared coherence time of the lightwave signal incident to the photode-
tector because of the two squaring operations.
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Chapter 3 - Selected Solutions

3.1 Coupling efficiency into a fiber

(a) Suppose that the radiation emitted by a lightwave source is conical, independent of ¢,
and has a small numerical aperture. Show that the solid angle €2 subtended by the lightwave
source is given by £ ~ m™NAZ, where NA is the numerical aperture.

Solution
The solid angle €2 is defined by

27 Omax
Q / do sind df
0 0

27 arcsin(NA)
/ do / sin 6 d
0 0

in(NA
— 27 cos O rn(NA)

= 2r(1—V1—-NA?),

where cosNA = /1 — NA? has been used. Expanding /1 — NA? ~ 1 — %NA2 and
simplifying gives

QO = 27r(1—\/1—NA2)z?w{l—(l—%NAQH —  7NAZ

(b) A source emits light with a power P and with an angular distribution 1(f) = P cosf/m
where () is the power per solid angle (with units of Watts/sr) in the direction 6. Show
that the coupling efficiency into the fiber is equal to NAZ.

Solution

The total power subtended by a cone with a solid angle (2 defined by a axial angle 6 is
shown in Figure 3.5 where 6 is the maximum acceptance angle into the fiber and is given
by f=arcsin NA from (3.2.4). The total power collected by the fiber within the solid angle

Qis
/ P(Q)d0
Q

P 27 arcsin(NA)
= —/ dgzb/ sin 6 cos 6 df
T Jo 0

arcsin(NA)
0

P

= Psin’0)|
= PNA®
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(c) The radiation pattern for many sources can be modeled as I(6) = (n + 1)P cos™ 6/2w
where n is an integer. Find the coupling efficiency for a lightwave source of this form.
(This should reduce to part (b) for n = 1.)

Solution
The integral over the solid angle €2 becomes
P = / P(Q)d2
Q
P 1 27 arcsin(NA)
= M/ dqb/ sinf cos™ 6 df
2T 0 0

— Pcos

n+1 ) | arcsin(NA)
0

= P(1—(1-NAY)+D/2))

where the cos(arcsin(NA)=1/1 — NA? has been used. The expression reduces to Part (a)
when n = 1.

3.4 TE and TM modes
(a) Starting with
oB
E = —
V x 5
oD
VxH = E
vV-B =0
V-D = 0,
and the constitutive relationships
B = [Lo?‘t
D = &€+ P,

derive Maxwell’s equations restricted to a monochromatic field given by

VxE = —iwuH
VxH = iweE.
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Solution
Substituting D = €€ and B = uyH into the two curl equations gives

IR
Hoat
8£

6875'

VxE&

VXH

Replacing 9/0t with the term iw, and where £ — E and H — H for the monochromatic
form of the equation gives

VXxE = —iwuH
VxH = iweE.

(b) Now suppose that E(z, y, 2) = [E, (2, y)X+Ey (z, y)y+E.(z,y)z]e #* and H(, y, 2) =
[H (7, y)X+ Hy(x,y)y + H.(z,y)z]e #*. Substituting this form into the monochromatic
form of (2.3.1a) and into the monochromatic form of (2.3.1b), show that each transverse
field component (£, £, H, and H,) can be written in terms of the axial components (&,
and H,) and thus show that a transverse electromagnetic (TEM) mode cannot propagate in

a dielectric slab waveguide.

Solution
The curl operation in rectangular coordinates is

X y z

12} 9 0 :
VXE = 9z By 0z = —1w,u0H.

E, E, E.

Noting that 9/0z — —ip for the form of the electromagnetic fields given in the problem
we have

E
OF, +ipE, = —iwpoH, (1a)
dy
0E, . .

e —ifE, = —iwpoH, (1b)
oE, O0E, )
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The second curl equation gives

OH. +ipH, = iwekE, (2a)
dy
oH, . .
rr —iBH, = iwekE, (2b)
0H, O0H, .
— = E, 2
o By iwe (2¢)
Solve for H, in (1a)
i oF
H, = — 2 +iBE, | .
Who < oy TP y)

Solve for E, in (2b) and substitute into the preceding equation

H, - {M'z I <—8HZ —iﬁHz>] .
wo | Oy iwe ox
Combining terms we have
i OF, OH,
H, = —
’ k3n? — (2 (wg dy P Ox ) ’

where k%n2 = w25u0. The expression shows that the transverse component H, can be
expressed in terms of the two axial components E, and H,. Each of the other transverse
components can also be expressed in terms of the axial components E, and H .. Therefore,
if both E, and H, and zero, then all of the components are zero. This means that a TEM
mode, for which £, = 0 and H, = 0 cannot be supported in a dielectric waveguide.

3.5 Boundary conditions for TE and TV modes

(a) Specialize Maxwell’s equations to a monochromatic field propagating in the z direction
when all field components have a dependence of the form e!(“*=52).

Solution

The governing equations for monochromatic fields are

VXE = —iwuH

VxH = iweE.
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Combining these equations produces the Helmholtz equation
V’E+KE = 0.

Given that both fields are of the form e %%, VE = V,E — 32E where the ¢ refers to the
transverse components. The resulting Helmholtz equation is then

VIE+KE = 0,
where k7 = k? — 3.

(b) Now suppose that E = E, (z, z)y, as was the case for the slab waveguide. Determine
the relationship between E, and H, and thus show that H is proportional to dE,, /dz.

Solution

Using V x E = —iwpoH, the governing equation relating H,and E,, is

4B, _dB,
dz dy

= —iwuo Hz . (3)
Therefore, when E, = 0 as in a slab waveguide, H, « dE, /dz.

(c) Repeat part (b) if H = H, (z, )y and show that E. is proportional to (n, /n1)? dH,/dz.
Solution

Using V x H = iweE, and setting H,, = 0 as in a slab waveguide, the governing equation
relating I/ and H,is

dH,

. = iwegE,, 4)

where €; = egn? in the core and €5 = €gn3 in the cladding. Because the index is differ-
ent in the two regions, in order for E, to be continuous across the boundary requires that
E. x (na/n1)? dH,/dz.

(d) Explain why there is a difference in the boundary conditions between the TE and TM
modes for dielectric materials.

Solution

For a TE mode given in (3) the fields are scaled by j, which is a constant that does not
change between the waveguiding regions. For the TM mode given in (4), the fields are re-
lated by ¢€;, which does change between the waveguiding regions because the index changes.
This produces the additional term for the TM mode.
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3.6 Derivation of the Bessel differential equation

Starting with the form of the Helmholtz equation given in (3.3.19) in cylindrical coordinates
and trying a solution of the form E, (r, ¢, z) = f(r) exp [—i(vy + 5z)], use the separation
of variables method to derive the Bessel differential equation (cf. (3.3.20)).

Solution

The Laplacian in cylindrical coordinates is

V2E, =

10 ( 0E, i@QEZ N 0’E,
ror \' or r2 gy? 022

Now write E, (r, 1, z) as a product of three functions
E.(r¢,2) = [f(r)P(@)Z(2),

where W(¢)Z(z) = e {(*¥+52) Using the form of the Laplacian and E.(r,v,z2) =
f(r)e~{(»$+52) substitute this expression into the Helmholtz equation given by

VQEZ(’I",’L/J,Z) +TL2I€8EZ(’I",’(/J,Z) = 0’

to yield

HO 0 (g -2 10 = o

dr2 r dr

which is (3.3.20).

3.7 Normalized frequency
A fiber has the following specifications: index of refraction n = 1.46, normalized index
difference A = 0.0036, and core diameter d = 8.3 microns.

(a) Derive the expression for the normalized frequency V' in terms of:

(i) The numerical aperture.
(1) The index difference.

Solution

(1) The expression for the normalized frequency V" as a function of the NA is (cf. (3.3.12a))

2
V = a—y\/(n? —nd) = aA—WNA.
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(i1) Rewriting the NA in terms of the index difference using (3.2.6) gives (cf. (3.3.12b))

2 2
vV o= aAiNA - a%nﬂ/m,

C

which is (3.3.12b) with 27/ A, = ko.

(b) For a fiber that has a core index of 1.5 and A = 0.1%, what is the largest core that
can support single-mode operation at a wavelength of 1.3 ym?

Solution
For single mode operation, V;,,x=2.4. Solving for the radius a from the expression derived
in part (a) yields

a = V, 7)\6
" orniv2A
1.

= 24 3 = T7.4microns

21 x 1.5v/2 x 1073

3.11 Linearly-polarized modes of a fiber (requires numerics.)

The normalized frequency V' of a step-index fiber is 4.

(a) Using the mode characteristics of a linearly-polarized mode given in Figure 3.15, deter-
mine which modes are guided in the fiber, and estimate the normalized propagation constant
b (cf. (4.2.1)) for each guided mode.

Solution
Examining Figure 3.15 for V' = 4, there are four modes that are guided. LPy;, LP11, LPo;
LPg,. Using (4.2.1), which relates pa, ga and V' gives:

For the LPy; mode, b= 0.77
For the LPy; mode, b= 0.44
For the LPy; mode, b= 0.047
For the LPy, mode, b= 0.00446

(b) For the two modes with the largest values of b, use a root-finding algorithm to nu-
merically find the values of pa, ga, and b.

Solution

LPy; mode, 6=0.77 (0.7727), qa = 3.51, pa = 1.9.
LP;; mode, b = 0.44 (0.440), ga = 2.65, pa = 2.99.
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As can be seen, for b — 1, the mode is well guided, ga — V and pa — 0. For modes
near cutoff, b — 0, ga — 0, and pa — V.

(c) Using (3.3.45), plot the radial dependence of the intensity of the field for the mode
closest to cutoff.

Solution

For V' = 4, the mode closest to cut-off is the LPy, mode. The values for this mode are: b =
0.004459, qa = 0.267, and pa=3.991, which is nearly equal to V. Using (3.3.45), the form
for the radial dependence is

14 KD
A) forr <a Mforrza.
Ju(pa) K, (qa)
A plot of the intensity is shown below.
LP,,mode

Intensity
o o - -
S o S =
R B B

o

Core distance

3.18 Modes of an infinite parabolic-profile graded-index fiber

Let the inhomogeneous index of refraction profile for a graded-index fiber be given as

n2(z,y) = n [1—2A (ﬁﬂﬁﬂ,

a2

where a is the core radius.

(a) Assuming a solution of the form
Ur) = Ulr,y,z) = AU(z,y)e %,

where A is a constant, substitute this form of solution and the index of refraction profile
given above into the scalar Helmholtz equation

V2U(x,y,z)—|—n(r)2k8U(x,y,z) = 0,
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and show that

0?U(r) 9*U(r a? oy
(%g )+ ayg ) 4 [k%n% (1—2A <(12+(12>) —52} Ulr) = 0

Solution
Using 8% = 0%/02?% + 0% /0y? + 0°/02* and 0% /02% — —[3? gives the desired equation.

(b) Using the separation of variables method with U (x,y) = f(x)h(y) show that

1 d*f(x) B 2k3n3 A 2 = K
f(z) da? a? !

1 dh(y) B 2k3n3 A 2 o= K
h(y) dy? a? >

where K7 and K5 are two separation constants.

Solution
Writing U(z,y) = f(2)h(y), using 0U(x,y)/0x = h(y)df(z)/dz, OU(z,y)/0y =
f(x)dh(y)/dy and dividing through by f(z)h(y) gives the desired equations.

(c) Show that the two separation constants satisfy

ﬂ2

k%ng — Kl — KQ.

Solution
See the solution to part (b).
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Chapter 4 Selected Solutions

4.1 Transit time delay using ray optics and the equivalent frequency transfer
function

The maximum delay spread in ray optics is the difference between the delay of the ray that
takes the longest time and the delay of the ray that takes the shortest time to travel the same
distance in a fiber. A distribution of delays results from a distribution of rays coupled into
the fiber at various angles. Suppose that the propagation times associated with this distri-
bution of rays is uniformly distributed between the limiting values of 7; and 75, where 7
is larger than 7.

(a) Determine the functional form of the distribution of the ray delays.

Solution
The distribution of the delays is uniform.

(b) Determine the root-mean-squared delay spread.

Solution
The root-mean squared width of this distribution is
2 SO (= 1)?g(t)dt . J7o ta(t)dt
oy = = wheret = —(FfH——.
Joo g(t)dt oo g(t)dt

Because the pulse has unit height and a width of W, the area is W. Because the function is
even, ¢ = 0 (the integral of an odd function x an even function over a symmetric interval
is zero). Therefore,

) Joo (t—=1)2g(t)dt
Gt = 9
S g(t)dt
I
= — t2g(t)dt
W/_oo g(t)
1 [ W2
- — 2 = —
W/V2v dt 12
w
— Ot = ——.

V12

(c) Now suppose that the distribution of delay times determined in part (a) is used to model
the impulse response h(t) for the fiber. Determine the frequency response H (w) in terms
of the differential delay 7o — 7.
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Solution
The transfer function H( f) is the Fourier transform of the impulse response h(¢) which is
the Fourier transform of the rect function so that H () is equal to sincf.

(d) A lightwave source is characterized by a numerical aperture NA that is smaller than
the numerical aperture NA of the fiber. Two rays coupled by this source into the fiber are
to be compared. One ray along the axis and one ray defined by NA where NA is much
smaller than one. Determine the ratio of the differential time delay using this lightwave
source relative to the differential time delay using a different lightwave source with a nu-
merical aperture equal to the numerical aperture of the fiber.

Solution
Solving for A in terms of the NA gives

1NA?
2 ny

Substituting A into the expression for the transit time spread, the differential time delay can
be written as
Lny INA® L
T = T2 —T1 = —A = - .
c 2 n c
In the same way, the transit time spread 7 for the second lightwave source can be written
as

Ln1

s = m—m = ——A
c
where
1 NA?
A, = = 23.
2 nj
The ratio of the transit times is
T 1NA? /INA?  NA®
. 2n?/2n? NAZ'

The transit time spread decreases as the ratio of the squares of the numerical apertures. This
statement emphasizes that for a fiber that can support multiple rays (or modes), the transit
time spread and the associated bandwidth depends on the distribution of the launched rays
as measured by the source NA;. The dependence of the fiber response as measured by
7 on the launch conditions, as measured by NA; can lead to a launch-dependent channel
response. This dependence must be controlled for reliable communications.
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4.5 Mode-group density

The mode-group density in an optical fiber, defined as AS = d3/dg, represents the close-
ness of the mode spacing with respect to the mode-group index g.

(a) Starting with the approximate expression for the dispersion relationship given in (4.4.4),
derive A as « approaches infinity, which corresponds to a step-index fiber.

Solution
When A is much less than one, the expression for 5(w, g) given in (4.4.4) reduces to

q 012%
1-A(5 .
()"

As a goes to infinity, this expression simplifies to

-+(5)]

The derivative of this expression with respect to the mode-group index g is

Blw,g) ~ mnoko

B(w,g9) =~ noko

Aﬂ ~ —2An0k0 (g) .

showing that Af is linear in the mode-group index g.
(b) What is the corresponding density with respect to the mode index m?

Solution
There are approximately 2¢g modes in most mode groups. Therefore the mode density is
twice the mode group density.

(c) Repeat for a = 2. Compare the mode-group density of a step-index fiber to the mode
density of a parabolic power-law graded-index fiber. Comment on the result.

Solution
For o = 2, the exponent is equal to one and

s = (3]

The derivative of this expression is

AB ~ — <Arg)ko> ,
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showing that to the first order of approximation, Af3 is a constant independent of the mode
group number g so that every mode group travels with approximately the same group ve-
locity.

4.6 Index of refraction, group index, and material dispersion coefficient for
silica glass

An empirical expression called the Sellmeier formula is often used to model the index n()\)
of glass as a function of wavelength. One form of the Sellmeier formula for silica glass is

n(h) = \/1 1.0955 x 101X> 0.9 x 10182
B 1018)\2 — 1002 10'8)2 — 90002

(a) Plot the material dispersion D) over the range of 500-1500 nm. As a check, Figure 4.6
used the same formula.

Solution
The expressions for the group index N () is given in (4.3.7) and is repeated here

dn())

NO) = n) - AT

where n(\) and N () are understood to mean n(27¢y/A) and N (27wco /). The expression
for the dispersion coefficient D) is given in (4.3.8) and is repeated here

1dN()

_D =
A co d\

or

D, =

L (o)
A dn(y)

T T A2 ©)

Using the expression for the index of refraction given in the problem, a plot of the index
n(\) and the group index N (\) is shown on the left side of Figure 4.6, with the group in-
dex being the curve with the minimum. The dispersion is shown on the right side of Figure
4.6, where the units are ps/(nm - km). The calculated group index at 1310 nm is 1.4613,
as compared to a typical value of the group index from a data sheet of 1.4675 . This is a
0.42% difference.

(b) Determine the material dispersion minimum and the dispersion slope at the minimum.
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Express the slope in units of ps/(nm? - km).

Solution
Solving for the zero crossing of the dispersion coefficient gives a minimum value of 1275
nm. The slope at the dispersion minimum is 0.125 ps/(nm? - km).

(c) What is the maximum spectral width of a pulse at 1300 nm that will limit the mate-
rial dispersion to 50 ps for a fiber with length 75 km and a material dispersion D) = 1.2
ps/(nm - km)?

Solution
Ignoring waveguide dispersion, rewrite the root-mean squared spectral width o) (4.5.10)
as

Olintra

LDy’

gy =

Substituting the numerical values gives

50 ps
7 75km x 1.2ps/(nm - km) nm

4.7 Fiber modes and dispersion

A step-index fiber with a numerical aperture equal to 0.15 and a core index n; ~ N; = 1.5
operates at 850 nm and supports two modes with normalized propagation constants b = 0.4
and b = 0.75.

(a) What is the core diameter of the fiber?
Solution

Referring to the right side of Figure 4.3 with b = 0.75 for the LPy; mode and b = 0.4
for the LP1; mode, the approximate value of V' is 3.8. Solving for the radius a gives

Vo 3.8(0.85)

= 22U 343um.
27NA 27(0.15) pm

(b) Using the figure shown below, determine the distance into the fiber at which the modal
delay between the two modes is 2.5 ns.
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/
0.8 /

06 / LP;,
0.4 /

dV(Vb)/dV

0.2 /

Solution
Referring to the figure, d(V'b)/dV is estimated to be 1.13 at V' = 3.8 for the LPy; mode
and 1.25 for the LP1;mode. Using (4.4.10), the differential delay 67 /L per kilometer is

5T ni A (d(me) d(Vbn)) B 10121.45(0.0036)
7 — ZERRR)

B 3 % 108

av ¥ G (1.25 — 1.13) ~ 2 ns/km

Co

where the scaling factor of 1012 converts s/m into ns/km. To achieve a total delay of 25 ns
requires about 12.5 km of fiber.

4.9 Single-mode fiber dispersion

A lightwave system of interest operates at 1550 nm using a single-mode step-index fiber.
The transmitted lightwave signal has a spectral width of o, = 0.05 nm and transmits a pulse
with a root-mean-squared width of 100 ps. This pulse propagates 50 km in the fiber. The
total intramodal dispersion coefficient D in the fiber in units of ps/(nm - km) is modeled as

S g
D_4<_>\3’

where \g = 1310 nm is the zero dispersion wavelength and the dispersion slope parameter
So has units of ps/(nm? - km).

(a) Determine the dispersion slope Sy parameter required to limit the root-mean-squared
width of the wavelength-dependent delay distribution to 25 ps.

Solution
The total spread oy, of the pulse caused by intramodal dispersion is given by (4.5.7)

Ointra = LU}\|D|7

41



where |D| = v/ D2 is the absolute value of the total group-velocity dispersion coefficient
D defined in (4.4.14).
Substituting the numerical values gives

So 1310*
25 = . — (1 - — .
5 50 x 0.05 x 1 ( 550 15503)

Solving, So = 0.0258 ps/(nm?-km).

(b) If Sy = 0, and the system operates at Ay, is there dispersion? Provide quantitative
reasoning for your answer.

Solution
There is still dispersion from the next term in the Taylor series expansion of S(w) given in
(4.3.1).

4.10 Dispersion

(a) Using Figure 3.15, determine the number of modes that propagate at 900 nm if the fiber
has a diameter of 7 microns, a numerical aperture of 0.15, and an index n=1.45.

Solution
The normalized frequency V' is given by

7\ 27
1 - — = .67.
0 5<2> 0.9 3.67 6)

The value for the normalized index difference A is given by (3.2.6) with A = (NA/n)?/2 =
0.005. Examining Figure 3.15, two modes propagate.

(b) Determine the intermodal dispersion oiner/L per unit length in units of ns/km if the
lowest-order mode contains 80% of the power and the rest of the power is distributed uni-
formly among all modes that propagate. Use the figure provided in Problem 7 to determine
the delay values.

Solution
There are two modes. The intermodal dispersion is given in (4.4.10) and repeated here
L d(Vb,,)
m ~ — | N A ,
T Co < 1tm dv >

Reading off curve provided in Problem 7, d(V'b)/dV for the LPy; mode is estimated as
1.13, whereas the value for the LP;; mode is estimated as 1.25. The group index at 900 nm
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is 1.465 from Figure 4.6. Using n; ~ N, gives

L 2
(72) = (c’“> (0.8(1 + 1.13(0.005))* + 0.2(1 + 1.25(0.005)))
-0
and
2 _ Lny ) 2
(rm)* = (=) (08(1+1.13(0.005) +0.2(1 +1.25(0.005))
0
so that
Oimer = ({r2) = (rm)®) 2
1.17 ns/km.

where the factor of 1012 converts s/m into ns/km.

(c) Using Figure 4.6 for the group index, determine the material dispersion coefficient D
at 900 nm when the power-density spectrum has a spectral width of 1 GHz.

Solution

The material dispersion coefficient is given in (4.3.8) and is repeated in (5)). Using the
curve on the right side of Figure 4.6, this is about Dy ~ —83 ps/(nm - km) at 900 nm. To
determine the dispersion, we convert the spectral width in frequency to a spectral width of
1 GHz into a wavelength spectral width o, to give

N2Af (0.9 x 10-6)* 10°
oy = p = 3% 10° = 0.0027 nm. @)

The dispersion in ps/km is then oy Dy =0.0027 nm x —83 ps/(nm - km) = —0.224ps/km.

(d) Determine the waveguide dispersion term Dgyig. for the two guided modes with the
largest values of b.

Solution

Using Figure 4.9, the normalized waveguide dispersion term for the LPy; mode is estimated
as —0.1 and that for the LP;; mode is estimated as 0.15. The waveguide dispersion given
in (4.4.13) is then

mA (V)
Owav = T
ave cA dv?2
—1.45 x 0.005

T 3X10°x09x106 (-0.1) = 2.68ps/(nm-km).
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For the LP;;mode, the term is —4 ps/(nm - km).

(¢) Determine the intramodal dispersion coefficient D = | Dy + Dagyiqe| for the two guided
modes with the largest values of b.

Solution
The total dispersion is the sum and is dominated by the material dispersion. For the LPg;
mode, we have
D = O'A‘Dwav+DA|
0.0027|—-83 +2.68) = 0.217 ps/km.

For the LP;;mode, the total dispersion is 0.235 ps/km.

4.13 Output pulse for a gaussian power density spectrum

Let the normalized power density spectrum of a modulated lightwave signal be

N
S)\ ()‘) \/%0_/\ e ;
as a function of the wavelength A where the carrier wavelength is A, = 1350 nm. The fiber
has a core diameter of 9 microns and a numerical aperture of 0.15. The transmitted pulse is
a square pulse of duration 7" = 200 ps over a fiber span of length 75 km with an intramodal
dispersion coefficient of D = 8ps/(nm - km). Using Figure 4.6 for the index (or group
index) and the figure provided in Problem 7 for the delay terms, determine:

(a) The normalized frequency V' of the fiber.
Solution

Using (3.3.12) we obtain

2ma 97
= NA = 015— = . 8
v Y 0-157735 T ®)

(b) The value of s = d7/d\|x=»,-

Solution
Using (4.4.5) gives the expression for the intermodal dispersion oy, = oxd7/dA. Com-
bining this expression with iy, = Loy D (cf. (4.5.7)) gives

S\ = LD7
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where D is the total dispersion given for this problem as D = 8 ps/(nm - km). This value
includes both waveguide and material dispersion. Multiplying by the distance gives

sy = T75x8 = 600ps/nm. 9)

(c) The total root-mean-squared width oy, of the delay spread distribution over the span
length L expressed in picoseconds (cf. (4.5.7)).

Solution

The total root-mean-squared width o,y at the output of the fiber span is estimated us-
ing the mean-squared timewidth of the input square pulse, which is given by T2 /12 (see
Problem, 4.1). The mean-squared spread of the fiber impulse response is estimated as
aﬁber = (oADL)%. Summing the mean-squared values and taking the square root provides

an estimate of oy given by
_ 2 2
Tout = \/Tin T Ofiper

T2
pr— —_— DL 2~
13 + (0aDL)

As a numerical example, when o= 0.25 nm, o, is approximately 160 ps and is dominated
by the spreading caused by the dispersion in the fiber.

4.15 Optimal value for index profile

Starting with

Aoz—2—2y A723oz—2—4y
o+ 2 2 o+ 2

= O7

show that if & > 1 and both A and y are small, then the optimal power-law index profile
Qropt 1S given by

aopt = 2(1+y—A).

Solution
Solving for « in the preceding equation we have

2(2 42y + A + 2yA)
2+3A

Qopt
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Expanding this expression in a power series gives
age A (2y+2)+A(-y—2)+0(A%).
Because both y and A are small, the term yA can be neglected giving

aopt = 2(1+y—A).

4.16 Polarization-mode dispersion vector

(a) Using (AB)? = BYAT, and differentiating DD = I with respect to w, show that the
transformation iD,, D' is hermitian.

Solution
Starting with DD = T and noting that the time derivative will produce iw, we have

iwD, D' +iwDD!, = 0
or
iwD, DI = —iwDD]

Using (AB)f = BTAT the left side is the conjugate transpose of the right side and thus
iwD,, D' is Hermitian.

(b) Using the differential relationship D(w + dw) = D + dwD,, and |detD| = 1 for a
unitary matrix, show that trace of D, D' is equal to zero, which implies that the eigenvalues
of D sum to zero.

Solution
Starting with D(w + dw) = D + dwD,, factor out D on the right side to yield

Dw+dw) = (I+dwD,D')D

where D! = D because D is unitary. The determinant of the left side equals one and the
determinant of the first time on the right side equals one. Therefore the sides are equal if
and only if the trace of D, D' is zero, which is evident from (4.6.10).

4.19 Dispersion relationship from ray optics

Modes in a slab waveguide can be intuitively reconciled with ray theory by letting the ray
define the direction of a plane wave propagating in the slab waveguide. In this reconcil-
iation, a mode is formed by the interference with itself of a propagating plane wave that
“zig-zags” between the core/cladding interfaces. The direction of the plane wave is shown
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as the line in Figure 3.10. This arrow defines a ray associated with the plane wave. The z
components of the two interfering plane waves produce a traveling wave while the trans-
verse components add to produce a standing wave.

(a) Using k, = p and k, = [ rewrite
PP+ B> = (mko)?

in terms of the components k,, and k. of the wavevector k in the slab waveguide.

Solution
Rewriting this equation, we have

kf + ki = (nlk)Qa

where k, = p and k, = [ are now written as the components of the wavevector of a plane
wave.

(b) Derive an expression for the angle 6 that the plane wave makes with respect to the
normal of the core/cladding interface in terms of &k, n, and k.

Solution
The angle 6 the plane wave makes with the core/cladding interface is related to the x-
component of the wavevector by cos 0 = k. /(n1k).

(c) Consider a slab waveguide that supports a plane wave with a polarization that is trans-
verse to the direction of propagation. Upon reflection from the core/cladding interface, a
consequence of Maxwell’s equations is that this plane wave experiences a phase shift ¢ g
given by

¢rp = —2arctan <\/sin2 0; — (ng/n1)2/cos 91) ,

where 0 is the angle from the normal to the core/cladding interface. Using this expression,
determine the total phase shift the plane wave experiences after two reflections consisting
of one reflection from each boundary of the slab waveguide.

Solution
After a reflection from each boundary, the plane wave experiences a phase shift of 4ak,
along the propagation direction z. Each reflection adds an additional phase shift ¢g given
above. For a mode to be generated, the total phase shift must be m27 where m is an integer
so that the field adds constructively with itself after the two reflections. This condition is
given as
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(d) A guided mode in the slab waveguide is generated whenever the total phase shift is
m?2m where m is an integer so that the field adds constructively with itself after the two
reflections. Derive this condition and show that

V(1 —cos26) — (ng/n1)2/cos9 = tan(njkoacos® — mm/2).

Solution
Substituting the phase shift ¢ g from the reflection at the boundary into (10) along with
k., = n1k cos 6 and taking the tangent of each side gives

2
\/(1 —cos26) — (Z?) /cosﬁ = tan (nlkacosﬁ - %) . (11)

Values of 6 that satisfy this equation are the allowed angles for the rays that produce a
self-consistent phase after two reflections. Each angle defines a mode with a corresponding
propagation constant 3 given by (3.3.10a).

4.20 Bandwidth-dependent launch conditions

Consider a uniform mode distribution in which the power is uniformly distributed among
all the modes in a fiber. The fraction of the power in each mode is F,, = 1/M, where M
is the number of modes. The expressions for the group-delay terms become

1 M 1 M
_ - 2 — - 2
<I> - M TnZ::l Tm <I > M nlz::l Tm’

where M is the number of modes. Suppose that a fiber has the following parameters:
V =5,n; =1.46, A = 0.0036, and N; = 1.48.

(a) Determine the delay spread ojye, for the case of a uniform mode distribution across
the LPy;, LP1; modes. Use the figure provided in Problem 7 to determine 7, for each
mode.

Solution
The expression for the delay is given in (4.4.10)

L d(Vby)
Tm = a TLlA v

+ N
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Using the figure provided in Problem 7, the values of d(V'b,,)/dV for each of the three
modes and the delay are

d(Vby)/dV forLPy, = 11 1 = 4.953 us/km
d(Vby,)/dV forLPy; = 124 7 = 4.955 us/km
d(Vby,)/dV forLPy; = 135 7 = 4.957 pus/km

The root-mean squared spread for the uniform mode launch with the power in each mode
being 1/3 is

1/2
Omer = ((72) — (rm)?) "
M M o7 1/2
1 ) 1
= M Z Tm — (M Z Tm>
m=1 m=1
1 1/2
= [3(4.9532 +4.955% 4 4.957%) — [(4.953 4 4.955 + 4.957) /3]?
Ointer = 2.66 ps/km

(b) Determine the delay spread oy When the power in the LP;; mode is half the power in
the LPy; mode and the power in the LP2; mode is half the power in the LP;; mode.

Solution

The root-mean squared spread for the nonuniform mode launch with powers of 4/7, 2/7 and
1/7 in each mode is

Ointer = (<7'31>_<7m>2)

_1 M | M
= Mz_:lrfn—<Mz_:lrm>

1/2

01 1/2

1/2
4 3 1 4 3 1 2
= |24.953% + 24.955% + 24.9572 — [ =4.953 + =4.955 + =4.957

7 t7 t7 7 ty t7

Ointer = 2.12ps/km

(c) Which launch condition produces the smallest value of gjye,? Why?
Solution

The non-uniform launch produces the least spread because there is a smaller proportion of
the power in the higher-order modes.
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4.23 Wavelength-dependent group delay

Refer to the figure Figure 4.9, which shows the group delay factor for two linearly-polarized
modes.

(a) Find the value of the normalized frequency V' for which the group delay term for the
LPy; mode is equal to the group delay term for the LP1; mode.

Solution
Examining the figure, the value of the normalized frequency V' is estimated to be 3.

(b) For this value of V, is the group velocity dispersion coefficient the same for each mode?
Explain.

Solution
No. The slope at this point, which is proportional to the group-velocity dispersion coeffi-
cient (cf. (4.3.2¢)) is not the same for each mode.

(¢) Over the range of values shown in Figure 4.9, is there a value of V' for which the group
velocity dispersion of the LPy; mode is equal to the group velocity dispersion of the LP1;
mode?

Solution

This is equivalent to asking if slope is the same for a given value of the normalized fre-
quency V. For the range of values of V' shown in Figure 4.9, there is no value of V' for
which the slopes are the same. Therefore, there is no value of V' for which the group veloc-
ity dispersion of the LPy; mode is equal to the group velocity dispersion of the LP1; mode.

50



Chapter 5 Selected Solutions
5.1 Nonlinear terms
(a) Expand the cube
(A; cos(w;t) + Ay cos(wyt) + Ay cos(wet))’

into a summation of ten product terms, one of which is

6A; Ay Ag cos(w;t) cos(wit) cos(wet).

Solution
The 10 terms of the expansion are
64, Ak A cos (w;t) cos (wit) cos (wet) + 3A§Ak cos? (w;t) cos (wyt)
+34; A7 cos (w;t) cos® (wit) + BAT Ay cos® (w;t) cos (wet)
+34, A7 cos (w;t) cos? (wt) + A;)? cos® (wjt) + 345 AZ cos (wyt) cos? (wet)
+3A7 Ay cos? (wit) cos (wet) + A3 cos® (wyt) + AF cos® (wpt) .

The first term is the desired term.

(b) Using sum and difference cosine formulas, expand the product term cos(w;t) cos(wyt) cos(wet)
and show that it can be written as

cos(w;t) cos(wyt) cos(wpt)

+ + +
PN N LN TN

Solution
Writing the cosines in terms of exponentials gives

(eiwjt + e—iwjt) (eiwkt + e—iwkt) (eiwgt + e—iwgt) )

| =
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Expanding and collecting the terms gives

1 (ei(wj+wk+w4)t +€—i(w,~+wk+we)t> + (ei(wj—wk-i-wg)t _'_e—i(wj—wk-i-we)t)

8

_’_(ei(wj—i-wk—wg)t +e—i(wj+wk—Wg)t) + (ei(wj—wk—wg)t +e—i(UJj—wk—wg)t)

Each of the four terms inside the square brackets is of the form 2 cos(-) leading to the de-
sired expression.

(c) What proportion of the total power on the left side is contained in the term cos ((wj — Wi — wp) t)
on the right side?

Solution

The term cos? ((w; — wy, — wy) t) contains (1/4) = 1/16 of the total power. This can be
verified by squaring both sides, expanding cosine squared as cos?(wt) = (1 + cos 2w)/2
and expanding the cosine in terms of exponentials.

5.2 Effective Area

(a) The commercial single-mode fiber known as Corning SMF-28 has a core diameter
of d = 83um. At an operating wavelength of 1550 nm, the fiber specifications are
A = 0.0036, n =~ 1.47 and V =~ 2.09. Using these values, determine the linearly po-
larized mode parameters p and g (cf. (3.3.27)).

Solution
Using an initial guess of b = 0.4, a root finding algorithm yields b = 0.44, pa = 1.56 and
qa = 1.39.

(b) Calculate A.¢ for the Corning SMF-28 fiber at A = 1.55 um. Compare the calculated
value with the measured value of 80 zm?. (This requires numerical integration of (5.3.13).

Solution
The effective area is given by
[ U (r)[2r dr]?
™ o0
Jo U(@)[Ardr

At = 2

2
[m Jy Jo(paRRAR + s [ Ko(qaR)*R dR]
1 [e%s}
W Jy Jo(paR)*RdR + m J7" Ko(qaR)*RdR
= 27(d/2)%(0.703) = 76 microns®.

= 92ma’®
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The calculated effective area is slightly less than the measured effective area.

5.5 Phase matching
(a) Starting with
M
a(z,t) = Z am(z,t) exp (i {mAw (t —z/vg) — (mAw)? Bgz/QD ,
m=—M

write out the terms for M = 1. For example, the term a; is
a1 = ai(zt)exp (i [Aw (t — z/vy) — Aw?B2z/2]) .

Solution
The other two terms for M = lareag = ag(z,t)anda_1 = exp (i [~Aw (t — 2/vy) — Aw?B22/2]).

(b) Form the product (a* | +aj + a})(a—1 + ag + a1)?, then determine the phase-matched
terms for which the frequencies sum to zero.

Solution
The total number of terms is given by

—9i i —i 1 2
2iIAwT e?lAw‘r + CL2_16L*_1€ AwT—35iB2Aw" 2

2apa_1ay(1)e + 2apa1a” 4

—2iAwT—iBAw?z +a2 1@* —3iAwT—1iBs Aw?2 eiAw—%iﬁZAw?z

+a? jage e +2a1a_1a” 4

. . 2 . . 2 . . 2
—iAwr—3iB2Aw?z —iAwT—3iB2Aw?z + agailelAerr%lﬁzAw z

+2apa_1age + 2a1a_1aje

; 1 2
* IAWT—5if2Aw 2

. _ 1 2 . s 2
+a%a}*_183lAw7 31B2Aw 2 teAwT iB2Aw”z + 2@0&1@08

2 %
+ajag

+aga>{e%i52Aw2z—iAwT + a%aieiAwT—%iﬁgszz

—|—2a1a,1a}§e—i52A‘“zz + 2apa_1a* 4 + a%aé + 2apa1a]
The last four terms on the last line are the phase-matched terms because they do not have
terms that include multiples of the temporal phase mismatch term Awr.

(c) Collect the phase matched terms and show that
ata® = (|ao|2 +2|a1]? 42 |a,1|2) ap + 2a1a,1a66_i’82A“22,

as appears in (5.5.6).

Solution
Only the last four terms of the expansion are phase matched. Factoring out ag from the first
three terms leads to the desired expression.
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5.6 Mean-squared output width for a weakly dispersive nonlinear fiber

A generalized gaussian pulse is defined as
G(t) = (@)
where m and n are parameters. The area under this pulse can be expressed as and is
/OO Gitydt = 232 n_l/QmF(l + (2m)—1), (12)

where I'(z) is the gamma function defined as T'(k) = [~ 2" ~'e~"dx (cf. (2.2.45)).

(a) Let n = 1. For pulse G(t), determine the effective power

et
R T

which was defined in (5.4.16). For m = 1, this term reduces to (5.4.19).

Solution
For n = 1, the pulse is given by

s(t) = e~ (t*/20%)™
Then
= ‘e*(t2/2"2)m‘4d7 o0
Sy(m) = == _ L GmY
8 I e @2 |’ dr [, G(t.m,2)

where both the numerator and the denominator are in the form of G(¢) with n = 4 for the
numerator and n = 2 for the denominator. Therefore

93/25 4=1/2m F(l + (2m)*1)
Sp(m) = = o i/m
23/20 2—1/27n F(l + (2m)‘1>

For m = 1, the factor is 1/\/5 and agrees with (5.4.19).
(b) On the same figure, plot three generalized gaussian pulses for 1 < m < 3usingn = 1

and o = 1. Calculate the scaling factor P,g(m) for each pulse. On the basis of these three
pulses, what kind of pulse experiences more pulse spreading in a weakly-dispersive fiber?
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Why? (Note that the original problem statement used a different number of pulses.)

Solution
The plot is below. The effective scaling factors Per(mm) are 27/2,271/4 and 2-1/6 for
m = 1,2 and 3 respectively. The pulse for m = 1 has the least pulse spreading because it

has the smallest bandwidth.

G(t,1,m)

Time

(c) Determine an expression for the instantaneous frequency shiftw(t) = w.—ydP(z,t)/dt
given in (5.3.16) as a function of time in terms of the parameters m and o for a pulse whose
power is a generalized gaussian pulse with n = 2.

Solution
For n = 2, the power in a pulse is proportional to |s(¢)|? so that

P(t) « e~ (/207

The instantaneous frequency is

dP(z,t)
dt
= we—o! <m722(1—m)e—2*2m(t/a)4m (t/0)4m71)

w(t) = we—7

(d) Plot w(t) with o = 1 for 1 < m < 3. Compare these three curves with the results
derived in part (b).

Solution
The plot is on the next page. The pulses for higher values of m have a larger instantaneous
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frequency because the slope of the edges of the pulses shown in the previous figure is greater
for larger m.

Instantaneous Frequency
o

Time

5.8 Nonlinear fiber parameters

A standard single mode fiber is given with D= 17 ps/(nm-km), v = 1.3 radians/(W - km)
and k = 0.2 dB/km. A second fiber has D= 2.3 ps/(nm-km), v = 2radians/(W - km) and
k = 0.2 dB/km. An input gaussian pulse have a peak power of 50 mW and a root-mean
squared temporal width of 50 ps.

(a) For each fiber, determine the nonlinear length L, the dispersion length L, the ef-
fective length L., and the walk-off length L, with subchannels separated by 100 GHz.

Solution

The table of the values is calculated below for a wavelength of 1.55 microns. Converting
0.2 dB/km into Nepers/km using 1 Neper/km = 4.34 dB/km gives x = 0.046km™*. The
dispersion length uses L, = o2 /32 with 8 = 125 ps*/km for D= 17 ps/(nm - km) and
B2 = 18.4 ps? /km for D= 2.3 ps/(nm - km). For the walk-off length, use 100 GHz ~ 0.8
nm at 1550 nm and equation (5.3.25).

H H Ly (km) ‘ Ly (km) ‘ Letr (km) ‘ Ly, (km) H
Standard 15.4 18 21.7 3.7
Shifted 10 136 22 27
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(b) For a single unamplified segment of fiber, derive the peak pulse power for each fiber
such that the total accumulated phase shift is smaller than 0.1 radians.

Solution
The accumulated nonlinear phase ¢y, is given in (5.3.20) and repeated here

Lesr

O Lo = ’YLeff])in .

Setting ¢y, to 0.1 radians and solving for the peak input power Py, gives

0.1
YLest

Hn =
For the first fiber, Py, is about 3.5 mW. For the second fiber P, is about 2.3 mW.

(c) For the same coupled power and the same pulse, which fiber produces a smaller nonlin-
ear phase shift?

Solution
Standard fiber because ~ is smaller.

(d) For the same coupled power and the same pulse, which fiber produces a larger dispersion-
limited distance?

Solution
The dispersion-shifted fiber.

(e) Based on the results of the previous parts, discuss the circumstances under which each
fiber should be preferred.

Solution

The dispersion-shifted fiber has a longer dispersion length, but a longer walk-off length
and a shorter nonlinear length. Because the linear dispersion can be compensated while the
nonlinear impairments are more difficult to compensate, low dispersion fiber tends not be
used in high performance systems because it is less tolerant to nonlinear impairments.
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Chapter 6 Selected Solutions

6.1 Derivation of the Gordon distribution and its entropy

(a) Starting with p(m) = Ku™, derive

m - ()
PR = 1vs\i+s)
satisfying the constraints > > mf(m) =Sand ), f(m) =1

Solution
Start with

po(n) = Ku"

, where K and u are two constants that need to determined using the constraints >~ pa(n) =
Land > 77 o npa(n) = S. Substituting Ku" into these two expressions and using the fact
that |u| < 1 for a valid probability density function gives

iKu”z

n=0

and

Ku
ZKnu - u)2 =S.

Solving the first equation gives u = 1 — K. Substituting this expression into the second
equation yields

K:1
1

and

u =

+
S
S )
so that

I | s \"
p”(n)_Ku_1+S(1+S '

showing that the Gordon distribution is in the form of a geometric distribution.

(b) Using the form of p(m) given in part (a), and the definition of the entropy H given
by

= —k Z p loge
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derive the entropy of a Gordon distribution, which is stated in Table 6.1.

Solution
The entropy is
H =~k _ pn(m)log, pm(m)
m=0
=—k ipm(m) log )+ 2. {135
e 'm e 1 + S € 1 + S
00 148
—k Pm(m) <loge (14+S)+mlog, <—g>)
m=0
_ k;(log (1 +S)ip (m) +log <1+8> imp (m)>
‘ m=0 B ’ S \m:O _/m
1
— :S

=k (loge (1+S) +Slog, (H—SS>) .

6.2 Maximum-entropy distribution without a mean constraint

Following the procedure used to derive the Gordon probability mass function given in
(6.1.5), but removing the finite mean constraint on the probability distribution function,
show that the maximum-entropy distribution on a finite number of states is the uniform
probability density function given by

where M is the number of states.

Solution
Start with

S=3_ pn(m)log, pn(m) +C Y pn(m),
m=0 m=0

which does not include the mean energy constraint. Following the same steps as used to
derive (6.1.5) gives

o0

> [log, pn(m) + 1+ Cs] f(m) = 0.

m=0
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Setting the term in brackets to zero and solving for pn(m) gives
pn(m) = e~ = K,

which states that the value of the probability density function is a constant which is a uniform
probability distribution. Therefore, when there is no mean energy constraint, every state is
equally likely.

6.3 The Bose-Einstein probability mass function and the Boltzmann
probability density function

(a) Starting with (6.1.9), derive an expression for the form of the probability density func-
tion of the energy f(FE), with E = hfm.

Solution
Equation (6.1.9) is

L — L
Pm ~ 1+N\1+N

= (1 — e*hf/kTO) e~M(hf/kTo) (13)

Using fg(E)dE = fn(m)dmand dm/dE = 1/hf gives
1
hf

(b) Is the resulting probability density function a valid continuous probability density func-
tion? Explain your answer.

fu(B) (1 B efhf/kT[)) ey

Solution
The resulting function is not a valid continuous probability density function because it does
not integrate to one when F is treated as a continuous variable.

(c) Take the limit of the expression in part (a) as hf goes to zero and show that the re-
sulting expression is the Boltzmann probability density function.

Solution
Taking the limit as h f approaches zero gives

_ 1 enmn

This is a valid probability distribution and is the Boltzmann probability distribution.
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6.5 Coherence time and bandwidth

The root-mean-squared coherence timewidth 7,5 of the autocorrelation function R(7) (cf.
(2.1.30)) has a different value than coherence timewidth 7. defined by (2.2.59) and repeated

here
1 oo
_ 72/ R()[dr,
[R(0)] /o0

where the autocorrelation function R(7) is the Fourier transform of the power density spec-
trum S(f) (cf. (2.2.55)). Determine the relationship between the root-mean-square co-
herence timewidth 7, and the coherence timewidth 7. for the following power density
spectra in (a) and (b).

@ S(f) = e /27",

Solution

Using Parseval’s relationship (cf. (2.1.18)) and the fact that R(0) is the inverse Fourier
transform of S(f) evaluated at ¢t = 0 gives

. 1 2 f,oo |‘S(T)|2d7 1
T, = —— R(m)|"dr = = . 14

Using Table 2.1, the autocorrelation function R(7) is
R(r) = Eme o,
which, from inspection, has a root-mean squared timewidth 7;,s equal to

Trms = Y-

The value 75 differs by a factor of /7 compared to the coherence timewidth 7. given in
(14).

(b) S(f) = e VL.

Solution
For the doubled sided-exponential, the coherence timewidth 7, is

1 o0 ) [ e 2Wldr 1
= [ R@))Pdr = = T = o
|R(0)]? /—oo| ™)l (ff"ooe—\fldf)Q 4
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Using Table 2.1, the autocorrelation function R(7) is in the form of a lorentzian function.
The root-mean squared timewidth 7., of the this function is not defined because z2 f(z)
does not go to zero as x goes to infinity.

(c) Citing a specific example, discuss why one definition of the coherence timewidth might
be preferred over the other definition.

Solution

The example in part (b) shows that coherence timewidth 7. can be defined whereas the root-
mean squared timewidth 7, cannot be defined. Therefore, for a lorentzian function, the
coherence time 7, may be preferable to 7.

6.7 Filtered spontaneous emission

The spontaneous emission noise in a single polarization of a lightwave is bandlimited using
an ideal rectangular passband optical filter h,,(t) with a complex-baseband transfer function
given by

H,(f) =1 for|f] <B/2
0 otherwise.

The resulting filtered lightwave noise power has an expected value (P). It is detected by
an ideal photodetector with an impulse response h(t) equal to §(¢).

a) Determine the power density spectrum S, of the arrival process ¢(t) within the pho-
todetector.

Solution
The total noise density spectrum for the photoelectron generation rate process g(¢) within
the photodetector is given by (6.4.15)

Sg(f) = §+SR(f)a

where the mean value for the photogeneration rate is given by R = PR /e The form for
Sr(f) is given in (6.4.16) where Sp(f) is the power density spectrum of the lightwave
power given in (6.4.7) with the signal power P; set equal to zero. This expression is scaled
by a factor of (R /e)? to express the signal in terms of photocounts. The normalized power
spectrum of the bandlimited spontaneous emission is S,,(f) = 1/B for | f| < B/2. This is
arect function in frequency. Using (6.4.7) and noting that the convolution of a rect function
with itself is a triangular function of the form 1 — 2| f| / B, the power-density spectrum of
the photoelectron generation rate process g(t) within the photodetector includes both shot
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noise and intensity noise and can be written as

_ (R R R\ pay
S() = L)j+( ) Pon+ (B) a2y,

€

shot noise mean intensity fluctuations

The form shows that the fluctuations for shot noise go as P, the fluctuations for intensity
noise go as P2

(b) Determine the power density spectrum S(f) of the filtered electrical signal rge(t) if
the photodetected electrical signal is filtered by a detection filter with an impulse response
h(t) = e~/ Tu(t).

Solution
The transfer function H (f) corresponding to h(t) is

T

H(f) = 1+i2n7f

The power-density spectrum S;(f) in units of A?/Hz is given by S;(f) = €2Sy(f). There-
fore, the power-density spectrum S(f) of the filtered directly-photodetected electrical sig-
nal into a unit resistance is given by S(f) = e2S,(f)H?(f) where Sy(f) was determined
in part (a).

(c) Under what conditions are the statistics of the sample value r after the detection fil-
ter given by:

(i) exponential
(i1) gamma
(iii) gaussian

Solution
The three distributions correspond to systems for which the intensity noise is much larger
than the shot noise so that continuous wave-optics distributions can be used.

(1) exponential
Solution
The statistics are exponential if there is only a single mode. This means that the coherence

time of the optical source is on the order of the bandwidth of the filter function H(f) so
that 7. ~ 1/B.
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(i1) gamma

Solution
The output distribution is, in general, a gamma distribution with the mean value given by
P and the number of coherence intervals, which is approximately Br,.

(iii) gaussian.

Solution
Gaussian output statistics are generated whenever the number of coherence intervals used
to form the detection statistic becomes large.

6.8 Bandlimited noise

The electrical noise power generated by direct photodetection given in (6.5.3) was derived
for Br, = 1, where 7, is the coherence timewidth defined in (2.2.59) and B is the pass-
band noise-equivalent bandwidth (cf. (2.2.78)). The relationship between B and 7, is valid
when the lightwave-noise-suppressing filter is an ideal bandpass filter in the form of the
rect function.

(a) Derive a corresponding expression for B, for a lightwave noise-suppressing filter de-
fined by a gaussian function with a root-mean-squared width ¢ equal to B.

Solution
Let the gaussian function in the frequency domain be given as

H(f) = e 12,

We want to determine the product B7. = B/B,. where B is equal to the passband noise-
equivalent bandwidth B, given in (2.2.77) and B. = 1/, is the power equivalent width.
Using

Y A 2
By = — H .
g | s
With G = 1 and H(f) given above, this gives

B = By = /OO ‘e*f2/2”22

df = ovr.
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The filtered noise power density spectrum is given by S,,(f) = No|H(f)|? with |H(f)|? =

2
‘e—fz/%2 . Using (2.2.78) for B, gives
. 2
i (/72 Sulndf)
¢ Joo SE()df
2
o0 — 2 0'2
(fioo‘e P27l df)? no?
_ ' . = —— = oJ7n/2
e rr e e
The ratio is
B _ o7 NG
B, o\/m/2

Therefore in constrast to the ideal retangular noise-suppressing filter, the noise equivalent
bandwidth By is not equal to the power-equivalent bandwidth B, = 1/7.

(b) Quantitatively explain how the value of BT, affects the statistics of the sample deter-
mined over an interval of duration 7'.

Solution
The value of BT, is an estimate of the number of temporal degrees of freedom in the system.
This value dictates the ability to convey information in time.

6.9 Degrees of freedom of lorentzian-filtered noise
Let the autocorrelation function of the noise process n(t) be given by
R.(r) = Ne oIl

(a) Show that this autocorrelation function is generated by filtering white noise with a filter
that has the transfer function

2

Hw) = T

A filter of this form is called a lorentzian filter.
Solution

This expression can be derived using Table 2.1, and the scaling property of the Fourier
transform using an angular frequency w.
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(b) Write the integral in (6.6.4) using symmetric limits. Separate that integral into two
regions and differentiate twice to produce a second-order differential equation of the form

2
Loettn) ﬁ’;z(“)+bz¢k(tl) = 0
1

Determine the expression for by, in terms of Ag, o, and V.

Solution
Writing the integral equation to solve in symmetric form gives

T
Neb(t2) = N [ el (ta)dra (1s)
-7
Separate this integral into two regions and differentiate twice.
t1 T
Arti(t1) = N/ e My (ty)dty + N [ e 2Ty (t)dty. (16)
-7 t

The first derivative is

deo(t1) h r
i = —Nae_‘“l/ e®t2qhy (to)dto +Naeat1/ e~ M2y (ta)dty.  (17)
1 -T t1

Ak

Combining the two expressions, the second derivative can be written as

2 T
)\kid 121;5151) = Naz/ e~ =Rl (ty)dty — 2N o (t)
1 =T

Noting that the first term on the right is a® A\, (t1) (cf. (15)), we can write

d%iy.(ty) a?(\p — 2N /a)
di% = ( k I )¢k(t1)'

Rewrite this equation as

A2 (t1)

SO W (t) = 0 (18)
de?
where
B _aQ()\k —2N/a)
= —
2N« 9

66



Solving for the eigenvalue Ay in terms of b gives

2Na 2Na
a2 +b2  (a+ib)(a—ib)’

Ak = (19)

(c) Now assume a solution of the form of
'L/Jk (tl) = Cleibt + Cze_ibt.

Substitute this form into the original integral equation and perform the integration for each
of the two regions.

Solution
Suppose that

2N
0< A < —,
Q@
so that b? is real with 0 < b? < co. The solution to (18) is then be written in the following

form ' .
Yr(t1) = c1e® + cpe P, (20)

Substitute this general solution into (16) and perform the integration

t1
)\k (Clelbtl =+ 026—1bt1) _ Ne—oztl /

(cle(a+ib)t2 + 026—(—a+ib)tz) dts
-7

T
+Neot / (cle(_"‘+ib)t2 + cze_(aJrib)tz) dts

t1

Evaluating the integrals and collecting terms gives

2Na ibty —ibt; ib B e—(atid)T e~ (a=ib)T
0~ —  Nejelttr at ot
@i e e ac\* Taxm ¢ Tati
A
4 Nege bt2 [ _eat e (oD 4 oot e (atib)T
a—1ib —a—1ib

B

In order for the equation to be satisfied the two terms labeled A and B must be equal to
each other and equal to the term on the left side of the equation. Equating these terms and
reordering gives

s clef(aJ.rib)T . 0267(a7’ib)T _an clef(afi'b)T N 6267(a+i.b)T L
a+1b a—1b —a +1b —o — 1b
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(d) Show that the resulting expression can be satisfied for all time only if ¢; = c5 or if
C1 = —Cao.

Solution

This condition can be directly verified.

(e) Setting t; = T, derive the expression that must be satisfied if ¢; = co.
Solution
When ¢; = ¢ and t; = T, the following equation must be satisfied

4e=*T sinh(aT)(bsin(bT) — a cos(bT))

=0
a? 4+ b2 ’
which means that
bsin(bT') — acos(bT) =0
or o
tan(bT') = —.
an(bT") 5
(f) Setting t; = T, derive the expression that must be satisfied if ¢; = —cs.
Solution
When ¢; = —c3, the equation is
4ie®=T) cosh(aT) (asin(bT) + beos(bT)) 0
o? + b2 B
or
tan(b7T) = b
=

(g) A solution to either of the two previous equations will produce an eigenvalue. By com-
bining these two equations, show that

b T ol B

Solution
Combining these equations and multiplying the top and bottom by 7" gives

(tan(bT) + i’;) (tan(bT) - (g) ~0.
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(h) Using the relationship between by, and )\ derived in part (b), plot the eigenvalues Ag
on a log plot. Compare the distribution of the eigenvalues for lorentzian-filtered noise for
oT =5 to the eigenvalues for an ideal bandpass filter for T'B = 5 given in Figure 6.8.

Solution

The solutions to this equation can be determined graphically as is shown in the figure for

the value of oT = 1.

4 Tan (bT
. 0dd an (bT)
2 (bT) Solutions
/
2 4 8 10 bT
-2
-6 Even/
Solutions
-8 /
-bT
-10

Once the values b, are determined, the corresponding eigenvalues are given by (19) with
b — bi. A plot of the eigenvalues for several values of aT" are shown in the figure below.

0.0

-0.5

-2.0

Log Eigenvalue

-2.5

-3.0

Eigenvalue Index k

Now compare the eigenvalues for this plot to the plot of the eigenvalues for the ideal
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rectangular filter given in Figure 6.8 and repeated here.

0F &=+ & = = —i— i = = F = = —I—i—
- ~u ~ -~
~ [N ‘< ™
\ - ~ BN
N ~ ~
A} LNy N, >
_5l BT=1 BT=5 "« BT=10 "~ BT=15 |
v L} \ h
= \ ~ \\
© u -~
g . N ~
U _q0f BN N
2 ! N ~
i \ \ >
()] Y w
S \ .
-15¢ Y
\
N
\
-20+ \
' ' ' L
0 5 10 15 20

Eigenvalue Index k

It can be seen that the eigenvalues of the lorentzian-filtered noise roll off much more
slowly compared to the eigenvalues for a rectangular filter.

(1)) Comment on the distribution of the eigenvalues for both kinds of filters with respect
to the distribution of the entropy, which defines the ability of each degree of freedom to
convey information.

Solution

The distribution of entropy per degree of freedom tracks the distribution of the eigenvalues.
For an ideal rectangular passband filter, the distribution of the eigenvalues (or entropy) is
flat up to T'B and then rapidly rolls off. Therefore, for this kind of filter, the number of de-
grees of freedom is well-approximated by T'B with the entropy for each degree of freedom
being nearly the same because the distribution of eigenvalues is nearly the same. This is
not the case for the lorentzian filter. For this case, every degree of freedom has a different
entropy.

6.10 Sum of Poisson random variables

Prove that if the sum of two random variables m3 = my + m, is Poisson and either of the
two summands, m¢ or My, is Poisson, then the other summand is Poisson as well.

Solution

Let p;(m), and p3(m) be two Poisson probability distributions with mean values E4 and E3
respectively. Then the probability distribution p3(m) for ms is the convolution

p3(m) = p1(m) & pa(m). The convolution property of a Fourier transform states that the
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two characteristic functions satisfy

C3(w) = Ci1(w)C2(w)

so that ()
w
Substituting C4 (w) = (1) and C5 (w) = (1) gives
() (By—E1) (el —1)
OQ((U) = m =3 1
e 1

which is the characteristic function of a Poisson random variable with mean E3 — E;.

6.11 Circular symmetry

A product bivariate random variable with bivariate probability density function f(z,y) =
g(x)g(y) is known to be circularly symmetric in the (x,y) coordinate system. Does this
mean that it is a bivariate gaussian random variable?

Solution
Working with the squared magnitude instead of the amplitude, the probability density func-
tion for the squared magnitude of circularly symmetric function can be written as

fz,y) = Ah (2® +y?)
where A normalizes the distribution. If this function is separable, then
Ah (2* + %) = B*g(2)9(y)

where B normalizes the one-dimensional probability density functions g(-). This equation
can only be satisfied when both g(-) and h(-) are exponential functions because the expo-
nential function as the unique property that the product of two exponential terms is a single
exponential with an exponent that is the sum of the arguments the separate terms. This
property is the inverse of the property of logarithms that the logarithm of a product is the
sum of the logarithms of the terms in the product. Therefore, the squared magnitude must
be an exponential function. Applying the constraint of circular symmetry means that the
exponential function for the squared magnitude can be written as a product distribution with
the joint probability density in polar coordinates given by (6.2.10)). Transforming from po-
lar coordinates to cartesian coordinates recovers the bivariate gaussian distribution given in
(6.2.8).
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6.12 Derivation of the negative binomial probability mass function

Using the integral
(K+m)

/ e R (1+Nsp71)7 (K +m),
0

show that the Poisson transform of a gamma probability density function is equal to the
negative binomial probability mass function.

Solution
The integral is
1 1 > 1 —1
Pn(m) = i?i?iiﬁﬁﬁﬂ'/£ EM(E/(m))" " e ST GE,
The integral may be written as
1 1 o -1
_ +K—1) —E(1+
pu(m) = r(K)<m>Kmv/0 E(M K1) —~E(+(m) ) gE.
Using the integral given in the problem statement yields
1 1 -1 —(K—H'T])
pn(M) = () [m&mi (14 (m)~") ['(K +m)

Collecting terms and using m! = T'(m + 1) gives

(K+m) 1 (<m>>)K+m.

L(K)D(m+1) (m*& \ 1+ (m
Separating the last term into a term for K and a term for m and using % =
( K—1+m >
we have
m
—_——

() () ()

6.13 Derivation of the mean and the variance of the number of counts

which is (6.5.11).

Starting with
Cul) = [T e
R Ca S
= (i 1),
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as given in (6.3.7), derive the mean and variance of p(m) in terms of (E) and 2. The prob-
ability mass function p(m) is the Poisson transform of the probability density function f (E)
for the mean number of counts. The result should agree with the terms in (6.3.8).

Solution
The characteristic function is given in (6.3.7)

Cm(w) = (exp(Ee™ —1))

The moments are determined using (2.2.17)

1 4d°
i dn =)

(") =

w=0

The mean value is then

(m) =

I
|
—
—
m
S~—"
ch.—
€
[¢]
>
o
—~
Im
—
ch.—
€
|
—
~—
N

= B

where the order of the expectation and differentiation has been interchanged. This expres-
sion is (6.3.8a). The mean square-value is

m) = (|gaeewiee -0 )
= <6E(eiw*1) [Eei“’ + (Eei‘”)ﬂ ’w:0>
= (E)+(E?)
The variance is then
op = (m?)— (m)?
= B+ E)-®’
= (E) +ot,

which is (6.3.8b).
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6.15 Filtered shot noise and thermal noise

An electrical waveform r(t) is generated by the direct photodetection of a random light-
wave signal with a nonstationary arrival rate given by R(t) = e~*/Tu(t) where u(t) is the
unit-step function. The photodetector has an impulse response given by h(t) = e~ 4/*Tu(t).
Using Campbell’s theorem, derive the mean and the variance of the output electrical wave-
form r(t).

Solution
The mean and the variance are given by Campbell’s theorem (6.7.2)

p(T) = (R(#) ® h(t)],—r
o*(T) = (R(t)) ® h*(t)],_;

The mean is

p(T) = e VTu(t)®e *Tu(t)
t
_ /e—T/4Te—(t—T)/TdT
0 t=T
AT
N 3e '
The variance is
o2(T) = e Tult)®e ¥ u(t)
t
— /e—T/QTe—(t—T)/TdT
0 t=T
_ 2T
c .

6.16 Isserlis theorem

Isserlis theorem states that the expectations of four jointly gaussian random variables, X ;,
X,, X, and X, satisfy

(X XoX3Xy) = (XXX Xy) + (X X)) (XX ) + (X X ) (X X5).

Using the asserted Isserlis theorem, prove (6.4.2) for circularly-symmetric gaussian random
variables.
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Solution
The power autocorrelation function is

Rp, (1) = (Pa(O)Pp(t + 7))
= (n(t)n*()nt+)n*(t + 1)

Now set X; = n(t), Xy = n*(t), X3 = n(t +7),and X, = n*(¢t + 7). This gives

nt)n*(@)) (n(t+m)n* (t+ 1)+

2P, 2Py,

1 ((On* One + 70 (¢4 7) =

(n(t +7)n(t)) (n*(t +7)n" (1))
0 0
=P, +R,,

] =

where the last two terms are pseudocovariance functions of circularly-symmetric gaussian
random variables and so are zero (cf. Section 2.2.1).
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Chapter 7 Selected Solutions
7.1 Three-dB coupler

The governing equations for a symmetric directional coupler with inputs s1 (¢, z) and sa (¢, 2)
are

dsqy(t, z .
% = —iksa(t,2)
dss(t, z .
%) = —irsy(t, 2),

where £ is the coupling coefficient between the modes in each waveguide, and each mode
has a z dependence given by e %%, The output signals are defined as z; () = s; (¢, L) and
20(t) = 8(t, L),

(a) Let the two inputs to the two paths of the directional coupler be s;(¢,0) = s and
s2(t,0) = 0. Solve for 21 (¢) and z2(¢) and determine the length L such that the two output
signals are in phase quadrature.

Solution
Taking the derivative of the first equation, substituting the second equation on the right side
and solving for s; (¢, z) using the boundary condition 1 (¢,0) = s yields

s1(z) = scos(kz).
Taking the derivative of this equation yields
s2(z) = —sisin(kz).

(b) Plot the power in each mode as a function of L and determine the minimum value of L
that produces a 3-dB coupler.

Solution

The power for each waveguide is s2 cos?(z) and s2 sin®(kz). The plot is on the next page
using kK = /2.
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Distance (z)
The value for £ that produces a 3-dB coupler is 1/+/2.
(c) Determine the minimum value of L that produces a power splitter with 10% of the
lightwave power coupled into one path and 90% of the lightwave power coupled into the

other path.

Solution
The value for kL that produces a 10% coupler is cos~!(1/4/10).

(d) let the input to one path be s1(¢,0) = A, and let the input to the other path be s5(t,0) =
B. Show that for a proper choice of L, the output signals can be expressed as

Z1 (t) o i 1 i A
29(t) V211 B |’
which is the relationship for a 180-degree hybrid coupler given in (7.1.2).

Solution
For inputs A and B, the coupling matrix can be written as

s1(t, L) B cosklt  —isinkt A
s2(t, L) B —isinkt  coskt B

Setting kL = 7 /4 yields the desired result.
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1.2 Lossless couplers

For a coupler to be lossless, the output power in the two output waveguides must equal the
input power in the two waveguides so that

Rnl + Rng Poutg + Poutg

where P = |s|? is the root-mean-squared lightwave power and s is the complex lightwave
amplitude. Let
s — | 5
sa(t) |’

be the vector of the two signals defined at either the input or the output of the coupler.
(a) Show that when the coupler is lossless,

—
$::8in - = SoutSouts

where T denotes the conjugate transpose and sqy = T'sjy.

Solution
We must show that P, + Py, = Pin, + Pin,. Forming the matrix product we have

i
st 1[ ] = s ? 4 [t 2 = P + Pa.

Sing
The same result holds for the output.

11
0 0
that combining two spatially-distinct input modes at the same carrier frequency into a single
output mode cannot be implemented by a lossless transformation.

Solution

If Sout = Tsin then sy’ = (Tsin)t = iTn'IFT. Form the product

(b) Show that T = [ does not satisfy the condition derived in part (a). This means

Pow = SToutsout = SiTnTTTSm.

In order for the power to be conserved, the product TTT must be an identity matrix or
equivalently, T must be a unitary matrix that satisfies T~! = TT. When

St

10
t_
=[1 ]

then
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and
1 0 11 11 10
T — _
=11 o) [oo)=l1 1)# [0 1)
The transformation does not conserve power because it is not unitary.

7.4 The output of a balanced photodetector

The output of the balanced photodetector given in (7.3.2) is based on the coupling matrix
T given in (7.1.5). Rederive the output of the balanced photodetector using the alternative
form of the coupling matrix T given in (7.1.2). Comment on the result.

Solution

The quarter-square multiplier given in (7.3.1) requires a coupling matrix of the form given
in (7.1.4). This form of coupling matrix can be derived from the symmetric directional cou-
pler matrix given in (7.1.3) by appropriate phase delays on the inputs and outputs as shown
in the figure below.

e a0

R

Symmetric directional coupler

Using the symmetric coupling matrix given in (7.1.2) and repeated here

-5l

and the phase terms a, b, d, d shown in the figure, the coupling matrix

_ 11
VN I
given in (7.1.4) can be obtained from (7.1.2) when
acs; +1ibcsy = 51+ 59
iadsy +dbsy = 81— 89.
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This system of equations has a solution when

b = —ia
¢c = 1/a
= —i/a.

Setting a = 1 gives b = —i, ¢ = 1, and d = —i, which are simply phase shifts on the input
and output ports. The overall transform can be expressed as a unitary transformation of the
symmetric coupling matrix given in (7.1.3).

1.9 Lightwave amplifier noise terms

For a wavelength of A = 1500 nm, let ng, = 1.25, B = 2 nm, By = 25 GHz, G = 30 dB,
Fy =5dB, and R = 50¢2. The output lightwave signal is measured with a photodetector
that has a responsivity of 0.8 A/W.

(a) Suppose the stimulated-emission cross section o is twice the absorption cross section
04. What is the ratio of the mean upper state density [V to the mean lower state density
N that will produce ng, = 1.25?

Solution
The spontaneous emission noise factor ng, is

UENQ

=12 = —
nsp O'eN27O'aN1

When o, = 20,, aratio of No/N; = 2.5 will produce the desired spontaneous emission
factor.

(b) Determine the incident lightwave power P, for which:

(1) The power density spectrum of the shot noise generated by the signal is equal to the
power density spectrum generated by thermal noise.

Solution

The thermal power is kpTy By where By is the noise bandwidth. The signal shot noise
power is determined using 2eR P, By (cf. (6.7.8)). This term has units of A2 where we
assume that P, is the optical power after the amplifier. Multiplying this term by the load
resistance R to convert into Watts gives

kpTo = 2¢RR Pr.
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Solving for P, we have

ksTy 4x10-2
po_ _ — 3125 uIW.
" T 9RRe  2x50x 0.8 x 1.6x10-19 H#

(i1) The signal-spontaneous emission noise is equal to the spontaneous-spontaneous emis-
sion noise.

Solution
Equating the two terms and using (8.2.36) gives

GPnNyBy + N3 BBy
where B is the bandwidth of the optical noise-suppressing filter. Solving for Py,

P NopB  hfng(G—1)B
m — G - G
where the noise figure Fy; is defined in (7.7.17). The optical filter bandwidth B in frequency

units is B = AMc/\2 = 2.67 x 10! GHz. Putting in the other numbers using f = c¢/\
gives

1
~hfng B~ ShfFoB,

6.64 x 1073% x 3 x 108 x /10 x 2.67 x 10!
P, = = 5H5. = —42.5dBm.
5% 15 x 106 55.8 nW 5 dBm

(c) For what value of the input power P;, does neglecting all the noise terms except the
signal-spontaneous emission noise term result in a relative error in the total electrical power
that is less than 1%?

Solution
The plot of all the noise terms is shown below. The amplified power that produces < 1%
error (or 20 dB) is approximately 7 dBm.

-120 Total Noise/ //

140 ‘ 20dB

Sp-Sp Noise

_160 Sig-Sp Noise

Noise (dBm/Hz)

- .
_180 — Total Shot Nqse

-40 -30 -20 -10 0 10 20
Amplified Signal Power (dBm)
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7.1 Light-emitting diode noise statistics

A light-emitting diode has a —3 dB spectral bandwidth of 40 nm at 850 nm and mean
power of P. This lightwave source is incident on a photodetector with a responsivity of
R =0.5A/W.

(a) Derive the probability mass function p(m) for the number of photoelectrons over an
integration time of 7.

Solution
The coherence time is )
A
L= —=6x10"1s.

T, A X S

The number of coherence intervals is
T 1079
TB=—=——— =16,600.

T 6x10714

The expected generation rate R is

(R B 0.5 B 18
R= <e> P= T6x10-0 — 3.125 x 10*°P counts per second.

Therefore, the mean number E of counts per coherence interval is
E=Rr.=6x10"1x3125x10®¥P ~ 1.88 x 10°P.

In general, the probability distribution for m is a negative binomial distribution (cf. (6.5.11))
characterized by the the expected generation rate R per coherence interval and the number
K = [TB] of coherence intervals. For power levels such that the mean E is much less
than one and 7'B is much greater than one, the negative binomial distribution probability
distribution reduces to a Poisson distribution.

(b) For what values of PT = E can this source be modeled using a Poisson probability
distribution such that the number of photoelectrons is within 5% of the number of photo-
electrons calculated using the exact probability distribution?

Solution

Scaling the energy E by the energy per photon to produce the mean number of counts
E = E/hf, the negative binomial distribution with mean E and K = [T B] degrees of
freedom is

[ K—1+4m 1\ 7/ E\" B
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When E <« 1 and K >> 1, the negative binomial distribution can be approximated by a
Poisson distribution with mean KE.

Using K ~ T'B =~ 16,600, and determining the relative error for only the value m = 0,
a relative error of less than 5% between the negative binomial distribution and the Poisson
distribution requires E to be less than 2.488 x 1073,

(c) Based on the results of part (b) and in a regime for which the data rate is greater than 1
Mb/s and the power is less than 1 W, is the approximation of p(m) by a Poisson distribution
appropriate?

Solution

A data rate of 1 Mb/s corresponding to a signaling interval 7" equal to 1 us. For this time
interval and the same bandwidth B, the number of coherence intervals is 7B = 1.66 x 107
with the expected rate for 1 W given by R = 3.125 x 10'® (see part (a)). Therefore, the
mean number of counts E per coherence interval is, from part (a) E = 1.88 x 10°. Because
this value is much greater than one, approximating the negative binomial distribution by a
Poisson distribution may not appropriate for this case.

7.12 Characteristics of a laser diode

An idealized laser diode is described by conditions that relate both the lightwave power P,
to the injected current ¢;,, and the injected current to the applied voltage Vi, as follows:

P, =0.1i, for i, <5mA (21a)

P, = 1.5i;, — 7 for ij >5mA (21b)
iin = 0.1¥/%571 for Vi, > 0 volts 21c)
iin =0 for Vi, <0 volts (21d)

where P, is the laser power in milliwatts (mW), ¢, is the current in milliamps (mA), and
Via 1s the voltage in volts (V).

(a) Determine the lasing threshold current and voltage.
Solution
The threshold current is 5 mA. Solving for the voltage when i;, = 5 mA, V' = (log,(50) +

1)/2 =2.46 V. Plots of the P, versus i, and 4;, versus V are shown in the figure on the
next page.
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(b) Determine the differential resistance dVi,/dij, at the lasing threshold current and at
twice the lasing threshold current.

Solution

Rewriting (21c), the voltage is V' = %(loge(loiin) + 1). The differential resistance is
(dV /diyn) = 2Z%“1000, where the factor of 1000 converts mA to A so that the units of re-
sistance are in ) and not k(2. The differential resistance at threshold is 100 €2, and at twice
the threshold current, it is 50 2.

(c) Determine the ratio of the lightwave power out of the laser to input electrical power
in (P, /(iinVin)) for iy = 3 mA and ij, = 10 mA.

Solution
For the first case, %, = 3 mA, and the laser is operating below the lasing threshold. Using
(21a) for P, and solving for V' in terms of 4;, in (21c) gives

P, 0.1ii

iinVin  din X 0.5(log, (10ii,) + 1)
B 0.1(3)
3 x0.5(log, (10 x 3) + 1)
= 4.54%.

When ;;, = 10 mA, the laser is operating above the lasing threshold. Using (21b) gives
P, 1.5¢n — 7

inVin  din x 0.5(log, (10i,) + 1)
28.5%.

(d) A 4 mA peak-to-peak sinusoidal signal plus a bias current 7y, is applied to the laser
diode. Sketch P, versus i, for ipjas = 4 mA and iy, = 8 mA. Comment on the result.
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Solution
The plots of the two modulated lightwave waveforms are shown in the figure below. At a
bias of 4 mA, the lower part of the modulating current waveform drives the laser below the
lasing threshold and the output lightwave waveform is “clipped”, producing distortion. The
extinction ratio for this case is equal to 1/10. At 8 mA, the lower peak of the modulating
current waveform is above the lasing threshold and the output lightwave waveform is not
clipped. The extinction ratio for this case is equal to 1/4.

8

Light Out (mW)
N

0 05 1 15 2
Current In (mA)

7.14 Characterization of a laser diode

A conventional resonator structure for a laser diode is a Fabry-Perot resonator. This is a
resonator constructed using two parallel reflective surfaces. The spacing between the al-
lowed frequencies A f of a resonator of length d is given by A f = ¢¢/2nd where ¢y is the
speed of light in free space and n is the index of refraction. This value of A f is called the
free spectral range of the resonator.

A semiconductor laser is fabricated with a Fabry-Perot resonator of a length d = 250 ym
and an index n = 3.5.

(a) What is the free spectral range of the resonator?

Solution
The free spectral range is

c 3 x 108
2dn ~ 2(250 x 10-9)(3.5) z

Af
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(b) Determine the number of possible lasing modes over a —3 dB bandwidth of 0.1 nm.

Solution

The number of possible modes within the specified bandwidth can be determined by ex-
pressing the free spectral range in wavelength units. Let A\ 4. be the resonator spacing
in wavelength units and suppose that the operating wavelength A is 850 nm. Then

c A2 (850 x 10~9)2
CAf= L Af R T
2 / / 3% 108

Because the spacing of the resonator modes is four times larger than the 3 dB bandwidth
B, there will be at most one lasing mode.

Admode = x 171.4 x 10° = 0.4 nm.

c

(c) What is the length d of the resonator for which only one mode can lase over this band-
width?

Solution
For there to be only one lasing mode, A\y,0ge must be greater than B. Therefore

A2 A2 850 x 107?)2
Adpode = — > B =d< = ( x )

_ d < 1 mm.
2dn 2Bn _ 2(0.1x 10935 ~ ¢S m™

(d) When the power density spectrum of the relative intensity noise has a constant value of
—145 dB/Hz over the frequency range of 0 to 2 GHz, determine the electrical noise power
from the relative intensity noise over an integration time 7' =1 ns for a mean lightwave sig-
nal power of 1 mW.

Solution
The noise power from the RIN is given by integrating the noise power density spectrum
Nun(f) given in (7.8.10). Assuming a responsivity of 1 A/W, this gives

2x10°
o = Nen(H)d
2 / (F)df

2x10°
— (PR [ RNGF,

0
(107%)2 x 2 x 10 x 1075

6.32 x 10712 A2

(e) Compare this noise power to the thermal-noise power generated over the same frequency
range. Comment on the result.
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Solution
At a temperature of 290K, the available thermal noise power o in A% over the same
bandwidth into a 50 2 load is

o2em = kToB/50 = 1.38 x 10723 x 290 x 2 x 10°/50 = 1.6 x 1073 A2,

For this case, the noise from the RIN is larger than the thermal noise.

7.16 Dark current

Let ji4ark be the stationary dark-current arrival rate within a photodetector.

(a) Using this value, modify the power density spectrum of the emission N,y generated
by direct photodetection given in (6.5.3) and repeated here:

Nept = RP, 7. = RN,
to include the effect of the dark current in the photodetector.

Solution
The expression becomes

Nopt (R-Pn + e,uldark) Te

total

where the second term is the noise current i,4ise = €ftgark from the dark-current arrival rate.

(b) Modify the characteristic function C,.(w) of the sample value r given in (6.7.16) and

repeated here:
Crlw) = exp (/ R(7) (ei“’gh(T_T) - 1)d7')

—00

to include the effect of dark-current arrival rate figa.

Solution
Viewing R(7) as the expected photogeneration rate, adding the dark current rate gives

Cyr(w) = exp (/OO (R(7) + ftdgark) (exp [iwGh(t — 7)] — 1)d7’) .

— 00

(c) Determine the mean and the variance of the probability density function for the sample
value r when the signal photogeneration rate is given by R4 (¢).
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Solution
The mean and variance are given by Campbell’s theorem given in (6.7.18). Including the
dark current arrival rate, these equations are modified to read

(1) = (Ru(t) + paw) @ h(H)|

and

02 = (Ry(t) + fraar) ® h(t)

=T

7.17 Noise terms

A lightwave signal generated from a direct-current-modulated laser diode has a power
P = —23 dBm and a relative intensity noise of —120 dB/Hz. This signal is incident on a
photodetector with a responsivity of 0.5 A/W. The output of the photodetector is connected
to an electrical amplifier with a noise-equivalent bandwidth By = 15 GHz and a root-
mean-squared thermal-noise current of o; = 250 nA at the input to the electrical amplifier.
The amplified signal is then integrated over a time interval 7" and sampled.

(a) Determine the variance in the sample value due to shot noise.

Solution
The shot noise variance is given by (6.7.5)

0?2 = 2e(i)Byx

= 2¢RPBy
= 2(1.6 x 107') x 0.5 x 107°3 x 15 x 10°
= 1.2x 107" A%

(b) Determine the variance in the sample value due to relative intensity noise.

Solution
Assuming that the RIN is constant over the noise bandwidth, the variance from the RIN is
given by (7.8.10)

ORIN R?P?RINBy

2
(0.5 X 10<*5~3) 10712 % 15 x 10°
= 942 x 1074 A%

(c) Determine the variance in the sample value due to the thermal noise.
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Solution
Squaring the root-mean square current noise o; = 250 nA gives 07 = 6.25 x 10714 A2,

(d) Determine the total variance in the sample value.

Solution

For independent noise sources, the variances add. The total variance is 16.9 x 1074 AZ or
a root-mean squared noise current of 411 nA referred to the input of the electrical amplifier
for the specific lightwave power used in this problem.

(e) Determine which noise source has the largest contribution to the overall variance and
calculate the relative error in evaluating the root-mean-squared noise when only the most
significant noise source is used. Is this a good approximation?

Solution

The relative intensity noise has the largest contribution. It has root-mean squared value
equal to 307 nA. The relative error when only this noise noise is used to calculate the root-
mean squared current noise is 100 x (411 — 307)/411 = 25.22%. This is not a good ap-
proximation.

7.21 Mean and variance of avalanche photodiode probability distribution

Starting with the characteristic function Cp,(w) for the output distribution of an avalanche
photodiode given by (7.6.3) and repeated here,

and using (2.2.17), show that the mean of the probability mass function is equal to Eg, and
that the variance is given by

o2 = GWs(F+w)—(WG)? = wGF = EGF,

where G = (G) is the mean gain of the avalanche photodiode.

Solution
The expression for the characteristic function is

Cole) = oxp | iy (1= VI= BRB(F 1)) iy |

-1

Using

1 d"

Cn(w)

) = Jfa g O

w=0
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the mean value is (M) = wsG. The mean square value is (m?) = G?ws (F + Ws). Therefore,
the variance is

om = (m’) —(m)®

= Gwg (F 4 W) — (WsG)?
WG2F'
= EGF

where Es = wsG is the mean number of counts after the internal gain process.
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Chapter 8 Selected Solutions

8.2 Propagation of a chirped gaussian pulse
An input lightwave pulse s(t) is given as

2

s(t) = Aemt* /207 (22)

where 1/02 = (1 —iK) /o2 is complex with the constant K called the chirp parameter.
(Note that there is a sign change in this definition of the chirp parameter compared to the
original problem statement so as to be consistent with the literature.) The corresponding
real-passband lightwave pulse is

() = Ae /2 005(271' ful + (K/Qa?n)t?) 23)

with the instantaneous frequency given by

o) K
;o= 2r dt B fc+<47rai2n>t’

where 6(t) is the argument of the cosine function. When K is positive, increasing time
corresponds to increasing frequency. This is called blue-shifting. When K is negative,
increasing time corresponds to decreasing frequency. This is called red-shifting. These two
kinds of chirped pulses are shown in the figure below (The ratio of carrier frequency to the
spectral width is small enough to show the effect of the chirp.) The pulse passes through a
fiber with a transfer function at a distance z = L given by (8.1.3), which is repeated here

H(f) _ Hoe—iQTrTfe—i27r2,82Lf2’ 24)

Red-shifted chirp

(a) Determine the input spectral content S(f) of the chirped pulse at z = 0.

Solution
The spectral content of the pulse envelope S(f,z) at z = 0 is determined by taking the
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Fourier transform of complex-baseband pulse given in (22) where 1/02 = (1 —iK) /o2,
is complex. Using the Fourier transform pair given by (2.1.37), the frequency spectrum of
the chirped pulse is

£,0) = Ay/27moZexp ( QWUIHIJE))

(b) Determine the root-mean-squared width Aw;ms of the magnitude of the spectrum S( f)
in terms of K and o2.

Solution
The spectrum at z = 0 is given by

S(f) = Ay/3mo? exp( ng)) (25)

om0l ' (_okms)
- a( k) e (0T) ¢
Separate into real and imaginary parts
T oh(2m)* (1 +iK)
P (_2(11K)) o <_2(1 iK1+ iK))
o2 (2m f)? o2 (2nf)?K)
€Xp <_2(]_4»I(2)> exXp (_IQ(HI(Q)) . (27)

The root-mean squared width of magnitude of the spectrum |S(f,0)| can be determined
from inspection by writing the real part of (27) in standard form

= A1 / 27701?mse_(2ﬂf)2/03n57

so that

arzms = (2770in)_1 (1+ K?).

This is the root-mean squared bandwidth in frequency. The root-mean squared width in
angular frequency is multiplied by 2.

(c) Determine the output spectral content Soy(f) of the chirped pulse at z = L.
Solution

Suppose that coherent carrier is used so that the spectrum of the pulse envelope dominates
the overall transmitted linewidth oy. Working in the frequency domain, use S(z, f) =
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H(z, f)S(z,0). Using (26), the spectral content of the chirped pulse after a distance z is
then

S(z,f) = S(HH(=zf)
2770i2n 1/2
A(11K> %

exp (—i27f7) exp {— (zgf)Z ((1 U%K) + iﬁ2Z>:|

where the constant H is incorporated into A.
Define the “ variance” o after propagation distance of z as
2
op = (1(_771;}() + 1Pz
(02 + (1 —iK) iﬁgz)
1—-iK
(0i2n + Koz + iﬂzz)
1—-iK

Multiply and divide by o; and rearrange

1\ 12 1—iK 1/2
S(z,f) = AonV2mo, (11K> (051+K522+1522)> -
exp (—i27 f7) exp {(27”;)20?]

- (o2 JrKﬁAaijr i3 )1/2 [\/ﬂdtexp (—i27 f7)exp |:
Oin 22 + 1822

(%J;)QJ?H

constant in frequency form for inverse transform

The function is now in a form that can be inverse Fourier transformed noting that phase
term transforms to time shift

Aoy, (t— 7')2
s(z,t) = 2P | — 3
(02 + KBz +iB22) 20}

QK (t-7) ]

= C@)exp | —3 (02 + KBz + 1B27)

where C'(z) is a z dependent constant. Separate s(z,t) to determine the magnitude of the
pulse

1—iK)(t—1)> |
2 (02 + KBz +1f22) B

C(z)exp [—
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. (1,jK)(t—T)2 (UﬁlJrKﬂQZ*iﬁzz)
(2)exp " 2(02 4 KByz +1B22) (02 + Koz — ifa2)

Rewriting gives

s(z,t) = C(z)exp [— (t—7)° /(2[((01?1 + Kﬁgz)z + (522)2) /U,QHD] x phase term.

Ugut(z)

This expression is in the form of a magnitude and a phase with the magnitude determining
the output pulse width.

(d) Show that the square of the ratio of the output timewidth ooy (2) to the input timewidth
oin can be written as

o2 (% 2

%() = (1 + K(,z/LD)) +(2/Lp)?
where L, = o2 /B2 is the dispersion length (cf. (5.3.23)).

Solution

Using the expression for o,
pulse can be written as

2

2 ¢(z) shown above, the mean-squared timewidth of the output

(O‘?n + K,Bgz)Q + (ﬁgz)Q

U(?ut(z) - o2
2 2
- (1—1—[(602;) +(602;)1
or
Jgut 2 2
- (14 K(2/L0)) + (/L)

where L, = o2 /5, is the dispersion length (cf. (5.3.23)).

(e) Show that when S5 and K have the same sign, the pulse timewidth increases mono-
tonically with the distance L.

(f) Show that when 85 and K are opposite in sign, the pulse comes to a “focus” as the
pulse propagates in z with the minimum timewidth occurring at a distance given by
LY

Zmin = 1+K2LD~
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Solution

These two cases differ on the signs of S2 and K. The choice of signs depends on the time
convention for the transfer function H(f) and for the phase chirp. For the sign conven-
tion stated in the (modified) problem, the pulse timewidth increases monotonically with the
distance L when 35 and K have same sign. (The original problem statement assumed a
different sign convention.) For part (f), for the sign convention chosen for the problem,
when (3 and K have the same sign, the effect of the chirp is to “focus” the pulse in time as
the pulse propagates in z with the minimum width occurring at a distance

K]

Zmin = 1+ K2 Ly

where L, is the dispersion distance. At this distance, the imaginary part of the exponential
vanishes. For wavelengths longer that the zero dispersion wavelength (=1.3 pm for stan-
dard fiber), the dispersion is anomalous and 3 < 0. ' When K = 0 and there is no chirp

(L) =o? [1 + (=/ zc)ﬂ For large z, the RMS width of the pulse increases linearly

with distance.

Using the reciprocal relationship for the RMS width in frequency and time, the RMS
width of a(t, z) at zmin is given by ooy = 02/v/1+ K2. In this case, the RMS width of
the pulse at 2y is less than the input temporal width of o;, leading to “temporal focusing”.
Plots of the RMS width as function of L/L, are shown in the figure below. For the sign
convention used in the modified problem, when K > 0, the RMS width increase monoton-
ically. When K < 0, the pulse width decreases to a minimum value at zy,;, and then begins
to increase after the pulse reaches a minimum pulse width.

2
and gy

K=-2

L/L

I'Self phase-modulation creates a chirp with K > 0 and thus these two effects can cancel for specific pulse
shapes and power levels leading to the propagation of stable waveforms called solitons.
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8.3 Variance in the photodetected output

With the expected power (P) collected by direct photodetection held constant, show that the
output signal-to-noise ratio (SNR) is proportional to the number M of coherence regions at
the output face of the fiber. (Note: the mean and variance of the gamma probability density
function are M (P) and M (P)?, respectively)

Solution

The total power is given by the sum of M independent coherence regions so that

M
Btotal = Z Em )

m=1

where the set {P,,} of random variables is identically distributed. Because the random
variables are independent, the mean power is (P, ;) = M(P,,). The electrical SNR is
given by

_ Mp,)
SNR = =M.

—m

This expresson shows that the SNR increases as the number of independent coherence in-
tervals because of averaging over the coherence regions.

8.4 Modal noise for a single photodetector

The output light of a multimode fiber is collected using a single direct photodetector that
has an overlap region Aoyeriap Whose area is equal to the total area of the region Agper of the
output face of the fiber including the core and the cladding.

(a) Is there modal noise when there is no mode-selective attenuation? Explain.

Solution
No. When all of the signal power is collected from every mode that contains power, there
is no modal noise.

(b) Is there modal noise when the photodetector is misaligned and collects only a portion
of the power in the fiber and there are no other mode-selective attenuation mechanisms?
Explain.

Solution

Yes. For this case, a random portion of the incident lightwave power is coupled into the
photodetector as the speckle pattern randomly shifts across the output aperture. This form
of mode-dependent loss is modal noise.

96



8.6 Output pulse for a fiber that supports two modes

Consider a fiber that supports two spatial modes. The output lightwave pulse in the first
mode before photodetection is a unit-amplitude gaussian pulse with unit variance. The out-
put lightwave pulse before photodetection in the second mode is a unit-amplitude gaussian
pulse also with unit variance, but is delayed in time by a value equal to one-half the vari-
ance. Determine an expression for the electrical signal energy E when:

(a) The pulses in each mode are noncoherent.

Solution

When the pulses are noncoherent, the directly photodetected electrical signal r(t) is is the
sum of the power in each pulse and is given by (1.2.4)

r(t) = R(A@)+ Pa(t))

_ % (et 4 emtm1r2?),

where Pj(t) = |s;(t)[2/2 for j = 1,2, s1(t) = e~"/2, s3(t) = e~ (t=1/2°/2 and R is the
responsivity. The electrical energy F over an interval T is

E = /rQ(t)dt
T
R2 2 2\ 2
- - —(t-1/2)
1 /T(e +e ) dt

2 .
_ RT/ (ef2tz+267t27(t71/2)2+672(t71/2)2) dt
T

(b) The pulses in each mode are coherent.

Solution
When the pulses are coherent, the directly photodetected electrical signal () is is the square
of the sum of the amplitudes in each pulse so that

r(t) = % (e_tz/2 + e_(t_1/2)2/2>2
_ % (679 1 9e— 5 -3t-1/2)? H—(H/zf) 7
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showing additional cross term. The corresponding electrical energy E over an interval T’ is

E = /TrQ(t)dt

2
_ RT/ (efﬁ/uef(tfl/z)?/z)“dt
T

2 2 2
_ &/ <672t2+4€7%7%(t71/2)2+6€7t27(t71/2)2+4€7%7%(t71/2)2+€72(t71/2)2)dt
4 Jr

(c) Comment on the result.

Solution
The coherent cross terms can cause either constructive interference between the pulses de-
pending on the relative phase between the pulses.

8.7 Amplitude-phase coupling in a dispersive fiber

Suppose that a lightwave signal s(t) at the input to a dispersive fiber is sinusoidally phase-
modulated so that

S(t) — eiy sin(27rfmt)’
where p is the modulation index, and f,,, is the modulation frequency with period T' =

1/ fm. This periodic signal can be expressed in terms of an exponential Fourier series given
by

oo
S(t) — 6i;Lsin(27rfmt) _ Z FneiHZTrfmt,

n—=—oo

with the Fourier series coefficients F), given by .J,, (), the Bessel function of the first kind
and order n.

(a) Derive an expression for the output lightwave signal s(¢) at a distance L in terms of
the Fourier series coefficients and the complex-baseband transfer function given in (8.1.3).

Solution
Given that the input signal is already expressed in terms of a superposition of exponential
functions of the form of €27 /ot the output can immediately be written as

rt) = ) Ju(M)em ol H(nfy)

n=—oo

= Hj, Z Jn(]\4)ein27rfo(1tfr)e—i7r[32(nf(,)2‘L7

n—=—oo
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where H(f) is given in (8.1.3).

(b) By equating terms of the same frequency, determine an expression for the output light-
wave power P = |s(t)|* /2 at frequency f,,.

Solution
The form of the photodetected signal is the product of two summation with differing indices.
Therefore,

1 el ) .
ity = §|r(t)|2 = H, Z T (M)ein2mfolt=7) g=imBa(nfo)*L

n=—oo

Z Jm(M)eim%rfg(tf‘r)efi‘n'ﬁg(mfo)gL

m=—0o0

X

The term at fj is generated when the difference in the two indices is equal to one. This
gives
i(t) o Jo(M)Jy(M)cos (mB2f3L)
+  Ji(M)Jo(M)cos (3mB2 fGL) + ...
where the factor of three is from 22 — 12. The problem shows that a dispersive medium

such as a fiber will convert a constant amplitude phase modulated signal into amplitude
fluctuations at the output.
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Chapter 9 Selected Solutions

9.4 Exact and approximate thresholds

(a) Derive the threshold expression given in (9.5.21).

Solution
Rewrite the equation as

0(2) (r— 51)2 — 0’% (r— 80)2 + 20%0(2) (log, (poo1) — log, (p1og)) = 0.

Using the quadratic formula and noting the term (50 o2 — 5103) 2_ (ag — U%) (5%03 — s%a%)

inside the square root function can be factored into (so — 51)2 odo? gives (9.5.21).

(b) Show that for (s1 — s0)? much larger than 2(0% — o) log, (01 /00), that p; o and pojy
are approximately equal, which demonstrates that the channel is approximately a binary
symmetric channel.

Solution
Using the approximation stated in the problem, the second term inside the square-root func-
tion can be neglected. Using the larger of the two thresholds then gives

2 2
8007 — 8105 + 0100(81 — S0)

2 2
01 — 0y

@:

s100(01 — 09) + 5001 (01 — 00)
(o1 + 00)(01 — 00)
5100 + S001
g1 +(70

which is the threshold © that produces for a binary symmetric channel when the variances
are equal and prior pyp = poj1 = 1/2 is equiprobable.

9.6 Gaussian probability density function with signal-independent and
signal-dependent variances

Let the expected sample value s; when a mark is transmitted be equal to 200. Let the
expected sample value sy when a space is transmitted be equal 20. The system has addi-
tive signal-independent gaussian noise characterized by 02 = 900, and signal-dependent
noise characterized by 07 = sy, where s, is the expected sample value. Using (9.5.27) and
(9.5.28) determine the following:
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(a) The probability of a detection error p, and the threshold © when only the signal-dependent
additive noise term is included.

Solution
When only signal-dependent shot noise is included, the Q parameter is
— 200 — 2
Q = - Hos 0 20220 g4
Vs1+ /S0 V200 + /20

Using (9.5.26) we have

1 1 9.67
pe = —erfc <Q> = —erfc () = 2x1072%2
2 V2 2 V2

The threshold is the geometric mean so that

O = V200x20 = 20v10.

(b) The probability of a detection error p, and the threshold © when only the signal-independent
additive noise term is included.

Solution
When only signal-dependent shot noise is considered then
- S1 — So o 200 — 20 o
= % - 60 =3
and

1 o) 1 3
= Zerfc| —= = Zerfe| — = 1.35x1073.
be 2 (ﬂ) 2 <\/§>

The threshold is the arithmetic mean so that

o - 2004200 4
2
(c) The probability of a detection error p. and the threshold © when both noise terms are

included.

Solution
When both noise sources are considered
S1 — So 200 — 20
Q = = —_— = 2.83,
Vo2 + 51+ Vo2 + s 60
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and

1 1 2. .
pe = —erfc (Q) = —erfc (83> = 229x1073.
2 V2 2 V2
The threshold is given by (9.5.25)
o 0180 + 0081
o1+ 09
~osovo?+si+sivor+sg 200900 4200 4 2001/900 +-20 106
Vo2 + 50 + Vo2 + sg /900 + 200 4 /900 + 20 ’

which is slightly less than the threshold derived using only additive noise.
(d) Based on this analysis, which noise source is more significant?

Solution
The system is additive-noise limited.

9.8 Thresholds for a multilevel system

(a) A multilevel system with L levels, with 0, = ¢ being a constant, is indexed by ¢. Show
that, for this system, 7, is a constant and that the minimum probability of a detection error
Pe is achieved for uniformly spaced signal levels s;.

Solution
Start with (9.6.8), which is repeated here

pe = LglerfC( 7/2),

where ¥ = Q2. Suppose for simplicity that L = 4. The arguments R; of the error functions
can be written as

Pe = Z (erfc(Ry) + erfc(Rg) + erfc(R3)), (28)

with a constraint Ry + Re+ R3 = K where K is related to the average power. To determine
the minimum probability p. of a detection error in terms of the mean signal levels, use
Lagrange multipliers. Taking the gradient of (28) with respectto { R1, R2, R3} generates an
equation for each of the three components R,. Each of these equations equals the Lagrange
multiplier A. Including the constraint of R + R + R3 = K gives four equations and four
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unknowns (R, Ra, R3, A)

— % e B = A
— % e = A
— % e_Rg = A
Ri+R;+Rs = K,
where d/dz erfc(z) = —2e=*" /\/7 has been used. The symmetric nature of these equa-

tions gives the solution as Ry = Ry = Rz = K /3 showing the minimum p, is achieved
for equal spacing between the levels.

(b) Now consider an ideal shot-noise-limited system with o, = /s, supposing that the
square root /s, of the expected signal levels are uniformly spaced. Show that for this sys-
tem 7, is again a constant that does not depend on /.

Solution
For signal-dependent noise, the expression for the argument error function is proportional
to Q as given in (9.7.2) and repeated here

o) Se+1 — S¢ Sp4+1 — S¢
[ pr— pr—
Opt1+ Oy V/Se+1 +4/Se

o (VEer Ve (et — Vs -
) N R = Ve - Ve

Given that the problem states that the square roots are uniformly spaced, the term /s;11 —
\/3¢ is a constant. Therefore Q is a constant and 5, = Q? is a constant that does not depend
on the specific level /.

(c) Show that the uniform spacing of the square root of the signal levels for a shot-noise-
limited system produces a minimum probability of a detection error p,.

Solution
The same Lagrange multiplier method used in part (a) can be used for this problem.
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9.14 Sensitivity of the probability of a detection error

This problem quantifies the sensitivity of the probability of a detection error p, to the value
of 7.

(a) Using (9.5.30), determine the value of 7 that produces p, = 107°.

Solution
Using (9.5.26) we have

1
Pe = ierfc ( 7/2) .
Setting p. = 10~ and solving, the value of 7 is 36.

(b) Determine p. when the value of 7 determined in part (a) is halved, and comment on
the result.

Solution
Fory = 36/2 = 18, we have

1
p. = 5erfc(«/18/2) — 11x1075.

The probability of a detection error changes by over four orders of magnitude.

(c) Let ¥ = 7, + 07. Expand the approximate expression for p.(7) given in (9.5.30)
keeping only terms of order zero and order §.

Solution
Using (2.2.20), the approximate expression for p, is
Pe ~ ; 677/2 .
NP
Ignoring the scaling factor in front of the exponential,

e—(?ﬁ-éﬁ)/? = De (70)61967
where 0p, is simply
Spe e 2,

where it is assumed that § is negative so that it increases the error probability.
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(d) Using this expansion and a nominal value of 7, = 9, determine the change in the
probability of a detection error when the value of 7 changes by 5%.

Solution
Using v = 9(0.05) = 0.45 gives the error as

ope = €%4/2 =95%,

The exponential sensitivity of the error rate with respect to the argument of the erfc function
means that if there are multiple terms to evaluate for the total probability of a detection error,
the term with the smallest value will dominate unless the terms are nearly identical or there
is a large multiplicity of the same type of term.

9.16 Unequal prior probabilities

Consider two systems. The first system determines the threshold knowing the priors by us-
ing the ratio of the posterior probability density functions u(r) given in (9.5.6). The second
system determines the threshold using the likelihood ratio A(r) based on an equiprobable
prior.

(a) Derive an expression for the relative error in the probability of a detection error using
A(r) compared to using u(r) as function of the ratio of the prior probabilities pg/p; when
the two conditional probability density functions are gaussian probability density functions
with unit variance.

Solution
The exact threshold © is given by the solution to (9.5.21) and is repeated here setting
g1 = 0 = 1

3((r=s1)* = (r — s0)?) +log,(po) — log,(p1) = 0.

Because 01 = (¢ = 1, there is only single threshold given by

$1+ So L log, t
2 S1 — So
= Oy +06

()

where t = pg/py is the ratio of the priors (cf. (9.5.11)), ©y is the threshold for an equiprob-
able prior and JO is the change in the threshold because of the unequal probabilities. This
threshold is then used in (9.5.23) to derive the corresponding conditional probabilities pq o
and pg; of a detection error. The total probability of a detection error is given by (9.5.25).
Usingp; = 1/(t+1),po =t/(t+ 1), and 01 = ¢ = 1 gives

105



(b) Plot the relative error over the interval 1 < (pg/p1) < 10 for s equal to one and
51 equal to: (i) 2, (ii) 3, and (iii) 6. Comment on the result with regard to the dependence
of the relative error on the prior probability ratio and the signal-to-noise-ratio.

Solution
The relative error using the approximate threshold ©¢ based on equiprobable prior as com-

pared to the exact threshold © based on the posterior probability is shown in the figure
below.

70
60 — |
s =2 _—
1 _—
g 50 \ //
o >
c 40 _ .
= \ 51_3
2 /
o 30 / s,=10
[ /.
o 20 / .
2 /
o /
10 //
y
of J
2 4 6 8 10

Ratio of Prior Probabilities r

The error is zero for pp/p1 = 1 and monotonically increases for any value of s;. The
curves for s; = 2 and s; = 3 cross over because for these small mean values, an accurate
calculation of the probability of a detection error requires the use of both detection regions
(cf. Figure 9.11).

9.17 Local oscillator power required for shot-noise-limited performance

A phase-synchronous demodulator uses a photodetector with a responsivity R = 1 A/W at
1.5 um and a dark current of 1 nA. The photodetector is connected to a preamplifier with
a root-mean-squared current noise density spectrum o = 1 pA/y/Hz at the input to the am-
plifier. If By = 0.75R where R is the data rate in bits/s and B, is the noise bandwidth,
derive an expression for the required local oscillator power as a function of the data rate R
so that the sum of the electrical thermal noise and the dark current noise is one percent of
the shot noise generated by the local oscillator.
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Solution
The thermal noise current variance o2 in units of A? is given by

2 2 2
o; = o0°ByA

The dark noise current variance o2 in units of A? is
o7 = 10718 A?

because the variance is equal to the mean value for a Poisson random variable. The shot
noise variance O'Szhot in units of A? is
Ohe = 2¢(i)B
shot — N
2¢RP,,By,

where P, is the mean local oscillator power. Solving for the LO power gives

P _ Us2hot
Lo 2¢RBy

Setting the shot noise variance 02, equal to 100 times the sum of the thermal noise vari-
ance and the dark current variance gives 02 , = 100(c? + ¢2) = 100(c?By + 10718).
Substituting the numerical values gives

100(10~24(0.75.R) + 10~18)
2(1.6 x 10-19)(0.75R)

PL() =

where By = 0.75R where R is the data rate in bits/s. For data rates greater than 1 Gb/s,
the thermal noise from the amplifier dominates the dark current from the photodetector so
that

100(10~24)

P, ~ ——— 7~ 3125x107*W =~ —5dBm.
£o 2(1.6 x 10-19) x m

For the conditions stated in this problem, the required local oscillator power is independent
of the data rate R.

9.19 Detection thresholds

This problem compares the probability of a detection error based on three different meth-
ods of detection: the first uses the two thresholds defined by the solutions to (9.5.21), the
second uses only the larger of the two value given in (9.5.22), and the third uses a threshold
chosen to produce a binary symmetric channel with p,. given by (9.5.30).

(a) Let so = 0, 09 = 1, 01 = 10, and pg = p; = 1/2. Plot the logarithm of p. versus the
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logarithm of the expected value of a mark s; for values of s; up to 40. Comment on the
result.

(b) Let so = 0, s1 = 10, 09 = 1, and py = p; = 1/2. Plot the logarithm of p, versus the
ratio o1 /o from values slightly greater than one up to ten. Comment on the result.

(c) Based on these plots, comment on the range of validity of modeling the channel as a
binary symmetric channel.

Solution

The difference between the probability of a detection error p, for detection based on using
two optimal thresholds, detection based on using one threshold, and detection based on us-
ing a threshold chosen to produce a binary symmetric channel is shown in the figure on the
next page as a function of the expected value r; for a mark. The lower plot is the same set
of curves plotted as a function of the ratio o /. The marked points are the same for each
curve. The difference between the three methods of detection is most pronounced when the
variances o and o7 of the two probability density functions are significantly different and
the expected signal levels s and s; are small. Referring to the lower plot, all three methods
of detection produce the same p, as the variances become comparable as is evident in the
figure. All three methods also produce the same p. for conditions that produce a binary
symmetric channel. These conditions are satisfied by nearly all current lightwave commu-
nication systems and thus detection probabilities based on a binary symmetric channel is
widely used.
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Chapter 10 Selected Solutions
10.1 The photocharge and the electrical energy in a pulse

For direct photodetection, the photocharge W in an electrical pulse p(¢) is given by

wo= | ",

—00

and is directly proportional to the lightwave energy with the responsivity R (cf. Table 6.2)
as the proportionality constant. The electrical energy in the same pulse for a unit resistance
Ris

E = /OopQ(t)dt.

—0oQ

Using R = 1 and R = 1, compare the lightwave signal energy and the electrical signal
energy for the pulses following:

(a) p(t) = Arect(t)

Solution

W = / Arect(t)dt = A E = / Arect®(t)dt = A2
(b) p(t) = Asinc(t)
Solution

W = / Asinc(t)ydt = A E = / Asinc?(t)dt = A%

©p(t) = A= e/

T

Solution

00 o] 2 AQ
W = / A2 = A FE = / A2 g = 2
oo V2T _m(ww ) 27

Examining the three pulses there is no general relationship between the lightwave signal
energy and the electrical signal energy.
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10.3 The effect of a constant bias signal on the optimal threshold

Consider the two three-point signal constellations shown below. In each constellation, the
three points form an equilateral triangle with side of length d.

(@) (b)

(a) Determine the mean symbol energy E in terms of d when each of the three signal
points is equidistant from the origin as part (a) of the figure. Repeat for part (b). In this
case, the three signal points do not have the same energy.

Solution

For the constellation shown in part (a), every symbol has the same energy, which is £ =
d/+/3. For figure (b), the three signal points do not have the same energy. The two points
on the horizontal axis have an energy of d/2, and the third point has an energy of v/3d/2,
which is simply the height of the triangle.

(b) Partition the plane for each constellation into three optimal decision regions when the
noise is additive white gaussian noise.

Solution
The partitioning is shown in part (a) of the figure on the next page. For the second case, the
decision regions are displaced, but are still straight lines.

(c) Partition the plane for the constellation shown in part (a) of the figure into three optimal
decision regions for the case of zero-mean gaussian noise with a variance that is propor-
tional to the mean signal. Compare your answer with the results of part (b) of this problem.

Solution

Because the signal point are equidistant from the origin, the variance of each of these prob-
ability density functions is the same. Therefore, the partitions for the decision regions do
not change and are shown in part (a) of the figure on the next page.
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(a) Signal-Independent Noise (b) Signal-Dependent Noise
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(d) Repeat part (c) using figure (b) and sketching the approximate decision regions. Com-
pare these regions with the results for a white additive gaussian noise channel. Are the de-
cision regions the same for both signal constellations?

Solution

In this case, the distance of the the point along the vertical axis is v/3 larger than the distance
the other two points along the horizontal axis. This leads to a larger noise variance for this
point. Consequently, the decision regions are not straight lines. These decision regions are
shown in part (b) of the figure for the solution.

10.8 Multilevel intensity modulation

A four-level Gray-coded intensity-modulated system is designed to achieve a probability of
detection error p.. It has a mean background noise term so and a signal-independent noise
variance o2. Using (9.6.8), determine:

(a) The required value for Q.

Solution
The levels are determined iteratively. Using the symbol error rate stated in (9.6.8) gives

Pe = (Lgl)erfc(Q/\/i).

Setting L = 4 and solving for Q (or 7?) we have

Q = V2erfc '(4p./3).
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(b) The required expected signal levels s; through ss in terms of sg, o2, and p..

Solution
Under the constraint that noise is signal independent, Q, = (s¢+1 — S¢)/20 is the same for
all ¢ (See Problem 9.8). Starting with sy the remaining values s; are given by

Ser1 = 2\/§Jerfcfl(4pe/3) + sy,
for¢{ =0,1,2.
(c) The threshold values ©; through ©3.

Solution
Using (9.6.3a) with equal variances for all ¢ gives

1
Ort1 = 3 (Se41+ se) s

for{=0,1,2.
(d) The expected number of photoelectrons m per symbol.

Solution
The received sample 7, is the photocharge W in an interval I". Therefore, the average
number of photoelectrons per symbol interval is simply

mg = sg/e.

(e) The power penalty compared to an on-off-keyed intensity-modulated system operating
at the same data rate.

Solution
The energy efficiency of multilevel intensity modulation is given in (10.5.10) and is re-
peated here

£ - dmm/2 _ 1
 (L—1Ddmn/2 ~ L-1

For L = 4, this is a factor of one-third, or about —4.8 dB, compared to binary on-off keying.

10.9 The effect of the extinction ratio on the optimal threshold

Consider a single carrier system that transmits a mean power P at a symbol rate R. The
length of the span is L km, and has an attenuation of x dB/km. The receiver is an ideal
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photon-counting receiver (n = 1).

(a) Determine the expected number of photons for a mark E; and the expected number
of photon for a space Ej in terms of the expected number of photoelectrons per bit Wy, and
the transmitter extinction ratio e, defined in (7.5.6).

Solution

For ideal photodetection the expected number of photons E is equal to the expected number
of photocounts W. The mean number of photocounts per bit is Wy, = (W; + Wp)/2 and
ex = Wo/W;. Therefore Wy = 2W, /(1 + e,;) and Wy = 2Wype, /(1 + e;).

(b) Derive an expression that relates the extinction ratio e, to the error-rate p..
Solution

The solution requires the expression for the error rate in terms of W, and ratio e,. The
expression for the 72 = Q-factor is given by

2W,
o= VW= W = - v,

(c) Now suppose that the dark current in the photodetector is 10% of the mean photode-
tected electrical signal. Determine the modified extinction ratio required to achieve the
same probability of error as in part (b).

Solution
The presence of dark current modifies the quantities as follows:

Wi = Wi+ Waar

Wy = Wo+ Waar

e _ % _ WO + Wdark

* Wi Wi + Weark
o 2eWo+ (1 +e)Waak  2e, +0.1(1+e,)  21e,+0.1 29)
T 2Wo (T4 ep)Waak 0 24+01(1+e;)  Ode, +2.1
Wi+ Wr

Wy = % = Wy — Waan

= 0.9W,

where Wgaix = 0.1W, has been used. Equating the expressions for 72 derived in part (b) and
cancelling common terms gives
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1.8 | 2
1- () = (1= o)
1+e, ( c 1+ €q,, (= verm)

where e, , is the modified extinction ratio required to have the same probability of detec-
tion error. Given that e/, can be expressed in terms of the original extinction ratio e, using
(29), this expression relates the original extinction ratio and the modified extinction ratio

€2

10.11 Photon noise

Let the power density spectrum for the spontaneous emission Ng, expressed in terms of the
expected number of photons have a value of two at a wavelength of 1550 nm.

(a) Determine the power density spectrum Ny, from spontaneous emission in dBm/Hz and
evaluate the noise power over a bandwidth of 25 GHz.

Solution
The power density spectrum in dBm/Hz is

6.626 x 10734 x 3 x 108>

hc
No = loglo(\f/«xx) - <2X 1.55 x 106
sp

— —155.9 dBm/Hz.

The noise power in a bandwidth of 25 GHz is then —155.9 + 10 log; (25 x 10%) = —55.9
dBm.

(b) Compare the power density spectrum N, to the power density spectrum for thermal
noise Ny = kT assuming R = 1, and R = 50 (2.

Solution
At a temperature of 290 K, the thermal noise power density spectrum in dBm is

Na = 10logy, (10°kT;) = —174dBm/Hz

so that an optical amplifier with an equivalent noise of two photons per mode has a power
density spectrum that is about 20 dB larger than the thermal noise power density spectrum
at room temperature. This is one reason why thermal noise can be often be neglected when
a lightwave amplifier is used.

(c) Let the expected number of signal photons Ey for a bit also have the value of two. De-

termine the probability of a detection error p, for both heterodyne and homodyne detection
including shot noise and spontaneous emission noise for an ideal photodetector (n = 1).
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Solution
For homodyne demodulation with ideal photodetection we have

= 1erfc 2y
Pe = 3 Mg + 1
1 2(2)
= —erf _— = .103.
2erc( 2(2)+1> 0.103

For heterodyne demodulation with ideal photodetection we have

Pe

Il Il
N DO |
a a
= =
& o5
N~
m =
~—— 38
m
+o‘
—_
I ~ /
e
—_
[\}
=

(d) Repeat the last question neglecting photon noise and determine the relative error in p,
when photon noise is neglected.

Solution
Neglecting shot noise gives

~ are( B
pe = 5 Ny
1
= §erfc(1) = 0.0786

The relative error for each form of demodulation is

0.103 — 0.0786
Error(h = 100 x ——— "2 = 23%.
rror(homo) 00 x 0103 3%
0.124 — 0.0786
— _ 0
Error(hetero) = 100 x 0134 37%,

showing that the shot noise must be included for this example for an accurate calculation.
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10.14 Detection probabilities

Consider a constellation that consists of three signal points as shown in figure below with
one point at the origin.

__,_0-"" VEcos¢

(a) (b)

(a) Referring to part (a) of the figure, suppose that the noise is additive with E/Ny = 5
where F is the expected value for the symbol energy.

(1) Determine the optimal thresholds for detection.

Solution

Because the noise is additive, the thresholds are set halfway between the signal points with
the two thresholds given as ©; = —v/E/2 and O, = VE/2.

(i1) Calculate the exact probability of a detection error.

Solution
The probability of a symbol error is given by (10.2.3) and repeated below

= L_lerfc 3B
pe = 77 VIZZ1N,

where the symbol energy E is equal to E} log, L. Substituting L = 3 and E/ Ny = 5 gives

2
Pe = 3erfc( 2(5)) = 3.52x1072

(iii) Calculate the approximate probability of a detection error using the minimum distance.

Solution
The union bound in terms of d,;, is given by (10.2.13) and repeated below

= 2
pe < D erfe —min |
- 2 4Ny

For the three point signal constellation the average number of nearest neighbors 7 is (1 +
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2+1)/3 =4/3, dmin = V'E so that

Pe

A
[SCIR N
@)
=
o
VR
2
OZDj
N~

7.60 x 1072,

A
Wl N
[¢]
=
>
N
==
v
I

which overestimates the probability of a detection error by about a factor of two compared
to the exact expression.

(b) Suppose that the demodulation occurs with a fixed phase error ¢ shown in part (b)
of the figure. Repeat part (a) using the same thresholds.

Solution
With a phase error ¢ and the same thresholds, the amplitude of the signal along the x axis

is reduced by v/E cos ¢ as is shown in part (b) of the figure. Therefore, the probability of a
symbol error p, is given by (10.2.3) and repeated here

De = gerfc (\/2(5)cos¢>.

The probability of a detection error using the union bound is

gerfc i
be = 3 N,

A

A
wl
(¢}
=
o
-~
o=
o
o
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10.19 Phase-synchronous demodulation versus direct-photodetection
demodulation in the presence of background noise

This problem compares the probability of a detection error p. of a shot-noise-limited phase-
synchronous homodyne demodulation and photon counting in the presence of background
noise.The background noise is modeled as a constant photogeneration arrival rate u. For
dark current, this term iS 7qak = €ftdark Where pigark 1S @ constant arrival rate and Wy, =
Wdark T 18 the number of background photoelectrons in an interval T" for a constant dark cur-
rent arrival rate figar.
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(a) Using an appropriate wave-optics model for the background noise, derive an expres-
sion for the bit error rate for the phase-synchronous homodyne demodulation of binary
phase-shift keying in the presence of background noise.

Solution

Including a background term generated from the dark current in the photodetector, the ex-
pression for E, /Ny for shot-noise-limited homodyne demodulation given in (8.2.16) is
modified to read

Ep _ 46iL0Wp
No Wark + 2€t.6
Wp

Wdark/WLo + 1/2

where Wy is the mean number of photocounts photons in a bit, Wy, is the number of noise
counts, and W, = 4ei,, is the mean number of photocounts generated from the local oscil-
lator. This expression shows that the background noise term generated from dark current
in the photodetector is reduced by the mixing gain.

(b) Compare this expression to the bit error rate for photon counting in the presence of
a background noise term Wy given in (9.5.40) when Wy = 2W, and Wy = W

Solution
For photon counting with a background term, the optimal threshold is given in (9.5.38) and
repeated here for Wy = 2W, and Wy = Wy

o — 2Wp — Wegark
log, 2Wp — log, Wear |

The probability of a detection error is given in (9.5.40), which is repeated here for an
equiprobable prior

1 11
Pe = 5 - 5 Z — ((Wdark)meiwdark - 2(Wb)m€72Wb) .

For this case, the effect of the background term is not scaled by the mixing gain (cf. Figure
9.15).

(c) Which modulation format is more robust to the presence of background noise?
Solution

Because of the mixing gain, phase synchronous detection is more tolerant of background
noise generated from dark current in the photodetector compared to direct photodetection.

119



10.21 Nearest neighbors for quadrature amplitude modulation

The interior points, the exterior points, and the corner points of a square quadrature am-
plitude modulation constellation have a different numbers of nearest neighbors. Account-
ing for these differences, show that the mean number of nearest neighbors 7 for QAM is

4(1—1/\/5).

Solution
The four corner points have two nearest neighbors. Excluding the four corner points, the

four “edges” of length (/L —2) have three two nearest neighbors. The remaining (v/L—2)?
interior point have four nearest neighbors so that

(42) +4(VL - 2)(3) + (VL - 2)*(4))
(243VL—6+L—4VL+4)
(1—1/\/5).

n =

e
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Chapter 11 Selected Solutions

11.1 Minimum distance for coherent and noncoherent carriers

(a) On a sketch or copy of Figure 11.14b, draw a line indicating the maximum amplitude
for a space using a noncoherent carrier.

(b) Repeat for the maximum amplitude for a space using a coherent carrier.

(c) Repeat for the minimum amplitude for a mark using a coherent carrier.

(d) Repeat for the minimum amplitude for a mark using a noncoherent carrier. (This is the
same value as for part (c).

(e) Using these values, determine which system has the largest minimum distance.

Solution
The heavy line shown in the figure is for noncoherent.

(1) d_. noncoherent (a) Max space noncoherent
2) dmfn coherent (b) Max space coherent
mn (c) Min mark noncoherent
(d) Min mark coherent

() &(d)

Amplitude

Time
For this specific case, dy;, for the noncoherent case is larger than dp;, for the coherent
case. For other patterns of pulses, this may not be true.

11.3 Uncompensated intersymbol interference for intensity modulation

For simple on-off keyed intensity modulation, the effect of intersymbol interference is to
reduce the minimum sample value for a mark and increase the maximum sample value for
a space thereby reducing the minimum separation dey. compared to the minimum distance
dmin in the absence of interference.

(a) The minimum high sample s} without noise occurs for an isolated mark because the
neighboring spaces do not add to the value. Show that this worst-case value is

s] = s1—€As,
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where dig = As = s1 — sg is the minimum distance in the absence of intersymbol inter-

ference, and
1 [T
= 1-= t)dt
€ 5 /0 s(t)

is the proportion e of the sample value for a mark that is lost because the pulse has spread
to other symbol intervals, where S = [ _OOOO s(t)dt is the total signal in one pulse.

Solution
For a mark surrounded by spaces the worst case value s/ is reduced by the proportion € of
the pulse that is lost to other signaling intervals as given above.

(b) Show that the maximum value s, for a space is

sy = So+€As.

Solution
The same line of reasoning holds for a space. In the worst case, the proportion of the pulse
€ that is lost is added to the space as given above.

(c) Show that the minimum separation dey. = s} — s, in the presence of intersymbol inter-
ference is

deye = d10(1—26).

Solution
Subtracting the two expressions gives the separation dy. between the two worst-case values
as

_ / ’
deye = 81— 95

= 51 —€As—59—€As

= d10(1 - 26).
(d) Using dy¢p = 2, compare the minimum separation for intensity modulation to the min-
imum separation for binary phase-shift keying dyi, = 2 Zﬁék |sk—jq;| given in (11.1.6).

Comment on the result. In what way is the interference similar? In what way is the inter-
ference different?

Solution
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Using d1g = 2, the expression for intensity modulation is dpmin = 2(1 — 2¢) which shows
thattheterm } ., |sk—;q;| for BPSK is replaced by the term (1 —2¢) for intensity modula-
tion. These expressions are similar because an isolated amplitude value of 41 surrounding
by neighboring symbols of —1 has the same form as a mark value of two surrounded by
neighboring space symbols of value zero. However, the expressions are not directly com-
parable because the values of BPSK are s € {—1,1} whereas for intensity modulation,
s € {0,2}. This means that neighboring BPSK symbols may add or subtract to any given
symbol

11.6 Worst-case intersymbol interference

Consider the illustration shown below
r r0+x r-X r

0

Threshold

for which the probability density functions for a mark and a space can be resolved into
four separate probability density functions. Each of the four probability density functions
is a gaussian distribution with the same variance 0. The probability density functions with
means 71 and rg represent symbols of the sequence that are not affected by intersymbol
interference. The two other probability density functions with means r — x and ¢ + « rep-
resent symbols of the sequence that have significant intersymbol interference. The threshold
is setat (r; +ro)/2.

(a) Determine the relationship between x and the intersymbol interference parameter € de-
fined in Problem 3.

Solution
The expressions for the mean values including the effect of ISI were derived for the solution
to Problem 3 and are

o= ri—eAr
ro + € Ar,

/
To
where Ar = ry — rg, and x = e Ar.

(b) Determine the conditional error probability p;|q using only the probability density func-
tion for a mark with an expected value r; and the probability density function for a space
with an expected value of g +x. Repeat for the conditional probability pg|; using ro and ry.
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Solution
The expression for py|g is

1 o 2 2
~ —(y—ro)*/2054

~ [ 5
P1jo Tﬂao /@ Y

where v — r¢ + x because a shifted space distribution is used with the same threshold
© = (r1 + 19)/2. Then substitute r’ = %, dr’ = dr/o and change the lower limit

to dr’ = 67(7;0+:v) = (T1+TO)C/,27T°7$ = Q — x /0. Therefore

Pijo ~ serfe(Q — 2/V20).

The probability pg|; is Serfc(Q/v/2) because the mean value for the mark distribution has
not changed. Therefore, the total probability of error for an equiprobable prior is

Pe = ierfC(Q —x/V20) + ierfc(Q/\/ﬁ).

(c) Repeat part (b) using the probability density function for a mark with an expected value
of 1 — x and the probability density function for a space with an expected value of 7.

Solution
Using symmetry arguments, the expression for pg|; for the shifted mark distribution is the
same as part (b).

(d) Using the two conditional probability density functions from part (b) and the two con-
ditional probability density functions from part (c), determine the probability of a detection
error p, when the priors are equal.

Solution

There are two mark distributions and two space distributions and thus there are four dis-
tributions in total. We have calculated three of them. The fourth is symmetric about the
threshold with a mean mark value of r; — x and a mean space value of ry + x so that the
error from this term is 1erfc(Q — 22/v/20). The total probability p,. of an error is

pe = jerfe(Q/V2) + ferfe(Q —z/v20).

(e) Let Ar = r; — rg = 10 and o = 1. Find the total probability of a detection error when
x = 1 and determine the relative contribution from each of the four error terms—two from
part (b) and two from part (¢). Which term has the largest contribution? Why?

Solution
Using the values @ = 5, and @ — z/0 = 4 . The probability of an error for the first
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term is 0.25erfc(5/v/2) = 1.43 x 10~ 7. The probability of an error for the second term is
0.25erfc(4/+/2) = 1.59 x 107°. This results show that part of composite distribution that
is “closest” dominate the total error calculation (>99% for this case).

(f) Using the results of part (¢) and (a), compare this result with the probability of a detection
error derived using (11.9.2) and thus comment on the conditions for which the minimum
separation dcy. can be used to accurately determine the effect of the intersymbol interfer-
ence.

Solution

Using the given values and the expression from part (a), the ISI parameter € = z/Ar =
1/10. Therefore, p. = %erfc(Q(1—2¢)/v/2) = Lerfc(4/v/2) = 3.17 x 10~°. Comparing
this value to the “exact” expression from part (¢), shows that using € to estimate the error
overestimates the error by about a factor of two for the parameters used in this problem.
This overestimate is because € is based on a worst-case pattern of a mark surrounded by
spaces and a space surrounding by marks.

11.7 Effect of group-velocity dispersion and laser linewidth on the
intersymbol interference

A system transmits R bits/second over a span of L km. A mark is represented by a gaus-
sian pulse with a root-mean-squared timewidth 7,,s. The modulated lightwave pulse has
a root-mean-squared spectral width 0. The intensity modulator has an extinction ratio
ex = Eo/Eq (cf. (7.5.6)). The expected number of photons per bit is Ep. There are no other
noise sources. Derive an expression for p. in terms of Ey, e,,, and the intersymbol interfer-
ence parameter € defined in Problem 3.

Solution
In order to determine the ISI power penalty, we need an expression for Eq in terms of Ey,.

2E,
E1 = 1+ o (3021)
2Eb6T
B, = —. 30
0 TTe. (30b)

The expression for the intersymbol interference parameter e defined in Problem 3 is

€ = ]_ — l /1/2R eit2/2Tnzns
S —1/2R
= erfe(RTms/2V?2).
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The value of Ey in the presence of IST is E, = E4 — €Ey and Eq, = Eg + €Ey so that

2

Eig = Eb<1+6 _6> (31a)
2e,

Bog = Bl o T¢) (31b)

where (30) has been used. Using the gaussian approximation given in (9.6.10), the proba-
bility p. of a detection error when only signal-dependence noise is considered is

pe = VEusi —VEosi,

where the terms E4, and Eg, are expressed in terms of Ey, e;, and € in (31).

18I

11.8 Minimum distance for coherent and noncoherent carriers

Referring to Figure 11.14, let v, (t) = e~ /2T
(a) Assuming that only the adjacent symbols contribute to the interference, determine the
minimum electrical amplitude of an isolated mark surrounded by spaces using the follow-

ing methods:

(i) Adding the amplitude of pulses and then squaring the resulting amplitude of the se-
quence of pulses. This method is appropriate for a coherent carrier.

(i1) Squaring the amplitude of each isolated pulse and then adding the sequence of squared
pulses.This method is appropriate for a noncoherent carrier.

(b) Repeat part (a) for an isolated space is surrounded by marks.

Solution

For the isolated mark, the value for coherent and noncoherent is the same and is equal to
one. For an isolated space for coherent detection we sum and then square two shifted marks
and then evaluate at ¢t =0

r(0) = (e—(t+T>2/2TFms+e—(t—T>2/2Tfm)2‘ _ 4 TTA
t=0

For a noncoherent system we square and then add so that

267T2/T2

rms

r(0) = <67<t+T>2/2T,?m)2+((f(th)Z/zTr?ns)2

t=0

(c) Using the results of the previous two parts, derive an expression for the minimum sep-
aration dey. for both a coherent carrier and a noncoherent carrier. Comment on the result
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with respect to Figure 11.14.

Solution
For the coherent carrier, we have

T2 T2
deye = 1—4e /Tons,
For the noncoherent carrier we have

doye = 1—2¢ 7 /T,

For this specific example the minimum separation is smaller for the coherent carrier be-
cause the interference from the adjacent symbol intervals adds constructively.

(d) Form the difference between the minimum separation derived using a coherent car-
rier and the minimum separation derived using a noncoherent carrier. Plot this difference
over the range of 7'/8 < Tins < 77'/8. Comment on the result.

Solution
The difference between the separations is 2e=T*/Tas. A plotovertherange 1/8 < T'/Tiys <
7/8 is shown below
2.0
1.8
1.6
g
E 1.4
£
1.2
1.0
0.2 0.3 0.4 0.5 0.6 0.7 0.8
v,

The difference decreases as the symbol interval 7" becomes large with respect to the pulse
width T because there is less interference between the pulses.

(e) Describe how you could estimate the minimum separation d.y. for a partially coher-
ent carrier. What additional information is needed?

Solution
The degree of coherence of the source is required to estimate the minimum separation.
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11.9 Shot Noise Error
2

Using Campbell’s theorem, determine the contribution o, ,(kT') to the variance of the sam-
ple caused by the shot noise for the kth symbol interval. Note that when shot noise is present
in an intensity-modulated waveform, the time-varying mean r(t) used to evaluate the shot
noise is given by

oo

r(t) = do+(s) > p(t—jT),

j=—o0

where (s) is the expected value of a stationary datastream of intensity-modulated symbols,
p(t) is the received pulse, and i is a constant characterizing a background term.

Solution
Substituting the expression for the time-varying mean into the expression for the variance
given in Campbell’s theorem (cf. (6.7.18b)), the variance is

T (KT) = /Z 7?(kTit)fz(t)dt’t:w
— /_0; (io + (s) 'zij:wp(t _jT))fQ(t)dt‘t:kT’

where f(t) is the impulse response of the detection filter.
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Chapter 12 Selected Solutions

12.1 Second-order phase-locked loops

A loop filter used in a second-order phase-locked loop has the transfer function

a

H.(f) = tions

where a is a constant. The phase-locked loop response under a linear approximation is
described by

Z(f) = CiH.(f)(®(f) - 3()))

where ®(f) is the Fourier transform of the phase and ®(f) is the Fourier transform of the
output of the controlled oscillator.

(a) Starting with (12.2.12), and using the properties of the Fourier transform, show that
&

o(f) = Z(f).
(N = G20
Solution
Taking the Fourier transform of (12.2.12), which is repeated here
do(t
WO~ Galr),

and solving for Z(f) gives
2(f) = CuH.(f)(2(f) - 2(f)) (32)

(b) Define H(f) = ®(f)/®(f) as the ratio of the phase estimate ®(f) to the input phase
®(f). Show that H(f) can be written in the form

20¢(f/fn) +1
_(f/va)2+2iC(f/fn)+1.

Express the natural frequency f, and the damping parameter ¢ in terms of the parameters
a, C1, and Cy.

H(f) (33)

Solution
Let A = Cy/i2nf and B = C1(1 + a/i27f). Then substituting Z( f) into (32) gives

®(f) = AB(®(f) - 2(f)).
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Solving for the ratio H(f) = ®(f)/®(f) gives

~—

by
o(f)y  AB+1
. C105 (a + 227Tf)
n —4m2f2 4 C1C3(a + 227Tf)

2irf/a+1
—472f2/aC1Co + 2inf Ja + 1

Equating terms with (33) gives f,, = v/aC1C3 and ¢ = v/aC,Cs/2a.

(c) The error transfer function H, (f) is defined as the difference between the ideal transfer
function H(f) = 1 and the actual transfer function H,(f) so that H.(f) = 1 — H,(f).
Derive H.(f) and show, in the absence of noise, that ¢ = ¢ in steady state.

Solution
The error transfer function H, (f) is
He(f) = 1-H.(f) =

a
2 f

The corresponding impulse response for the loop error is a simply a derivative and goes to
zero in the steady state.

12.2 Nonlinear analysis of a phase-locked loop (requires numerics)

A phase-locked loop that is not well-locked does not satisfy sin 8, ~ .. The loop response
is nonlinear, and the phase-noise probability density function is no longer gaussian. For a
first-order phase-locked loop, the phase-noise probability density function is?

e cos 6.

- 2nlg(c)’

f(0e)

where o = 1/03 and Iy(z) is the modified Bessel function of the first kind and order zero.
Suppose that this probability density function is approximated by a zero-mean gaussian
distribution f (6. ) characterized by a root-mean-squared phase error oy, expressed in terms
of degrees. Determine oy, such that the squared error

\// |fexact(ee) - fgauss(96)|2 deev (34)

2See Tikhonov, V. L., Phase-lock automatic frequency control application in the presence of noise, Automatika
i Telemekhanika, 21(3):209-14, 1960.
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is less than five percent. Determine the approximate range of the validity of using a gaus-

sian distribution for the probability density function of the phase noise.

Solution

A plot of (34) along with a gaussian approximation is shown in the figure below for root-
mean squared phase errors of 5°, 10°, and 20°.

Log,, Probability Distribution

Phase (rads)

The relative error using (34) is shown below

Relative Error

The relative error is less than 5% for a root-mean squared error of 37°.

37°

10 20 30 40
Root-Mean Square Phase Error (degrees)
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12.7 Comparing polarization demodulation to I/Q demodulation

Suppose that the estimated polarization basis is misaligned so that the block sample value
r after the misalignment is related to the block input s at the transmitter by

r = Ts,

where T is the polarization transformation given in (2.3.59) with x = 0 so that the mis-
alignment is described by only the angle £&. Compare the functional form of this kind of
misalignment to the effect of a constant phase error 6. in the estimate in the /-Q) axes for
the demodulation of the two quadrature signal components.

Solution
The general lossless polarization transformation R(&, x) is given by (2.3.59), which is re-
peated below

a b
R(§7X) - [J17J2} - |: —b* q* :l .
where a = cosécosy — isinésiny, and b = —sinécosx + icosésiny. For x = 0,
a =cosé and b = — sin € so that

R(E, x = 0) [ cosé —siné } ‘

sin{ cos¢

This matrix is identical to the matrix used for an I-@Q) rotation given in (12.2.7). When
x # 0, this correspondance is not valid because the (lossless) polarization misalignment
must then be described on the surface of the Poincaré sphere and not on a circle (or the
equator of the Poincaré sphere).

12.12 Polarization control

Let the received lightwave with bit energy E, be linearly polarized along a direction defined
by the unit vector p.. Let the local oscillator be linearly polarized along a direction defined
by the unit vector py,. Let the loc and py, be the unit vectors for a linearly-polarized carrier
and the local oscillator, respectively.

(a) Derive an expression for the demodulated bit energy E; () in terms of the angle 6 be-
tween pe and Pio-

Solution
The energy is

Ey0) = / m(£)Pe - Proldt
T

= Epcos?6.
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(b) Suppose that a polarization estimator can track the angle so that the probability density
function of @ after estimation is a zero-mean gaussian with a variance o3. Determine the
maximum variance allowed for the estimator to limit the power penalty in the received sig-
nal to <1 dB for 99% of the cases.

Solution

The solution requires the probability density function of cos? § where 6 is a zero-mean gaus-
sian random variable. For small errors, an estimate of the probability density function can
be obtained by expanding cos? § in a power series so that

cos?f ~ 1 —Qz.

Using 1 dB = 0.794, to have a 1 dB power penalty greater than 99

1/5
/ Pz (0%)d6* > 0.99,
0

where the upper limit of 1/5 ~ 1 — 0.794 is the value of §2 that produces a power penalty
of 1 dB. When 6 is a zero-mean real gaussian random variable, 62 is a central chi-square
random variable with one degree of freedom. The probability density function is given by
(2.2.37) and is repeated here

f(Z) — 1 2_1/26_2/202,

V2mo?

where z = 62 and o is the variance of the zero-mean gaussian. Evaluating the integral
0.2 4
y——
0o V2mo?

gives erf(1/4/100). Setting this term equal to 0.99, the maximum variance in the estimator
is given as 0 = 0.173. This variance will depend on the signal-to-noise ratio over the time
interval used for the estimation.

71/2efz/202dz
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Chapter 13 Selected Solutions

13.4. Relationship between euclidean distance and Hamming distance

(a) Show that for codebit energy E. equal to 1, the relationship between the minimum
Hamming distance dpj, and the minimum euclidean distance dy,;, for binary phase-shift
keying is given by

dmin = 2dmin .

Solution

For BPSK, each codebit in the codeword is mapped to one of two antipodal values ++/F..
For E. equal to 1, this is the bipolar alphabet {—1, 1}. For each component at which the two
codewords differ, the corresponding components of the BPSK signal are separated by the
single-letter euclidean distance 2v/E, = 2. Multiplying the minimum Hamming distance
dmin by the single-letter euclidean distance 2 gives the minimum euclidean distance dy;, for
the codeword as

dmin = Qdmin-

2

(b) The expression relating the squared euclidean distance d;,

dmin 18 given by (13.2.20). For E. equal to one it is

and the Hamming distance

d121'1in == 4dmin.

The left side of the second equation is the square of the left side of the first equation How-
ever, the right side of the second equation is not the square of the right side of the first
equation. Why?

Solution

The Hamming distance describes the difference between codewords in terms of the num-
ber of components that are different. This metric is not defined in terms of the euclidean
distance or to the euclidean distance squared, which is related to the energy in each symbol.
Therefore, the same Hamming distance scales both the single-letter euclidean distance and
the single-letter euclidean distance squared. For this reason, the right side of the second
equation is not the square of the right side of the first equation

13.6 Coding gain for a repetition code

(a) Determine the probability of a block error p. for an uncoded sequence of three bits each
with an energy Ej, and independent bit error p.
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Solution
The probability of a correct detection event is repeated here

pe(uncoded) = (1 — p(uncoded))™.
For BPSK, p(uncoded) = Lerfc\/E,/Ny and n = 3 so that

pe(uncoded) = (1—%erfc\/Eb/No)3.

(b) Determine the probability of a block error p, for hard-decision decoding using a (3, 1, 3)
repetition code.

Solution

The (3, 1, 3) repetition code can correct one error so that t = 1. Therefore, probability of a
correct detection event is

pe(coded)

ez:;) (Z) p(coded)’ (1 — p(coded))™ "
= (1 — p(coded))® + 3p(coded) (1 — p(coded))?,

where (g) = 1 and (?) = 3 have been used and p(coded) = ierfc\/E;/3Ny with

E. = RE, = E,/3.

(c) Determine the value of E} /N, for which the probability of a block error for an un-
coded block is equal the probability of a block error for a coded block.

Solution
A plot of p.(coded) — p.(uncoded) is shown below.
0.0010
5
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The two methods produce the same probability when Ej, /Ny is about 3.7.

(d) For values of Ej/Ny larger than the value determined in part (c), is there a coding
gain? Explain.

Solution

For values of Ej,/ Ny greater than 3.7, the difference p.(coded) — p.(uncoded) is negative
meaning that the probability of a correct detection event using the repetition code is less
than the probability not using a code. This is a negative coding gain.

(e) Show that the hard-decision coding gain of any (n, 1,7n) code is negative for a large
value of Ej,/Ny. Explain why.

Solution
For large values of Ej,/ Ny, the probability of a block error for an uncoded block can be
approximated by (cf. (13.2.15b))

pe(uncoded) ~ np(uncoded).

Using p(uncoded) = lerfc\/E,/Ny and the approximation erfe(z) ~ e~ for large x
gives

pe(uncoded) =~ ge—Eb/No .
For a coded block, p. can be approximated by (13.2.19), which is repeated here
pe(coded) = %e*(Eb/No)Rcdmm/z’

where ny 1 = (tfl) is the number of error patterns with t+ 1 errors. For (n, 1, n) repetition
with code rate R, = 1/n and dmj, = n the expression reads

Ni41 e~ Ev/2No

Pe = 5

Because e~ 0/2No > ¢~ Fo/No and n;, g > n for n > 3, p.(uncoded) > p.(uncoded) for
any (n,1,n) code.
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13.8 Pareto random variable

(a) Show that if y is a random variable with an exponential probability density function
given by

{ Xe ™y >0

fy(y) = 0 y<0 9

then the random variable x = ¥ has a Pareto probability density function given by

—(A+1)
(@) { AT r>1

0 <1

Solution
The transformation z = e¥ must preserve probabilities on intervals so that f,(x)dz =
fy(y)dy. Using this expression, the transformed distribution is given by (see Problem 2.15)

dy

L@ = 5,(T7'@) |3

)

where T is equal to an exponential function so that 7~!(z) = logz for z > 1 and 0
otherwise. Given logz = y, |dy/dz| = 2~!. Substituting 7~ !(z) = logz and |dy/dz| =
2~ ! into the previous equation gives

fele) = g, (17 ) |

Ae—)\logzx—l T Z 1

Az~ (A x> 1.

(b) Derive the mean and the variance of the Pareto probability density function.

Solution
The mean is

/Oox/\x*(wrl)dx = Ael ™ Oo.
1

The upper limit is equal to zero when ) is greater than one. Otherwise it is undefined or is
infinite. Therefore the mean is

(felz)) = 1 for A > 1.
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The mean-square value is

Ap2=A o0
2—-Xl1

o0
/ 22 x~ Ay
1

The upper limit is equal to zero when A is greater than two. Otherwise it is undefined or is
infinite. Therefore the mean square value is

(fi(z)) = P for A > 2.

The variance is

o? = <f§($)>—<f£(37)>2

S
A—2 (A-1)p2

A
= —()\—2)()\—1)2 for A > 2.

13.13 The cutoff rate and capacity for phase-shift keying

Using the large-signal approximation for the capacity of the phase-shift-keyed information
channel given in (14.3.15), repeated here as

C ~ Lllog(dnE/eNy), 35)

and the large-argument expansion for the modified Bessel function Iy(z) of the first kind
of order zero, which is given by

do the following.

(a) Show that, for the same value of E /Ny, the offset in the rate between the curve for
the capacity and the curve for the cutoff rate shown in Figure 13.9 approaches the constant
value  log,(4/e) ~ 0.28.

Solution
The cutoff rate for phase shift keying is given in (13.4.7) and repeated here

Ry = —log(e E/2NoIo(E/2Ny)).
Substituting the approximation for I(z) given in the problem gives

Ry =~ —log(nE/No)™* = llog(rE/Ny). (36)
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The difference between the capacity C and the cutoff rate Ry in bits is then

C—Ry ~ 3log,(4mE/eNy) — %log,(mE/No)

o (i)

1
2
1
2
1
2
(b) Show that for the same rate, the offset in £/ Ny between the curve for capacity and the
curve for the cutoff rate approaches the constant value 4/e ~ 1.68 dB.

Solution

Examining the expression for the capacity C given in (35) and the expression for the cutoff
rate Ry for a large value of E// Ny given in (36), the argument of the logarithm function for
the capacity C is a factor of 4 /¢ larger compared to the argument of the logarithm function
for the cutoff rate Ry. Therefore, for large values of E/ Ny and the same information rate,
this leads to an offset in /Ny that is approximately 4/e ~ 1.68 dB between C and Rj.
This offset is shown in Figure 13.10.
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Chapter 14 Selected Solutions

14.3 Discrete capacity using an exponential probability density function
The large-signal limit for the capacity of a Poisson channel can be approximated as
C = H(n-H(s)
1logE
1c,.
This limit can be derived using a central chi-square probability density function with one
degree of freedom. Show that when this probability density function is replaced by an ex-

ponential function for p(s), the resulting capacity is smaller than %CW by the constant term
1(log, 2m — ), where Euler’s constant +y is 0.5772.

Solution
The information rate for an exponential prior with mean E is given by

R = H(r)— H(rls),

where the conditional entropy is based on an exponential prior.

To achieve capacity, the received entropy must be maximized. This requires a Gordon
distribution at the receiver (cf. Section 14.2). For large signal values, the Gordon distribu-
tion can approximated by a continuous exponential distribution (cf. Section 6.3.4) with the
received entropy H (r) given by

H() = 141log = log.(eE) nats.

The conditional entropy is (cf. (14.1.3))

H(ls) = —Y_p(s)>_plrls)logp(rls),

For large signal levels, p(r|s) is well-approximated by a one-dimensional gaussian distribu-
tion with a variance o2 equal to the mean signal value s so that (cf. (14.3.1))

— Y " p(rls)logp(rls) ~ & log(2mes).
r

Substituting this expression into H (r|s) gives

1 o0
H(rls) = % J, e */Elog(2mes)ds,
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where e~%/E JE is the exponentially-distributed prior. Let z = s/E so that dz = ds/E.

Using this change of variable, write log(2mes) = log(2meE) + logx. Substituting these
expressions and using log, gives

1 1 [°
H(rls) = 510g6(27reE)+§/0 e " log, xdx.

The integral evaluates to —y where ~ is the Euler constant. Using this expression, the rate
for an exponential prior is

R = H(r)— H(rls)
= log,(eE) — 3 (log,(¢E) + log,(27) — )
= 3Cw— 5 (log,(2m) — 7).

This expression is slightly different than the one given in the problem statement.
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14.5 Entropy of a Poisson probability mass function

(a) Show that the entropy of the Poisson probability distribution

HE) = = p(k)log, p(k
k=0
e Eke_E Eke_E
- o log ( K )
k=0
can be written as
!
H(E) = E-—Elog,E+ eiEZ - logek nats.

Solution

x Eke—E Eke—E
HE) = _ZTIOge (k')
k

— E
_ —E
= —e E o (loge I + klog E— E>
—E Tk 0 E(k 1)
= E E—Eloge Ee E

H,_/%,_/

ek

Z E* loge k!

ek
E* log, k!
= E(1-1log,(E e E Z oge nats

where units of nats are convenient because the probability distribution is defined in terms
of exponentials.

(b) Using this expression, derive an approximation for the entropy of a Poisson probability
mass function for E much smaller than one.

Solution
For E much smaller than one, the first term in H (E) dominates with

HE) ~ E(1-1log.E),

which is (14.2.8a). A further approximation may be obtained by neglecting one compared
to — log, E leading to H (E) ~ —Elog, E, which is (14.2.8b).
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14.9 Binary capacity in a small-signal regime

Consider the binary detection of a lightwave signal in a small-signal regime for which the
expected number of photons E, is much smaller than one.

(a) Derive the optimal threshold © in terms of E, and the prior probability p; .

Solution

The system has a mean number of signal photons Ey = Ey/p; for a mark. This signal is
added to a background noise term N for a space. When there is no additive nise, this is a Z
channel. For this case, the threshold © is equal to zero.

(b) Derive the terms required to form the mutual information as a function E, and the prior
probability p;.

Solution
For a Z-channel with the threshold O set to zero, the four condition probabilities required
to evaluate the mutual information are

pop = e B/m
pip = 1—pop
poo = 1
pio = 0

(c) Determine the capacity for E, = 1. (Requires numerical root finding.)

Solution
The mutual information for a binary channel is given in (14.2.14). Substituting the expres-
sions for the conditional probabilities gives

I(Ep,p1) = —p (1 - €Eb/p1) log p1

- (1 - pl(eE"/’“)) log (1 —p1(6E"/”1))
+p16Eb/p1 lOg eEb/Pl
This expression is plotted in Figure 14.6 as a function of p; for several values of E,. When

E, = 1, the mutual information is maximized when p; = 0.41, and gives the capacity as
C = 0.44 bits.
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(d) Expand the expression for the mutual information in a power series in E, keeping
only the first term.

Solution
Using the power series expansions e~ % &~ 1 — x and log(1l — z) &~ —x gives

E
I(Ey,p1) =~ B (—p: +Ep — 10gP1> . (37)

(e) Using the term from part (d), determine the value of p; that maximizes the mutual in-
formation for a given value of Ey,.

Solution
Taking the derivative of the appropriate form of the mutual information I (Ey, p1) derived
in part (d) with respect to p; and setting the resulting expression equal to zero gives

E,2 E
LQ_J _—
P P1

This equation has a solution when p; = Ej,.

(f) For the optimal prior probability determined in part (¢) and E, much smaller than one,
show that the expression for the mutual information reduces to

—Ep log, Ep bits,
which is the small-signal limit of the entropy of a Poisson probability distribution.

Solution
Substituting p; = Ey into (37) gives the channel capacity as

C ~ Eb(Eb— 1) - EblogEb.
For E, < 1, the second term is the most significant term so that
C ~ —Eplog,Ey, bits,

which is the small-signal limit of the entropy of a Poisson probability distribution (cf.
(14.2.17)).

14.11 Water filling and the capacity of multi-input multi-output channel

Consider a multi-input multi-output additive gaussian noise channel that supports three sub-
channels. The effective noise energy N = Ny /& for each of these subchannels is shown
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in the figure below where & is the kth eigenvalue of the matrix HIH' with H being the
channel matrix.

(a) Suppose that the total energy E available for transmission satisfies £ > 22:1 Ny
where IV, is the effective noise power density spectrum in each subchannel. Graphically
solve for the optimal energy allocation per subchannel using water filling and determine the
optimal value of the energy E}, for each subchannel in terms of E and Nj.

Solution

The graphical solution is shown on the left side of the figure below with the total energy £
available for transmission set to a value a convenient value of 15 in the same units as that
for the noise energy.

E=3

E=3 E=4

E=3 E=4

E=3 E=4

E=2 E=2
E=1 | N=3 E=1 | N=3 | N=3
N|=2 N1—2
N2:1 N2:1

(b) Determine the capacity Cy, of each subchannel.

Solution
The capacity for each subchannel is given by (cf. (14.4.1))

£y,
=1 14+ =
Cy. og( +Nk)

Starting with the subchannel that has the most signal gives
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Cy =log (1+ %) =28bits
Cy = log (1 + 3) = 1.81 bits
Cs = log (14 3) = 1.22 bits

(c) Determine the overall capacity.

Solution
The total capacity C is just the sum of the capacities for each subchannel withC = C4 + C; + C3 =
5.84 bits.

(d) Now suppose that there is a fourth subchannel with an effective noise Ny4. Determine the
capacity for this system. Compare this result to the result for the three-subchannel system
using the same total energy.

Solution

Water-filling the four subchannels, which is shown on the right side of the figure, the ca-
pacity for each subchannel is

Cy =log (1+ 2)=2.58bits

Cy =log (1+ 5) =1.58 bits

Cs =log(1+1)=1bit

Cs=log(1+1)=1hbit

with the total capacity equal to by C = C4 4 C; 4+ C3 + C4 = 6.17 bits. This result shows
that even when an additional subchannel is noisy, it is better to allocate some energy to that
subchannel rather than to ignore the noisy subchannel.

14.12 Maximum information rate in terms of the arrival rate

The expression for the maximum information rate of an ideal photon-optics channel is given
by (cf. (14.4.27))

2

c = maxy;___ o>
f log, 8

and is expressed in terms of the frequency fi.x of a photon with average energy E. In this
problem, an equivalent expression is derived expressing the capacity in terms of the signal
power P by relating the arrival rate of signal photons fy,.« to the signal power Ps.

(a) Integrate the power density spectrum

s = 1t ().

over an infinite bandwidth to derive an expression that relates the total signal power P; to
the energy E. The definite integral [ x/(e” + 1)dz = 7% /6 will be useful.
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Solution
Letx = hf/FE sothat hf = Fx and df = (E/h)dx. Making these substitutions into the
expression for S(f), the total signal power P; is

E?2 [
P, = — L s
h 0 61—"-1
T2 E2
6h

(b) Use the expression derived in part (a) to show that fi,., = FE/hisequalto \/6Ps/(mw2h).

Solution
Rearrange the expression for P derived in part (a) to give

E? 6P

h2 T m2h

Using E/h = fmax and taking the square-root of each side gives

E | 6.Ps
E - fmax — 7T2h.

(c) Substitute the expression derived in part (b) into the expression for the bandlimited
capacity to show that

2P .
- T bits per second,
log. 2V 3h

which is (14.4.30).

Solution
Using the expression for the bandlimited capacity and substituting finax = 1/6Ps/m2h gives

c - 6P, =2
V 72h log, 8
s 2P,

= @ m bits per second,

where log, 8 = 3log, 2 has been used. This expression is (14.4.30).
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14.14 Bandlimited capacity

The bandlimited capacity for a wave-optics channel can be written in terms of a scaled
wave-optics information rate Ry, = RE; /Ny

C = Blog,(1+Ry/B).

(a) Using a small-signal expansion of this expression, show that when B is much smaller
than R,, the bandlimited capacity scales linearly in B.

Solution
When B is much smaller than R,,, the term Ry, /B is much greater than one. Therefore, the
value of one inside the argument of the logarithm function can be ignored. This gives

¢ ~ Blog,(Ru/B)

Blog, Ry — Blog, B.

Q

Q

When B is much smaller than R,,, the first term dominates and the capacity is nearly linear
in the bandwidth B for B < R,, as is shown in the figure below with R,, = 100.

140 100/Log, 2
120 /
2
9 100 Capacity saturates
& for B>>R
S w
E 80
£
3 60 )
S Capacity scales
«a 40 with bandwidth
/ forB<<R,
20
0
0 200 400 600 800 1000

Bandwidth in Units of R |

(b) Using a large-signal expansion of this expression, show that when B is much larger
than Ry, the bandlimited capacity saturates to a value given by R,/ log, 2.

Solution
Using the small argument expansion of a log function

log(l+z) =~ x,

148



with z = Ry,/B and a base two for the logarithm gives
Blog(l1+ Ry/B) = Ry/ log, 2.

This limiting value is also shown in the figure.

14.15 Photon-optics spectral rate efficiency

The spectral rate efficiency of a photon-optics channel including additive noise satisfies the
following inequality (cf. (14.2.6) and (14.5.1))

’I’Eb 1 1
< 1 14+ —— Ep + Np)1 1+ —— | —Ngl 1+—.
r < og2<+1+N0)+(r b+ 0)0g2<+rEb+No> oog2<+NO)
(a) Expand the right side of this expression in a power series in 7E, up to the linear term.

Solution
Using log, and expanding the right side in a power series in rEy, gives

1 1 1
(M)_HM)+IOge <1+NO>>’FEb

(b) Set the expression derived in part (a) equal to r and solve for Ey, in terms of Ng. This
expression can be used to determine (Ep )i, when r equals zero.

Solution
Setting the expression derived in part (a) equal to 7 gives

SR <1 + 1) -
No 1+ No Ee No N (Eb)min.

This expression is the minimum value for (Ep)mi, given a value for No.

(c) Set Np = 1 in the expression derived in part (b) and show that (Ep)min is equal to
log, 2/(1/2+log, 2). This expression is a factor of (1/2+log, 2) smaller than (Ejp/ No )min =
log, 2 for a wave-optics channel for the same rate expressed in bits.

Solution
Substituting Ny = 1 in the expression derived in part (b) and scaling the result by log, 2 to
convert from nats to bits gives

log, 2

E min T a1 o
() 1/2 + log, 2
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This expression is a factor of (1/2 + log, 2) smaller than (Ep/No)min = log, 2 for a wave-
optics channel.

(d) Show that when Ny is much smaller than one, (Ep)min goes as Ny.

Solution
Solving for (Ep)min for the expression derived in part (b) gives

No(l + No)

Ep)mi .
(Ebmin 1+ Nglog(1 + 1/Ng) 4 No? log(1 + 1/No)

The first term of the power series expansion of this expression is Ng. This means that for
small Ny, the minimum mean number of photons (Ep)mi, required for reliable communica-
tion is linear in Ng.
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Chapter 15 Selected Solutions

15.2 Coherent states as a basis

Prove (15.3.37) by writing v in polar coordinates and performing the resulting integrations
using [ re” "t mdr = LT[(n + m + 2)/2] where T'(k) = [°a* e *dx is the
gamma function. Note that I'(j + 1) = j! where j is an integer.?

Solution
The closure property given in (15.3.37) is

~ 1
7 - 7/ ) (@] dav.
™ (a3
To proof this statement, write the Glauber number in polar coordinates as o = ae'? and

da = rdrd¢ where « is the magnitude of o and ¢ is the phase. Using (15.3.34), the
coherent state |«) in a photon-number state representation can be written as

) = eTlel2Y ji m)..

Similarly,

a2 (@)
(al = e“/nz:;\/m(m.

Substituting these expressions into the integral gives

~ [ 1o talda fZZ ﬁ el am(a*)de

m!n
2, mt o i(m-+n)¢
— T ”rdr/ Mo qe,

The integral on ¢ evaluates to 27, where 6;; is the Kronecker impulse. Setting n equal to
m gives

1 2
f/ ) (o dax Z|m m|—/ et Ay,
™ (0%

a,_/
T

3Note that the problem stated I'(j — 1) = 5! where j is an integer. This is a typo. This shouldread T'(j +1) =
j! where j is an integer.
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Now use the formula given in the problem to write

o0
-/0 e gy = ir(m+1) = iml

Using this expression gives the closure relationship as

1 ~
;/a|a><a|da = L

15.5 Eigenstates and eigenvalues of a quantized harmonic oscillator

The differential equation

a2, (y)
dy?

+(1+2n—y*)daly) = 0
where n is an integer has the solution

duly) = Haly)e ¥/2,

where H,(y) is the nth Hermite polynomial (cf. (3.3.50)). The functions are normalized
so that

[ d)n(y)gbm (y)dy = 2”\/77'71!57,m

with d,,,,, being the Kronecker impulse. Using this solution and the orthogonality relation,
show that the eigenvalues of the quantized harmonic oscillator are given by

1
E = ﬁw<n+2)

which is (15.3.25) with the quantum wave function in the in-phase component representa-
tion given by

1
Un(e) = 4| —— Hy(a;)e /2.

2n/mn!

Solution
Compare the equation given in this problem to the Schrédinger equation for a quantized
harmonic oscillator given in Problem 15.4, which is repeated here as

d?u(a;)
da?

+ (2E/hw — a]) d(a;) = 0.
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Examining the two equations we can associate y with a,. Moreover, we can write

2F
1+2n=—"—
ten hw
or
1
E:hw(n+2).

These eigenvalues are the allowed energies. The eigenfunctions are
up(a;) = KHn(aI)e_‘ﬁ/Q,

where K is a normalization constant. Applying the normalization condition given in the
problem gives

/ un (a;)up(a;)da; = 2"/7n! = K2,

K =/2n/mn!

The normalized eigenfunctions are then given by

or

1

—a2/2
2n/mn! Hnfay)e™™=.

u(a;) =

15.7 Commutation relationships

(a) Prove that [N, @] = —a where N = a'a.
Solution
[N,a] = a'aa—aata
= —(aa' —a'a))a
————
=1 (15.3.8)
= —a.
(b) Prove that [N, a'] = a.
Solution
N,a'] = afaat —ataat
= a'(aa' —a'a)
=1 (15.3.8)

= a.
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15.9 Commutation in an enlarged signal space
Let A and B be two n by n hermitian matrices for which [A, B] # 0.

(a) Prove that the two 2n by 2n matrices

A B d B A

B A| ™ | A B
do commute. This shows that operators that do not commute can be embedded into a larger
signal space, called an ancilla embedding, in which they do commute. This motivates the

definition of an ancilla state.

Solution
Let

A B B A
CcC = {BA] and D = {AB}’

then

A B B A B A A B
[CD] =CD-DC [IB% AHA IB%}_[A ]B%][IB% A]
_ [ AB+BA A*+4+B* | [ BA+AB B?*+A?
- B2+ A2 BA+ AB A2 +B%2 AB+ BA
= 0

showing that a noncommuting tranformation in a smaller signal space can always be embed-
ded in a larger signal space using ancilla states with the embedded transformation commut-
ing in the larger signal space. For this reason, a generalized measurement defined using a
set of noncommuting measurement operators {Y;, } in a smaller signal space, which ignores
how ancilla states may interact with the signal state during the measurement process, can
always be expressed using a set of commuting measurement operators defined in a larger
signal space defined using the ancilla states even when those states have no signal.
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(b) Prove that trace(AB) = trace(BA) (cf. 2.1.84c) even if [A, B] is not equal to zero.

Solution
From the definition of the trace operation we have
trace(AB) = (AB);; + (AB)y, + - + (AB),,,
= anbi +azbar + -+ arnbn
+  a21b12 + abas + - - + agnbpe
+ a'nlbln + an2b2n +-- 4+ annbnn
and

trace(BA) = (BA);; + (BA)y, + -+ (BA),,
= biiai; + bioasy + -+ bipant
+  borai2 + bazags + - - - + bapane

+ bnlaln + bn2a2n +---+ bnnann

Each of these summations contains the same set of terms, which can be seen by transposing
the rows and columns of one of the summations. Therefore, trace(AB) = trace(BA).

15.10 Phase operator
Consider a phase operator ¢i% defined by the two equations
@ = JN+1e9
at = e N+1L

(a) Write the two phase operators ¢i¢ and e~ in terms of @, a', and N.

Solution
Using N = a'a and [a,a'] = 1, the term N + 1 is equal to @a'. Using this expression, the
two phase operators can be formally written as*

v = (N+1)"Y% = (aa) 2
e = G"(N+1)"Y2 = Gf@ah) V2

4For further details see L. Susskind and J. Glogower,”Quantum mechanical phase and time operator”. Physica,
1: 49, 1964.
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(b) Prove that [1\7 ,el9] = —ei®. (Note that the problem statement was missing a negative
sign on the second expression.)

Solution
Compare the expressions for the phase operators to the lowering operator given in (15.3.29)
and repeated below

am = mY2m—1)
and the and raising operator given in (15.3.30) and repeated below
afmy = m+1)"2m+1).

The normalization constants given in these equations can be incorporated by treating e—i®
as a normalized raising operator and e'¢ as a normalized lower operator with

dolm) = |m—1)
—io|m) = |m+1).

Now use the correspondance between ei¢ and @ and e~i¢ and @', and the results of Problem
7 to write

(N,a') = afaal —ataa’ = af (aaf—afa) = af
and
[N,a] = a'aa—aa'a = —(aa'—-afa)a = -—a.

Using these expressions leads to

[N,e—9] = e-id
and

[N,c9] = —ci9.

15.16 Shannon and von Neumann entropies

A two-by-two density matrix is given by

o5 01
P= 1o1 05|
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Compute the Shannon entropy and the von Neumann entropy. Comment.
Solution
When appropriate, the Shannon entropy is simply the entropy of the diagonal elements of
the matrix and is given by
H = Y pulogp, = 05log0.5+05log05 = log,0.5
= 1bit

because the equiprobable prior p = 1/2 achieves the capacity of a binary symmetric chan-
nel.

The von Neumann entropy is the Shannon entropy of the eigenvalues of the density ma-
trix p, which are A\; = 0.4 and Ay = 0.6. Therefore

H

> Anlogh, = 06log0.6+0.4log0.4 = 0.6log, 0.6+ 0.4log,0.4

= 0.971 bits

showing that the von Neumann entropy is less than the Shannon entropy whenever the
matrix is a nondiagonal matrix. Physically, the nondiagonal nature of the density matrix
indicates that the system has quantum uncertainty in the chosen measurement basis used to
express the density matrices.

15.18 Partial trace

The partial trace of the product state p = & ® [i that recovers the density matrix of the
component signal state [ is given by (15.4.9a). Determine an explicit expression for the
partial trace of p that recovers the density matrix of the component signal state 7.

Solution

Let 0 = p, and let i = p. These density matrices are formed using two signal states | A)
and |B). Suppose that one state is an element of a signal space A spanned by one set of
basis states {|a;) } so that

4) = aila;).

Similarly, | B) is an element of a signal space 15 spanned by different set of basis states{|b;) }

|B) = Zbk\bk>~
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Let the density matrix p,p = p4 ® pp of a composite signal state be the outer product of
the two constituent signal states given by

Pap = Zaijbkdaz')(aﬂ@\bk><bé|'
ijke

The partial trace over the basis states of the constituent signal space 5 is given by

tracezpap = Zaijbkd(zi)(aﬂ®trace|bk)<bg|
ikt

> aijbielai){az|{belbr)

ijke

where the trace converts the outer product to an inner product (cf. (2.1.85)). Similarly,
trace,p p = Zaijbkl‘bk><bé| ®trace|ai)<aj| = Zaijbkg|bk><bg|<ai|aj>.
ijke ijke
When expressed using matrices, p, is given by the Kronecker product (cf. (2.1.99))
ajtbir  aitbiz  aizbin aizbiz
[ ai; a1z ] ® [ bi1 b2 } aiibar  aitbay  aizbar  aizba . (38)

a21 a22 bar  bao a21b11  ag1biz  agebin  az2b12
a21ba1  ag1baz  azabar  a22b22

which can be written as
a b1 b2 a bin b2
R R
bir b2 bir b2
21 { ba1  bao } 22 [ b1 ba2 ]

The partial trace trace ,p, 5 over the constituent signal space A is then

. bir bi2 b biz
trace pap = 011 [ b1 boo } T a2 [ ba1 Do }
bi1 b1
- +
(0,11 (122) |: b21 b22 :|

_ bll b12
b21 b22
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where tracep, = 1 has been used. Similarly, trace;p,» over the constituent signal space
Bis

[ bir b2 bi1 b2
a1 trace a2 trace
) . 1 [ b21 b22 12 b21 b22
racepPap =
a9 trace bu bip ao9 trace bi bip
L bo1  b22 ba1  ba2
_ a1 ain
| Q21 Q22
= ﬁA)
where tracep; = 1 has been used. These expressions show that the partial trace for a

product state marginalizes the state because it “traces out” the density matrices of the other
constituent signals states in the product state. In this sense, the partial trace operation for
product states is equivalent to the marginalization of a classical product distribution. This
statement only applies to product states.

As a side note, the partial trace can be generalized to nonproduct states in the composite
signal space by writing

tracezpar = Z Cijke|ai)(aj|trace|by) (be]
ijke

where c¢;;,¢ need not factor into a product of the form a;;bx, as would be the case for a
product state.

Now consider the partial trace of an arbitrary density matrix p in a composite signal space
given by

P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
P41 P42 P43 P44

Noting the elements in (38) that are used to construct the partial trace over each constituent
signal space gives

trace { P11 P12 } trace [ P13 P ]
: N P21 P22 P23 P24
racezp =
trace{ P31 P32 } trace[ P33 P34 ]
L P41 P42 P43 P44
[ p11+p22 p13+poa
| P31+ paz p3sztpaa |
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Similarly, noting that a different set of matrix elements is used for trace p gives

trace |: P P13 :| trace |: P12 P14 :|

¢ N P31 P33 P32 P34
race,p =
trace [ P21 P23 } trace [ P22 P24 }
L P41 P43 P42 P44

_ [ p11+p3s pr2+ psa
| P21+ paz pa2tpaa |

These expressions show that for the general case, a partial trace does not recover one of
the constituent signal states and is not equivalent to marginalization. This situation can
occur when a unitary transformation is applied to a product signal state. Constructing a
composite signal state from constituent signal states, applying unitary transformations and
then applying a partial trace on a constituent signal space are the basic operations of quantum
computing.

15.19 Large-signal regime

Suppose that a coherent state is regarded as orthogonal when the pairwise inner product
k = e~*® is 107° where E, is the mean number of photons.

(a) Determine the signal power density spectrum required to achieve this condition for the
following wavelengths: 1 nm, 1000 nm (1 micron), 106 nm (1 mm).

Solution
Solving e~4E = 107> gives E, as 2.88 photons. The energy per photon is equal to o f =

he/ . The signal power density spectrum is equal to the energy which is given by energy/photonx mean

number of photons. The energy per photon is equal to hf = hc/\. Using this expression
gives

S(1nm) = Ephe/107° = 1.9878 x 1076 W/Hz
S(I micron) = Ephe/107% = 1.9878 x 107 W/Hz
S(1mm) = Ephe/107% = 1.9878 x 1072? W/Hz

(b) Determine thermal noise power density spectrum at 290 K given by Ny = kT where
k is Boltzmann’s constant and 7 is the temperature in Kelvin.

Solution

The thermal energy is No = kTp = 290 x 1.38 x 10723 = 4 x 10~2! J (or W/Hz), which
is larger than the signal power density spectrum at 1 mm, but is much smaller compared to
the signal power density spectrum for lightwave or higher frequencies.
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(¢) Suppose that the nonorthogonal nature of the coherent states is evident when & is larger
than one half and that the signal to thermal noise ratio E/ Ny is larger than 20 dB. For these
parameters, what is the largest wavelength for which the nonorthogonal nature of a coherent
state is evident?

Solution
Solving e~ *F = 1/2 gives the mean number of photons as E;, = 0.17. The signal energy
when E/Nj is equal to 20 dB with Ny = kT} determined in part (b) is

S = 100N, = 4x107Y¥7.
The largest wavelength A\y,.x for which the nonorthogonal nature of a coherent state may be

evident is then

hcE
Amax = Sb ~ 86 nm.

This expression states for the value of k and F'/ Ny given in the problem, the nonorthogo-
nality of the coherent states would not be evident for optical wavelengths on the order of
0.4 to 1.5 microns because for this range of wavelength, the mean number of photons E is
sufficiently large so the nonorthogonality of the signal states is not evident. For the same
parameters, the nonorthogonality might be evident in ultraviolet regime of the spectrum
within the range of 10-400 nm because for the same mean energy, there are, on average,
fewer photons.

15. 20 Noise from phase-insensitive amplification

Let the two operators

a; +n;

= ag t+Nng

)y 8)

be noisy versions of the in-phase operator and the quadrature operator where the terms 71,
and 7, account for the additional noise from phase-insensitive amplification.

(a) Write down the necessary condition for Z and ¥ to be jointly observed without addi-
tional uncertainty.

Solution
For the variables described by the operators & and ¥ to be measured without additional error
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requires that 7 and iy commute so that
@ - -7
= (a; +n,) (@q +ng) — (g + o) (@ +n;)
= (@00 +a,ng +n,aq +N;Ng) — (Aqa; + agn; + Nea; + Neny)

= a5, a0] + [ar,Mg] + [Mr,Gg] + [Mr, Ng] - (39)

(b) Using this condition, solve for the relationship between 72; and 7, such that the con-
dition in part (a) is satisfied.

Solution

The two middle terms in (39) are zero because the signal and noise are independent so the
operators describing these terms commute. However, in contrast to heterodyne demodula-
tion (cf. (15.5.12) and (15.5.13)), the two remaining terms in (39) must be zero so that the
operators commute. This means that two commutators [a;, a,] and [7;, 7i,] must go to zero.
This condition occurs in a large signal regime for which the inherent dependancies between
the signal and noise components are not evident. Therefore, the noisy in-phase quadrature
lightwave components after phase insensitive amplification can be jointly observed without
additional error.

15.24 Even and odd coherent states

(a) An even coherent state is defined as

even) = —— (ja) + |—a),

VN

where N, is a normalization constant. When (even|even) equals one, using (15.3.38), re-
peated here as

(an]ag) = elon—eol/2,
show that N = 2(1 + e~2lel),

Solution
Using the normalization condition gives

(evenjeven) = Ni+<(<a| +(—a]) (|a) + =)

(ala) +(a]-a) + (—ala) + (—al-a)
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The first and last terms evaluate to one. Using the expression for the inner product stated
in the problem with oy = v and g = —x gives

ol (—a)l?/2

o12a?/2

(a|—a)

The same expression is obtained for (—a|a). Combining the these expressions gives
N, = 2 (1 n e*‘mlz/?) .

(b) Repeat for the odd coherent state given by

odd) = ——(ja) — |—a)).

N

Solution
The only difference is a negative sign for the two “cross terms” which gives

N_ = 2(1-('2“‘2/2).

(c) Derive approximate expressions for the even and odd coherent states when « is large
and comment on the result.

Solution

The addition and subtraction operations on the coherent states that specify the even and odd
coherent states are defined in the signal space for which coherent states are defined. These
operations are not defined on the complex plane where the Glauber numbers are defined.
For this reason, it is not correct to represent each large-amplitude coherent state as a single
complex number s and then add the complex numbers. Doing so would result in the even
coherent state being identically zero. To show this explicitly, use (15.3.34) to express both
|a) and |—a) in a photon number state representation. The sum can be written as

leven) = (le) + =)

= \/m <e|°‘|2/2 mzz;):/xw |m) + ef|_a\2/2m2=0 (?/‘:T? |m>>

el & e ()T
= x/ﬁﬁf;é% N Im) .
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For meven a™ = (—a)™ and for m odd a™ = —(—a)™. Therefore,

2elal® X gm
even) = —— — |m for m even
Jeven) m g = m)
= 0 for m odd,

which does not go to zero for large values of |a|. A similar expression can be derived for
the odd coherent states.
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Chapter 16 Selected Solutions

16.2 Probability of error for orthogonal states

This problem compares classical orthogonal signals to quantum orthogonal signal states.
An example of orthogonal quantum-lightwave signals are polarization states or nonover-
lapping temporal states. Derive the large-signal limit for the probability of a detection error
for L-level orthogonal state modulation when all pairwise distances between the symbols
are equal and d? = 2E where E is the mean number of photons per symbol.

Solution
The probability of a detection error in a large-signal limit can be estimated using the quan-
tum union bound given in (16.3.8) and repeated here

2

pe ~ i e dmin7

where m = % 25;01 nyg 1s the average number of coherent-state symbols at distance dy;y,
where the distance is defined using the corresponding Glauber numbers for the coherent
states (cf. (10.2.13)). When the signaling states are not coherent states but are still nearly
orthogonal, the term e~ dmin s replaced by the minimum pairwise inner product Kpi, =
min; ; k;;. For L-level orthogonal state modulation, there are L —1 nearest neighbor symbol
states. For an orthogonal signal-state constellation, each of these signal states has the same
minimum pairwise inner product sy, with every other signal state. Therefore,

L—-1
DPe Tl‘fmin
L—-1
I 6_2E,

Q

Q

2

2 .
where Ky, = e % for coherent-state symbols with d .

number of photons per symbol.

= 2E and E given as the mean

16.3 Optimal orientation of a binary sampling basis

(a) Referring to Figure 16.2(a), define { = 7/2 — 6. Derive an expression for the proba-
bility of a correct decision p. for binary pure-signal-state modulation in terms of ¢ and the
generalized angle ¢; shown in Figure 16.2(a).

Solution

Referring Figure 16.2(a), ¢ = 7/2 — 0 = ¢ + ¢1 so that g = ( + ¢1. Using the
conditional probabilities pgjg = cos? ¢ and P = cos? ¢, the probability for a correct
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detection event p,. is

pe = pcos’ g1+ (1—p)cos’ ¢
= pcos® ¢y + (1 —p)cos?(m/2 — 0 — ¢1).

(b) Determine the maximum probability of a correct decision p. by differentiating this ex-
pression with respect to ¢, and setting the resulting expression equal to zero.

Solution
For an equiprobable prior p = 1/2 and the derivative of p. with respect to ¢, is given by

d c . .
dz sin(@ + ¢1) cos(f + ¢1) — sin ¢y cos 1.
1
Setting this expression equal to zero gives the optimal value of ¢; as

d)l = 71'/4—9/2

When 6 = 7/2, the two signal states are orthogonal and ¢; = ¢ = 0. When 6 = 0, the
two signal states are coincident ¢1 = ¢9 = 7/4 and p. = p. = 1/2. For any value of 6, p,.
is maximized and p. is minimized when ¢y = ¢ so that the channel is a binary symmetric
channel with py; = poo-

(c) Show that the resulting probability of error p, is given by the same expression as (16.2.12).

Solution
For an equiprobable prior with ¢; = ¢¢, the channel is a binary symmetric channel with
P1j1 = Pojo- Then

De = % <p1|1 +p0|0) = pi
= cos’o

cos?(m/4 — 60/2)

1 (14 cos(m/2 —0))

= -+ 3siné.

The probability of error is then

Pe = 1—pc
= 3 (1—sinb),

which is (16.2.12).
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16.6 Methods of detection

Referring to Table 16.1, compare the error performance of classical homodyne detection
with that of a displacement receiver. Determine the range of the mean number of photons
per bit E, for which one detection technique outperforms the other method of detection.

Solution
Referring to Table 16.1, the probability of a detection error for classical shot-noise-limited
homodyne demodulation is

pe = serfey/2Ep,

and that for the displacement receiver is given by

Pe = %674&)-

Plots of both functions are shown in the figure below. For E, < 0.384, shot-noise-limited
homodyne demodulation produces a lower probability of a detection error than displace-
ment demodulation. For E, > 0.384, the displacement receiver has better performance.
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—~ N
o 04\
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= A Receiver
(TR \ / ece
c ‘ N
© N
Y AN
5 N
é\ 0.2
=
©
S o1 Homodyne
a demodulation

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Mean number of Photons (E,)

16.7 Von Neumann entropy

Suppose the density matrix of an ensemble of two pure signal states is given as

5 P V(1 —p)k
V(1 =p)k L—p

where p is the prior, and where k = (¥g|1)1) is the inner product between the two pure
states with x real.
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(a) Determine an expression for the von Neumann entropy of this density matrix.

Solution
The eigenvalues of the density matrix p are the solutions to

p-A V=P
det = 0,
p(l—pk 1-p—2A
or
N A+r2p2—p?—k¥Pp+p = 0.
The solution to this equation gives the eigenvalues as
Aoi = %(1 + \/1 +4p(k2(1—p)+p— 1)).

(b) Compare this result with the von Neumann entropy of the density matrix given in
(15.4.16). How are they related? Why?

Solution

The eigenvalues are the same because the two density matrices are related by a unitary trans-
formation. This means that the two density matrices are expressed in two different bases
related by a generalized rotation described by the unitary transformation. This rotation does
not affect the eigenvalues or the von Neumann entropy.

16.8 Von Neumann entropy

Using the relationship between a density matrix and a probability distribution for a set of or-
thogonal signal states, show that when the signal states are pairwise orthogonal, the Holevo
information x given in (16.5.9) and repeated below

v = S(XpOm) - YOS 7).

is equal to the Shannon entropy H(s).
Solution

For a constellation of orthogonal pure signal states, the density matrix ps for each pure sig-
nal state has no quantum uncertainty, and has a single eigenvalue equal to one. Therefore
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S (ps) = 0. This density matrix ps is a projection matrix b= [1)s) (1ps| which can be
written as

0 0 0 0
P = |0 0 1 0
0 0 0 0

This matrix has one diagonal element equal to one and all other elements, both diagonal
and off-diagonal, equal to zero. The summation p = > p(s)ps over all the pure states in
the signal constellation can then be written as

1 0 0 ... 0 00 0 ... 0
. . . 01 0 ... 0
dps)ps = p(1)| 0 0 0 0 | +p(2 +
S .
0 0 0 0 0 0 0 0
0 0 0 0
o 0 o 0
0 0 0 1
p(1) 0 0 0
0 p2) 0 0
0 p(n)

which is a diagonal matrix ID with diagonal elements that comprise the probability distribu-
tion p(s). For this diagonal matrix, the eigenvalues \; of the density matrix p = > p(s)ps
are simply the diagonal elements p(s). Therefore, using (15.4.23), which is repeated here

S(P) = =) Nilogh,
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and setting A; equal to p(s) gives
S(p) = - pls)logp(s)
S

= H(),

which is the Shannon entropy. When the states are not orthogonal, the sum p = > p(s)ps
is not a diagonal matrix. For this case, the matrix has off-diagonal elements so that the
eigenvalues of that matrix will not be equal to the diagonal elements of the matrix and will
not be equal to p(s). Accordingly, the von Neumann entropy will be less than the Shannon
entropy, as state in (15.4.25).

16.9 Von Neumann entropy
A signal state is given by

[v) = %|0> + % (cos 8]0) + sin6|1))

(a) Determine the corresponding density matrix p.

Solution
View the given signal state as a statistical mixture of two pure states expressed in column

form as
w = o] woo= [op]

Forming the outer product |1) (1| for each signal state, the corresponding density matrix p

is
-~ _ 1/[10 N cos?f  cosfsinf
= 3\lo o cosfsinf  sin’@

11+ cos? @ cosfsinf
2 | cosfsinf sin’ 0 )

(b) Determine the eigenvalues of p.

Solution
The eigenvalues are the solutions to

1 [ (1+cosf) — X cosfsinf ]

det 2 cos @ sin sin? 6 — \

= 0.
with A; » given by

A2 = 35(lxcosh).

1
2
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(¢) Derive an expression for the von Neumann entropy as a function of 6.

Solution
Using (15.4.23) repeated here as

Sp) = - Z/\i log A;,

the von Neumann entropy is the Shannon entropy of the set of eigenvalues {);} with
S(p(0)) = —%((1+cosd) (log(1+ cosb) —log2) + (1 — cos8) (log(1 — cos 6)
(d) Determine the value of # that maximizes the entropy.

Solution
Taking the derivative of the von Neumann entropy gives

p(0
%9()) = 21sinflog (4 (cosf+ 1)) — 3sinflog (3(1—cosb)).

Setting this expression equal to zero and simplifying gives

cosf = 0,

—log2)).

which has a solution § = 7/2 4+ nm where n is an integer. For this set of angles, the density
matrix is an equiprobable mixture of two orthogonal signal states with the von Neumann

entropy equal to the Shannon entropy.

(e) Plot the von Neumann entropy for 0 < 6 < 27 and demonstrate that the result de-

termined in the previous step is correct.

Solution
A plot of the von Neumann entropy in bits as a function of € is shown below.
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The maxima for the range [0, 27) of angles shown on the figure occur at 7/2 and 37 /2
confirming the result derived in part (d).

16.10 Small-signal expansion of the von Neumann entropy

The von Neumann entropy of an antipodal coherent state is given by (16.6.5) and is repeated
here

S(p) = Hy(3(1—-e®))
= —(1—eE)log(l—e ) — (1+e %) log(l 4 e %),
Using the power series expansion log(1 + z) = = — ””2—2 +0 (z¥) ande®” =1+ 2z + “”—22 +
0] (x3), show that the small-signal limit of the von Neumann entropy is given by
S(p) =~ Ep(1-logky),
which is (16.6.7) and is the small-signal limit of the entropy of a Poisson probability mass
function (cf. Problem 14.5).

Solution
The second expression in the problem statement is missing a factor of one half. Including
this factor and using e~* ~ 1 — z gives

Hb(%(l — 672Eb)) ~ (Eb — 1) log(l — Eb) — EplogEp.
Using log(1 — ) & —x for the first term and discarding a term of order E,” gives
S(p) = H(3(1-¢")) = Ep(1—logEy).

This expression shows that the small-signal limit of the von Neumann entropy for a antipo-
dal coherent state approaches the entropy of a Poisson distribution.
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16.12 Codeword detection

This problem works through the steps that derive the probability of a block-symbol-state
detection error given in Section 16.4.3.

(a) Starting the Gram matrix K given in (16.4.9), derive the matrix A and its inverse A~!.

Solution
The Gram matrix K given in (16.4.9) has the following form

1 Kbk Kok Kol
K = Kbk 1 Kbk Kblk
Kplk Kbk 1 Kolk

Kbk  Kblk  Ablk 1

The eigenvalues are the solution to (K — Al)x = 0 where x is column vector. This system
of equations has a nontrivial solution when the determinant of the left side is equal to zero
which gives

A — AN+ 6X% (1 — ki) — 4N (260 — 3kin + 1) — Bkpy + 8kp — 6k + 1 = 0.
This fourth-order polynomial factors into
A=2)*(A=A) = 0,

where \; = 1 — kpx and Ao = 1 + 3k . Therefore, the eigenvalues are 1 — Kk, 1 — Kpik,
1 — kpik and 1 + 3kp. For the eigenvalue )\, the corresponding eigenvector x; is any
solution to the following set of homogeneous equations

(Kip = A)zy 4+ Kz + Kigzs + Kyzy = 0
Ko1z1 + Koowe + Kozzz + Kogzy = 0
Kaiz1 + Ksowes + Kzzzz + Kgyzy = 0
Kayzr + Kyws + Kyzz + Kyzy = 0

One solution to this set of equations is x; = (0,0, —1,1)” and is one eigenvector for the
eigenvalue 1 — k. Repeating this process gives two other eigenvectors (0, —1,0, 1)” and
(=1,0,0,1)7 for the eigenvalue 1 — ki and (1,1, 1,1)" for eigenvector corresponding to
1 + 3kpk. Organizing the column eigenvectors into a matrix gives

-0 O
I

—_— O = O

_ o O =

— = = =
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The inverse of this matrix is

1 1 -3 1
- 1 1 -3 1 1
1 — —
A N -3 1 1 1
1 1 1 1

(b) Using these expressions, show that the matrix M can be written as

M =

>N o o Q
[SaEES R SIS
> oo
SIS IES S

where a = 3v/1 — Kpi + V3kbi + 1 and b = /3kpi + 1 — /1 — Kpi. (Note the original
problem statement had a typo of an additional square on each term containing rpj.)

Solution

The diagonal matrix D with diagonal elements that are the eigenvalues of the Gram matrix
can be written as D = AKA 1. Taking the square root of each eigenvalue, the matrix M
can be written as

M = A'DY?A
1 1 -3 1 ¢c 00 0 0 0 -1 1
1 =311 0 ¢ 0 0 0 -1 0 1
T 41 -3 1 1 1 0 0 ¢ O -1 0 01
11 1 1 0 0 0 d 1 1 11
fa b b b
L]l b a b b
T 40 b b a b |’
bbb oa

wherea =3c+d,b=d —c¢,c = /1 — Kpi, and d = /3kpi + 1.
(c) Using the result from part (b), derive (16.4.10).

Solution

The conditional probability p(k|¢) is the squared magnitude |m|? of each element of the
matrix M (cf. (16.1.13)) with the squares of the on-diagonal elements |m.|? giving the
probability of a correct decision p(¢|¢). Because every diagonal element of M has the same
form, p(¢|¢) = %|a|2 = 1—16(3\/1 — Kplk + V3koi + 1)2, which is (16.4.10a). Similarly,
every off-diagonal element has the same form with p(¢|¢) = %[b]? = & (v/3roi + 1 —
/T = Fpix)?, which is (16.4.10b).
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