Python Fundamentals, First Edition

Python Fundamentals
ISBN MindTap:

MindTap

. # CENGAGE | MINDTAP

YTHON

"“ﬁ“r_

Welcome to Python Fundamentals. This Instructor’s Manual will help you navigate the unique
activities that are included in the MindTap, which will better enable you to include the exercises
in your curriculum. While the content included in this MindTap is specific to the discipline and
course, the functionality will act the same as you move from product to product.

For additional resources on our MindTap platform, please click HERE. At this site, you will find
User Guides, Self-Training Videos, Training Webinars, and Podcasts. We also include
Resources that are specific to your campus’s LMS, should additional information be needed.
Student versions of the same resources are located HERE. This link can be shared with your
students directly, should they have any questions about the product.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

https://www.cengage.com/training/mindtap
https://www.cengage.com/training/mindtap?terms=&pageSize=300&pageNumber=1&sortBy=cengage:sequenceNumber&audience=Student&platform=MindTap

Python Fundamentals, First Edition

At a Glance

Instructor’s Manual Table of Contents

Course Learning Design
Lab Details

Module Objectives
Solutions to Reflection

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Course Learning Design
In creating the digital learning path, we aimed to provide your students with a coherently
structured experience that:

e supports and aligns the learning objectives with the course content, instructional
strategies, and assessments;

e addresses individual learner differences and preferences;

e welcomes learners of all abilities and backgrounds; and

e enhances learner motivation by providing them with relevant, applicable learning
experiences consistent with their own learning and professional goals.

We’re excited to present you with the digital course experience and want to draw your attention
to some of the design decisions we made as part of ensuring your confidence in our ability to
create an effective, quality learning experience.

Course Learning Design |
Course As you work with the language, you’ll learn about control statements, delve into controlling program flow, and
Description gradually work on more structured programs via functions. MindTap for Python Fundamentals teaches problem-
solving skills for building efficient applications. As you settle into the Python ecosystem, you’ll learn about data
structures and study ways to correctly store and represent information. By working through specific examples, you’ll
learn how Python implements object-oriented programming (OOP) concepts of abstraction, encapsulation of data,
inheritance, and polymorphism. Coverage also includes an overview of how imports, modules, and packages work in
Python, how you can handle errors to prevent apps from crashing, as well as file manipulation.

Course This course teaches students how to write systematic code in Python and improve application efficiency with hands-on
Approach practice, step-by-step instruction, and provides immediate feedback and troubleshooting support on their code.

(9 modules in Students will develop skills that are in-demand by employers by completing authentic, real-world coding projects that
course) can be added to their GitHub portfolios.

Module Each module is broken into 26 lessons—uwithin each lesson are activities that align to meet specific learning
Approach objectives that are concrete and actionable.

Within each lesson, the student will read some narrative and follow up with hands-on learning. There are four types of
online labs in this course:

1. Practice Exercises (Ungraded) provide an opportunity to practice a new concept in a short coding
activity. Students are provided with guided instructional materials alongside a live computing
environment. There will typically be 1-3 practice labs in each lesson and there are on average around 5
lessons per module (around 5 practice/module).

2. Lab Activities (Auto-Graded) are coding activities that are completed by a student and contain auto-
grading that feeds directly to the gradebook. Learners demonstrate an understanding of numerous
concepts by completing tasks. Tasks are verified using unit tests, 1/0 tests, image and webpage
comparison, debugging tests, and many other checks. There will be a lab assessment for every lesson
and there are on average around 5 lessons per module (around 5 labs per module).

3. Module Lab Assessments (Auto- and Manual-Graded) encompass all the learning objectives in the
module. Students are asked to complete a larger, authentic assignment with many tasks. Some tasks will
be verified using unit tests, 1/0 tests, image and webpage comparison, debugging tests but other tasks
will be unique to each student’s project and will require manual grading. The goal of these assignments
is to prove that students have mastered the learning objectives in the module and in doing so have also
created a program for their GitHub portfolio (1 Module Lab Assessment per module).

4. Capstone Lab Assessment (Auto- and Manual-Graded) is a final project that is the summative
assessment. The goal of this assignment is to prove that students have mastered the course objectives
and in doing so have also created a program for their GitHub portfolio (1 Capstone Lab Assessment per
course).

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Learning Path How many What is it? Why it matters? Seat time
Activities in course
Welcome to 1 This is a brief overview of Students will gain a clear understanding of the course 5 minutes
Your Course the course objectives that objectives and will explore how this course offers the
will be covered in the opportunity to not only read but watch videos, engage
modules of this MindTap. in critical-thinking simulations and hands-on trainings,
teach them how to use the technology, and take quizzes
to practice and check their understanding.
Getting Started 1 This section includes videos | Students will learn how to use MindTap to its fullest 30 minutes
Resources that provide an overview of | potential, which will help them excel in the course.
the MindTap platform and
the Coding IDE. There are They’ll also be introduced to the IDE’s functionality in
3 lab Pre-Requisites, 2 of 6 brief videos. They’ll then complete 3 Lab Pre-
which count toward the Requisites, 1 is practice and 2 count toward their grade.
grade.
Pre- and Post- 27 Brief survey to-assess For students: It creates awareness around what they 40 minutes
Course questions students’ knowledge of the | will learn (pre) and how much they have learned (post).
Assessments each subject matter before and For instructors: It establishes a baseline of what
assessment | after completing the course. | students already know (pre) and demonstrates how
much they learned (post).
For administrators: Coupling the pre- and post-
course assessment provides data on how much the
students learned and the overall impact of the course.
Module Content (9 modules total)
Readings for ~7 Short Readings reinforce learning | Students will read succinct, focused excerpts vs long 55 minutes
each module readings objectives. chapters (then move into an interactive activity).
lesson; 2-6 per module
lessons per (69 total in
module course)
Practice ~5 per Short coding exercises in an | Students complete step-by-step coding exercises that 2-5 minutes
Exercises module (48 | IDE (non-graded) offer a practical, hands-on approach to acquiring and
total in retaining new concepts and skills.
course)
Lab Activity ~5 per Scenario-based coding labs | These scenario-based activities bring together skills 30 minutes
(Graded) module (41 | in an IDE (auto-graded) learned throughout the topics and lessons to solve real-
total in world problems.
course)
Reflection ~6 per Essay question The reflection prompt challenges students to develop 15 minutes
module (51 higher-level thinking and promotes problem-solving.
total in This is also an opportunity for you to confirm that
course) tricky topics are understood.
Module Quizzes | ~1 per Includes 10 multiple-choice | The student can integrate material across the entire 10 minutes
module (9 questions at the end of each | lesson and check their understanding before moving on
total in module. to the next lesson.
course)
Module Lab 1 per A larger coding project in A larger lab with an authentic development project 1-2 hours
Assessment module (9 our IDE that assesses with many tasks. Upon completion, students will have
(Auto & Manual | total in whether students have 9 large coding projects for their GitHub portfolios.
Grading) course) mastered the Learning
Obijectives in the module.
Capstone Lab 1 per Final coding project in our A larger lab with an authentic development project 2-5 hours
Assessment course IDE that assesses whether with many tasks. Upon completion, students will have

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

students have mastered the | 1 additional coding project to add to their GitHub
Course Objectives. portfolio.
Instructor Test 1 per An exam of 451 objective- | The Test Bank evaluates the student on their mastery of | 30 minutes
Bank module (9 based questions based on that module.
total in each module available in
Course) the CNOW app.
Topic/Chapter Assignments
Module 1 Lessons 1.1 — 1.4 Reading

Introducing Python

Practice Exercises
Lab Activities
Reflection
Module Quiz

Module 2
Data Types

Lessons 2.1 — 2.4 Reading
Practice Exercises
Lab Activities
Reflection
Module Quiz

Module 3
Control Statements

Lessons 3.1 — 3.9 Reading
Practice Exercises
Lab Activities
Reflection
Module Quiz

Module 4
Functions

Lessons 4.1 — 4.4 Reading
Practice Exercises
Lab Activities
Reflection
Module Quiz

Module 5
Lists and Tuples

Lessons 5.1 — 5.6 Reading
Practice Exercises
Lab Activities

Reflection
Module Quiz
Module 6 Lessons 6.1 — 6.6 Reading
Dictionaries and Practice Exercises
Sets Lab Activities
Reflection
Module Quiz
Module 7 Lessons 7.1 — 7.7 Reading

Object-Oriented
Programming

Practice Exercises
Lab Activities
Reflection
Module Quiz

Module 8
Modules, Packages,
and File Operations

Lessons 8.1 — 8.7 Reading
Practice Exercises
Lab Activities
Reflection
Module Quiz

Module 9
Error Handling

Lessons 9.1 — 9/4 Reading
Practice Exercises
Lab Activities
Reflection
Module Quiz

Capstone Lab
Assessment:

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Unit Testing Rest
APlIs

Lab Details

There are 48 Practice Exercises, 41 Lab Activities, 9 Module Lab Assessments, and 1 Capstone
Lab Assessment across 9 modules.

Lab Types

Practice Exercises:
e Practice Exercises are coding lab assignments within the IDE that allow you to practice
writing and running code.
e Practice Exercises are not graded and are not captured in the Progress App. These are
designated in the learning path:

Practice Exercise 3.3A: Using the while Statement

Practice "Using the while Statement” in a coding exercise.

Practice Exercise 3.3B: Using while to Keep a Program Running

Practice "Using while to Keep a Program Running” in a coding exercise.

Lab Activities:
e Lab Activities are coding lab assignments within the IDE that run tests against your code
to ensure that the objectives in the activity have been satisfied.
e Lab Activities are automatically graded unless otherwise noted in the learning path as
“PRACTICE”. All graded labs are designated in the learning path as “COUNTS
TOWARDS GRADE”.

Lab Activity 3.7: The for Loop and the range Function

Complete "The for Loop and the range Function” coding activity for a grade.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

e You will work through the Lab Activities and “Run Checks” as you work through the
problems. Once you have completed the assignment, you can “Submit”, which will send
your lab to your instructor.

T

e Note that instructors have the capability to review code submissions and alter grades as
they see fit. Grade submissions are not final.

Module Lab Assessments and Capstone Lab Assessment:

e The Lab Assessments are coding lab assignments within the IDE that provide you with an
authentic scenario to test your coding skills.

e There is one Module Lab Assessment per module, and one Capstone Lab Assessment for
the entire course.

e Lab Assessments are partially automatically graded and partially manually graded by
your instructor. These are designated in the learning path with a “This lab is partially
auto-graded and partially manually graded by your instructor” description. All graded
labs are designated in the learning path as “COUNTS TOWARDS GRADE”.

Module Lab Assessment 2: Resource URL Validator

COUNTS TOWARDS GRADE

Complete Module 2 Lab Assessment coding activity. This lab is partially auto-graded and partially manually graded by your instructor.
- - - - -]

Capstone Lab Assessment: Unit Testing Rest APIs

& COUNTS TOWARDS GRADE

Complete Capstone Lab Assessment: TBD coding activity. This lab is

e Note that instructors have the capability to review code submissions and alter grades as
they see fit. Grade submissions are not final.

List of Coding Labs

Coding IDE Lab Prerequisite for Practice Exercises Practice
Coding IDE Lab Prerequisite for Lab Activities Auto-Grade
Coding IDE Lab Prerequisite for Module and Capstone Lab Auto / Manual Grade
Assessments

Module 1
Practice Exercise 1.1A: Checking our Python Installation Practice
Practice Exercise 1.1B: Working with the Python Interpreter Practice
Lab Activity 1.1: Working with the Python Shell Auto-Grade

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Script

Practice Exercise 1.2: Creating a Script Practice
Lab Activity 1.2: Running Simple Python Scripts Auto-Grade
Practice Exercise 1.3A: Checking the Type of a Value Practice
Practice Exercise 1.3B: Using Variables Practice
Lab Activity 1.3A: Using Variables and Assign Statements Auto-Grade
Practice Exercise 1.3C: Python Keywords Practice
Lab Activity 1.3B: Variable Assignment and Variable Naming Auto-Grade
Conventions

Practice Exercise 1.4A: Fetching and Using User Input Practice
Practice Exercise 1.4B: The Importance of Proper Indentation Practice
Lab Activity 1.4A: Fixing Indentations in a Code Block Auto-Grade
Lab Activity 1.4B: Implementing User Input and Comments in a Auto-Grade

Module Lab Assessment 1: Creating a Unit Converter

Auto / Manual Grade

Module 2

Practice Exercise 2.1: Converting Between Different Types of Practice
Number Systems

Lab Activity 2.1A: Order of Operations Auto-Grade
Lab Activity 2.1B: Using Different Arithmetic Operators Auto-Grade
Lab Activity 2.2A: String Slicing Practice
Lab Activity 2.2B: Working with Strings Auto-Grade
Practice Exercise 2.2: Using Escape Sequences Practice
Lab Activity 2.2C: Manipulating Strings Auto-Grade
Practice Exercise 2.3: List References Practice
Lab Activity 2.3: Working with Lists Auto-Grade
Lab Activity 2.4: Using Boolean Operators Auto-Grade

Module Lab Assessment 2: Resource URL Validator

Auto / Manual Grade

Module 3

Practice Exercise 3.2: Using the if Statement Practice
Lab Activity 3.2: Working with the if Statement Auto-Grade
Practice Exercise 3.3A: Using the while Statement Practice
Practice Exercise 3.3B: Using while to Keep a Program Running Practice
Lab Activity 3.3: Working with the while Statement Auto-Grade
Practice Exercise 3.6: Using the for Loop Practice
Lab Activity 3.7: The for Loop and the range Function Auto-Grade
Practice Exercise 3.8: Using Nested Loops Practice
Lab Activity 3.8: Nested Loops Auto-Grade
Lab Activity 3.9: Breaking Out of Loops Auto-Grade

Module Lab Assessment 3: Abby's Ice Cream Shop

Auto / Manual Grade

Module 4

Practice Exercise 4.2: Defining Global and Local Variables

Practice

Lab Activity 4.3: Function Arguments

Auto-Grade

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Practice Exercise 4.4: Creating a Lambda Function

Practice

Lab Activity 4.4: Using Lambda Functions

Auto-Grade

Module Lab Assessment 4: Applnvest Return on Investment
Function

Auto / Manual Grade

Module 5
Lab Activity 5.2: Using the List Methods Auto-Grade
Practice Exercise 5.4: Creating a Tuple Practice
Practice Exercise 5.5A: Accessing Tuple Elements Using Indexing Practice
Practice Exercise 5.5B: Accessing Tuple Elements Using Slicing Practice
Lab Activity 5.6: Using Tuple Methods Auto-Grade

Module Lab Assessment 5: Creating a Blackjack Simulator

Auto / Manual Grade

Module 6

Lab Activity 6.1A: Creating a Dictionary Auto-Grade
Practice Exercise 6.1: Adding, Reading, and Iterating through a Practice
Dictionary

Lab Activity 6.1B: Arranging and Presenting Data Using Auto-Grade
Dictionaries

Lab Activity 6.1C: Combining Dictionaries Auto-Grade
Practice Exercise 6.2: Updating, Editing, and Copying from a Practice
Dictionary

Lab Activity 6.4: Building a Set Auto-Grade
Practice Exercise 6.4: Adding, Reading, Editing, and Building a Set Practice
Lab Activity 6.5: Creating Unions of Elements in a Collection Auto-Grade
Practice Exercise 6.5: Unions, Differences, and Intersection of Practice
Sets

Practice Exercise 6.6: Frozen Sets Practice

Module Lab Assessment 6: Space Explorer (Dictionaries and Sets)

Auto / Manual Grade

Module 7

Practice Exercise 7.2: Adding Attributes to a Class Practice
Lab Activity 7.2: Defining a Class and Objects Auto-Grade
Lab Activity 7.3: Defining Methods in a Class Auto-Grade
Practice Exercise 7.4A: Declaring a Class with Instance Attributes Practice
Practice Exercise 7.4B: Implementing a Counter for Instances of a Practice
Class

Lab Activity 7.4: Creating Class Attributes Auto-Grade
Practice Exercise 7.5A: Testing our Factory Method Practice
Practice Exercise 7.5B: Accessing Class Attributes from within Practice
Class Methods

Lab Activity 7.5: Creating Class Methods and Using Information Auto-Grade
Hiding

Practice Exercise 7.6: Implementing Class Inheritance Practice
Lab Activity 7.6: Overriding Methods Auto-Grade
Practice Exercise 7.7: Implementing Multiple Inheritance Practice

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Lab Activity 7.7: Practicing Multiple Inheritance

Auto-Grade

Module Lab Assessment 7: Petri Dish Simulation (Object-
Oriented Programming)

Auto / Manual Grade

Module 8
Practice Exercise 8.1: Creating and Importing a User-Defined Practice
Module
Practice Exercise 8.2A: Importing Modules Practice
Practice Exercise 8.2B: Importing Functions from User-Defined Practice
Modules
Practice Exercise 8.3: Inspecting Modules and Packages Practice
Lab Activity 8.3A: Inspecting Modules Auto-Grade
Lab Activity 8.3B: Listing the Resources Defined in a Package or Auto-Grade
Module
Lab Activity 8.3C: Using Resources in a Module Auto-Grade
Practice Exercise 8.6A: Creating and Writing to a Text File Practice
Practice Exercise 8.6B: Read Using with Keyword Practice
Practice Exercise 8.6C: File Operations Practice
Lab Activity 8.6: Performing File Operations Auto-Grade
Practice Exercise 8.7A: Reading a CSV file Practice
Practice Exercise 8.7B: Write a dict to CSV Practice
Lab Activity 8.7: Working with Files Auto-Grade
Practice Exercise 8.7C: Working with JSON Practice

Module Lab Assessment 8: Mailing List Validation File Processing

Auto / Manual Grade

Module 9

Practice Exercise 9.1A: Raise an Exception Practice
Practice Exercise 9.1B: Raise an Exception with the raise Practice
Keyword

Lab Activity 9.2: Identifying Error Scenarios Auto-Grade
Practice Exercise 9.3A: Implement a try...except Block Practice
Practice Exercise 9.3B: Implementing the try...except...else Block Practice
Lab Activity 9.3: Handling Errors Auto-Grade
Practice Exercise 9.4: Catch an Error and Raise an Exception Practice
Lab Activity 9.4: Creating Your Own Custom Exception Class Auto-Grade

Module Lab Assessment 9: Error Handling

Auto / Manual Grade

Capstone Lab Assessment: Unit Testing Rest APIs

Auto / Manual Grade

A Note to Instructors:

COUNTS TOWARD GRADE/PRACTICE: Whether a lab COUNTS TOWARD GRADE or
is PRACTICE, as indicated in the Learning Path, is preset and cannot be changed. Changing the
Gradeable field within MindTap will not change the gradeability of the actual labs. We

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

recommend not changing these default settings to avoid discrepancies between the MindTap
plank description and the actual lab.
e COUNTS TOWARD GRADE = lab is automatically or manually graded and the score is
captured in the Progress App
e PRACTICE = lab is not graded and the score is not captured in the Progress App

Practice Exercise 2.1: Converting Between Different Types of Number Systems

Practice "Converting Between Different Types of Number Systems" in a coding exercise.

Lab Activi . Order of Operations
COUNTS TOWARDS GRADE

Complete "Order of Operations" coding activity for a grade.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 1

Introducing Python

Module Objectives

Use the Python interactive shell to write simple programs

Write and run simple Python scripts

Write and run dynamic scripts that take arguments from the command line
Use variables and describe the different types of values that variables can be
assigned

Get user input from the keyboard for your Python programs

Explain the importance of comments and write them in Python

Explain the importance of whitespace and indentation in Python

Solutions to Reflection

Lesson 1.1 Reflection

1. Which other operating system shells are you familiar with?

ANS: Bourne-again shell (Bash), Z shell, and Korn shell for Unix-based systems such as
Linux and the Windows and Windows PowerShell.

What are the benefits of the Python interactive shell?

ANS: It allows you to quickly execute Python commands without having to compile
anything. It also allows you to do quick tests.

Lesson 1.2 Reflection

1. What are the advantages of two different methods of running Python programs?

ANS:

Pros of the interactive shell:

1) Running Python programs via the interactive shell has the benefit of being able to run
quick tests/experiments as opposed to running a saved module, which has the
overheads of creating a file and having to change and save it if you want to run those
changes.

2) You can run quick calculations using the Python interactive shell.

Pros of running a saved script:
1) You can reuse code by either running the same script or importing it into your
module.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition
2) You can automate different tasks and have them run on your system on a schedule.

Lesson 1.3 Reflection
1. Why do we get a syntax error when we try to assign reserved words?

ANS: The Python interpreter tries to parse the keyword's syntactical meaning, which
doesn't fit into the context of a variable assignment. For example, when you try
assigning the keyword if, Python looks for a condition next but instead finds an equals
sign, which is invalid.

2. Mark the following variable names as valid or invalid and state why.

1) TestTOKEN
2) new-list

3) _

4) TOTAL

5) if

6) array?2
7)2_nd

8) void

9) five%

10) n123456789
11) LastLetter
12) maximum width
13) $HOME

ANS: Valid variable names: 1, 3, 4, 6, 8, 10, 11. Invalid variable names: 2,5, 7,9, 12, 13.
Lesson 1.4 Reflection
1. How does Python indentation help while writing scripts and code?

ANS: The indentation in Python can increase the clarity of the code by making it obvious
to a human reader which blocks of code belong together.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 2

Data Types

Module Objectives

Explain the different numerical data types

Use operators on numerical data types

Explain strings and implement string operations, such as indexing, slicing, and
string formatting

Describe escape sequences

Explain lists and perform simple operations on them

Use Boolean expressions and Boolean operators

Solutions to Reflection

Lesson 2.1 Reflection

1. Which of the following are invalid Python operations and why?

ANS: 3,5, 6, and 8. These particular options do not use the correct mathematical
operators

Lesson 2.2 Reflection
1. What are string indices? What are indices used for?

ANS: String indices are the positions of each of the characters of the string. Indices are
used when accessing the characters of the string.

Lesson 2.3 Reflection

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

1. How would you describe an array?

ANS: An array is a collection of values. They are used to hold multiple values that are
related to each other.

2. Given the following change to the list, what will be the new value of
the mystery_box list?

>>> mystery_box = ["sock", 42.5, "book", 650]
>>> mystery_box[2] = "string"
>>> print(mystery_box)

Given the following change to the list, what will be the new value of the corvids lists?
>>> corvids = ["crow", "raven", "magpie"]
>>> corvids[3] = "jackdaw"

>>> print(corvids)

ANS: ["sock", 42.5, "string™, 650]. It will fail on the second line and raise an IndexError
since there is no element at index 3 to change.

Lesson 2.4 Reflection
1. What is the difference between the is and == operators?
ANS: The is operator checks the identity of each object passed to it and checks whether

they are the same object while the == operator simply compares the value of the object
regardless of whether or not they are different objects.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 3

Control Statements
Module Objectives

Describe the different control statements in Python

Control program execution flow using control statements such as if and while
Use looping structures in your Python programs

Implement branching within looping structures such as for and range
Implement breaking out of loops

Solutions to Reflection
Lesson 3.1 Reflection

1. What are some example execution flow scenarios that you think Python can handle?

ANS: Mathematical computations and Boolean decisions (true-or-false scenarios)
Lesson 3.2 Reflection

1. How can we check multiple conditions using the i f block?

ANS: We can use the e1 f (else if) block to check multiple conditions. If a condition
specified in the if block is not satisfied or if it evaluates to false, it checks for the
condition specified in the e 11 f block. If all the specified conditions are evaluated to
False, the e1se block is executed.

Lesson 3.3 Reflection

1. What will happen if a condition in while statement does not become false? Will the
program still be useful?

ANS: A loop will continue to run infinitely if a condition never becomes False. This will
lead to an infinite loop. This loop can only be used where the server needs to run
continuously.

Lesson 3.4 Reflection

1. When is it best to use a while loop and when is it best to use an if loop?

ANS: When it is not possible to predict the number of iterations, you can use while loop. 'If'
statement can be used when conditions are known, and the decisions are to be made depending
upon certain conditions.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Lesson 3.5 Reflection

1. Why is iteration important? Why is it also called as looping?

ANS: Iterations simplify the programs by stating the steps that we are going to repeat, thus
helping us to avoid the code redundancy. Since we go back to one of the previous steps to
check if the condition is met, we call it looping.

Lesson 3.6 Reflection

1. What will happen if the condition is not specified in for loop and the while loop?

ANS: If the condition of the 'for' loop is not specified, the iteration will continue for
infinite times. In contrast to this, if the condition of the ‘while’ loop is not specified, a
compilation error occurs.

Lesson 3.7 Reflection

1. What are some supported data types for the range function arguments based on
the examples we have seen?

ANS: Integers are the supported data types for range function arguments.
Lesson 3.8 Reflection

1. How do nested for loops work?

ANS: Nested loops are loops within loops. In case we have a nested loop in the code, first
the iteration of the outer loop is executed. Next, the nested loop is triggered by this outer
loop. On execution of the inner loop, the control is again passed to the outer loop to
complete the next iteration. This repeats until the looping conditions are satisfied.

Lesson 3.9 Reflection

1. What are the differences between pass, continue, and break?

ANS: The break statement pauses or exits an execution flow if a condition is met. The
continue statement skips over a condition's result and resumes the execution flow while
the pass statement simply tells the program to do nothing.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 4

Functions

Module Objectives
= Describe the various function types in Python

= Define global and local variables
= Define a function that takes in a variable number of arguments

Solutions to Reflection
Lesson 4.1 Reflection
1. What are some of the names and uses of built in functions we have encountered so far?
ANS: We used print() to print the given object/text to the console. We used string functions
such as len() to calculate the length of the string. We also covered the range() function,
which is used to return a sequence of numbers until a specified limit. It starts from 0 and

increments by 1 every time.

Lesson 4.2 Reflection

1. What is the difference between functions and methods? Give an example of each.
ANS: A method always belongs to a given object while function does not necessarily
belong to an object. Function is defined as function_name(parameters) whereas a method
defined as object.method(). Functions are applicable for different type of objects. Consider
len() function. It can be used with both strings and lists while replace() is a string method
that cannot be used with list.

Lesson 4.3 Reflection

1. What are the benefits of using keyword arguments?
ANS: Keyword arguments can be rearranged to improve readability. Arguments with
default values can be left out. Arguments call can be done by using their names thus
denoting what each argument represents.

Lesson 4.4 Reflection

1. Inwhat scenarios do we use anonymous functions?

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

ANS: When you have to repeat a single task throughout the program temporary functions can
be useful. Here, anonymous function come to the rescue as it is valid between the scope.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 5

Lists and Tuples

Module Objectives

= Create and access lists in Python

= Describe the various methods that are available in lists, and use them in your Python
programs

= Create and access tuples in Python

= |dentify the differences between tuples and list

= Implement the various built-in methods that are available with tuples

Solutions to Reflection

Lesson 5.1 Reflection

1. What are the similarities between lists and arrays?

ANS: The similarities between list and array are that for both the datatypes are mutable
and are used for data storage. We can iterate over both the datatypes and both can be
sliced and indexed.

Lesson 5.2 Reflection

1. Which list method can be used to iterate over a string? How does it work?

ANS: list.extend(iterable) method can be used to iterate over the given string or any other
iterable datatype. It appends all the items from the string to the list by looping through
every character in the string (including the spaces) thus extending the list further.

Lesson 5.3 Reflection
1. What are the advantages of using list comprehensions?
ANS: We can reduce three lines of code into one, which can be understood by anyone who
is aware of list comprehensions. Python allocates the memory to the list before adding any

the elements to it. This helps us to avoid resizing the list on runtime, thus making the code
faster.

Lesson 5.4 Reflection

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

1. Istuple mutable or immutable? Explain why.

ANS: Tuples are immutable as we cannot make changes to the elements of a tuple once it
has been assigned. However, if the assigned element is a list (mutable in nature), we can
change its nested item.

Lesson 5.5 Reflection

1. When is it preferable to use slicing and indexing? Why?

ANS: When the index position of an object is unknown, we can use the slicing instead of
indexing. Trying to acquire the value of an invalid index will lead to IndexError. In
contrast, slicing will simply return an empty object if the given index is not found.

Lesson 5.6 Reflection

1. Is it possible to convert a list into tuple? How?

ANS: Yes, the tuple() method is used to convert a list into tuple. The syntax of the tuple()
function is tuple(list). Here, the list is the sequence that we want to convert into a tuple. If
we do not pass any sequence to the function, it will return an empty tuple.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 6

Dictionaries and Sets

Module Objectives

Create and use dictionaries

Use methods and attributes associated with dictionaries

Describe and use ordered dictionaries to store and retrieve data in a
predictable order

Create sets, as well as add, read, and remove data from them
Describe the attributes defined on set objects

Describe frozen sets

Solutions to Reflection

Lesson 6.1 Reflection

1. What is the difference between ordered and unordered dictionary?

ANS: Insertion order is not tracked in a regular dictionary. However, the insertion order is
tracked and utilized while creating an iterator in an unordered dictionary. When testing for
equality, regular dictionary considers its contents whereas ordered dictionary looks at the
order in which items were inserted.

Lesson 6.2 Reflection

1. What are the differences in adding data to a dictionary on creation when using
the dict() function and using curly bracket notation? Do they result in the same dictionary
object being created?

ANS: Differences are in syntax (dict method takes arguments like a=b whereas curly
bracket notation uses : to denote key value pairs). The result is the same dictionary object.

Lesson 6.3 Reflection

1. What benefits would you get from using the in keyword instead of iteration?

ANS: Faster code execution and more concise syntax.

Lesson 6.4 Reflection

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

1.

Can you name a set of items they have encountered in real life?

ANS: A set brings to mind a collection of items. Students can name any collection of
unique items as sets they have encountered. An example could be a set of names, for
example, Peter, Paul, and Mary.

Lesson 6.5 Reflection

1.

Imagine a situation where you have three sets: A, B, and C. Set A is the names of people
who ate food A, set B is of people who ate food B, and so on. A person could have eaten
more than one food type so a name could, for example, be in both set A and C. You have
another set of names D. This is a set of names of people who got food poisoning. How
would you go about finding which food caused the food poisoning?

ANS: A decent attempt would be to get the intersection of set D with A, B, and C and the
intersection with the highest number of names would reveal the culprit.

Lesson 6.6 Reflection

1. Can you name a set of items you have encountered in real life?

ANS: A set brings to mind a collection of items. Students can name any collection of
unique items as sets they have encountered. An example could be a set of names, for
example, Peter, Paul, and Mary.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 7

Object-Oriented Programming

Module Objectives

Explain different OOP concepts and the importance of OOP
Instantiate a class

Describe how to define instance methods and pass arguments to them
Declare class attributes and class methods

Describe how to override methods

Implement multiple inheritance

Lesson 7.1 Reflection

1. What is a programming paradigm? Name and explain any two.

ANS: A programming paradigm is way of solving problems using programming
languages. Some common paradigms are object-oriented and procedural. Functional
programming is a way of developing software by creating functions throughout.
Object-oriented programs are developed using classes and objects.

Lesson 7.2 Reflection

1. What are the benefits of using multiple inheritance?

ANS: Multiple Inheritance allows to compose classes using the functionalities of
multiple modules at the same time. This also enables code reusability.

2. What are some characteristics of a person you can think of?

ANS: Every person has a name, age, weight, occupation, and so on.

Lesson 7.3 Reflection

1. How is the this keyword used in Python?

ANS: An equivalent to self in other languages is the this keyword, such as in C++,
Java, or JavaScript.

Lesson 7.4 Reflection

1. What is the function of the __dict__ attribute?

ANS: All Python objects have a hidden dictionary attribute that holds all the
attributes of that object. It helps with stability.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Lesson 7.5 Reflection

1. What are the behaviors of an object referred to as?

ANS: Methods.

2. What is the use of pass?

ANS: pass is a placeholder for when we don't have any instructions to place in a
block. It essentially tells the interpreter to do nothing.

Lesson 7.6 Reflection

1. What is the purpose of overriding?

ANS: To modify the behavior of a subclass that's already been defined by a parent
class.

Lesson 7.7 Reflection

1. What is one of the risks with attributes in multiple inheritance, and how does python
resolve issues?

ANS: With multiple inheritance there may be issues with attributes if they have the
same name. When implementing a function with the same name Python gives priority
to the parent classes in the order of depth first, left to right.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 8

Modules, Packages, and File Operations

Module Objectives

Describe what Python modules are and create your own
Describe what Python packages are and create your own
Work with the built-in Python modules

Describe the fi1e object in Python

= Read and write to Python files
= Work with structured data in Python files

Solutions to Reflection

Lesson 8.1 Reflection

1.

Why do we use Python import statement? What happens when the interpreter
encounters an import statement?

ANS: The primary use of import statement is to gain access to the code present in
another module. The compiler then imports the module if the module is present.

Lesson 8.2 Reflection

1.

In what situation can file operations fail?

ANS: File operations can fail in situations wherein the operation is not defined for some
reasons like opening a file that does not exist or writing a file opened for reading. It can
also fail in situations where usage of modes is improper.

Lesson 8.3 Reflection

1.

What are some Python best practices when building user modules?

ANS: Some best practices include using four spaces for indentation, using snake_case
for variable names, and so on. The following are some examples:

1. Naming variables, functions, modules—Ilowercase_with_underscores.

2. Naming classes—CapitalizeFirstLetters.

3. Avoid variable names like k, ¢, and so on, except where their meanings can be
derived from the context, for example, looping.

4. Use comments sparingly.

5. Write tests.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Lesson 8.4 Reflection
1. What does the PATH variable normally do?

ANS: The PATH variable defines where executable items are to be found on a
computer's disk. Any commands you run will be resolved by the OS referencing this
variable to know where to look for the program you are trying to invoke.

Lesson 8.5 Reflection
1. What kind of file types have you come across?
ANS: Examples could be .txt, .xIsx, .docx, and so on.
Lesson 8.6 Reflection
1. What do you think the w flag does? What are the common errors in file operations?
ANS: Using w instead of a will clear the existing file. Examples are FileNotFound,

opening the file in the wrong mode, and so on.

2. Structured data is data that must be arranged in a particular format. Have you
ever encountered any structured data before?

ANS: Students could have encountered JSON, XML, or CSV files. Other examples are
spreadsheets, for example, Pages files or Excel files.

Lesson 8.7 Reflection
1. What is a CSV file and what are the advantages of this format?
ANS: A CSV file uses a predetermined separation character, such as a comma, to
separate data points. It can be saved as plain text or even copy and pasted, so has fairly
small files size and can easily be used by various applications.

2. When might you see JSON data?

ANS: JSON is Javascript Object Notation and is often found in data transfer used by
third-party APIs.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Module 9

Error Handling

Module Objectives
= Describe what errors and exceptions are
= Handle errors and exceptions when they occur
= Define and use your own custom exceptions

Solutions to Reflection
Lesson 9.1 Reflection
1. What is the difference between errors and exceptions?
ANS: Most of the times we cannot handle the errors. They are unchecked exceptions
and we cannot do anything to handle them. They are also referred to as bugs.
Exceptions are errors that occur during the execution of the program.
Lesson 9.2 Reflection
1. What leads to syntax error in Python?
ANS: Syntax errors can be caused by misplacing a keyword in the code. It can also be
caused by a missing semicolon or comma or due to extra braces. It can also be caused
by misspelling a keyword, incorrect indentation, or empty code block.
Lesson 9.3 Reflection
1. Why do you think we should handle errors and exceptions?
ANS: To prevent our code from responding unexpectedly to error conditions.
Lesson 9.4 Reflection

1. What is the advantage of creating your own custom exception class?

ANS: You can catch errors that might be specific to your code or give error reports that
specifically tell you what kind of error you have found.

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

