
Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Python Fundamentals
ISBN MindTap:

Welcome to Python Fundamentals. This Instructor’s Manual will help you navigate the unique

activities that are included in the MindTap, which will better enable you to include the exercises

in your curriculum. While the content included in this MindTap is specific to the discipline and

course, the functionality will act the same as you move from product to product.

For additional resources on our MindTap platform, please click HERE. At this site, you will find

User Guides, Self-Training Videos, Training Webinars, and Podcasts. We also include

Resources that are specific to your campus’s LMS, should additional information be needed.

Student versions of the same resources are located HERE. This link can be shared with your

students directly, should they have any questions about the product.

https://www.cengage.com/training/mindtap
https://www.cengage.com/training/mindtap?terms=&pageSize=300&pageNumber=1&sortBy=cengage:sequenceNumber&audience=Student&platform=MindTap

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

At a Glance

Instructor’s Manual Table of Contents

• Course Learning Design

• Lab Details

• Module Objectives

• Solutions to Reflection

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Course Learning Design

In creating the digital learning path, we aimed to provide your students with a coherently

structured experience that:

• supports and aligns the learning objectives with the course content, instructional

strategies, and assessments;

• addresses individual learner differences and preferences;

• welcomes learners of all abilities and backgrounds; and

• enhances learner motivation by providing them with relevant, applicable learning

experiences consistent with their own learning and professional goals.

We’re excited to present you with the digital course experience and want to draw your attention

to some of the design decisions we made as part of ensuring your confidence in our ability to

create an effective, quality learning experience.

Course Learning Design

Course

Description

As you work with the language, you’ll learn about control statements, delve into controlling program flow, and

gradually work on more structured programs via functions. MindTap for Python Fundamentals teaches problem-

solving skills for building efficient applications. As you settle into the Python ecosystem, you’ll learn about data

structures and study ways to correctly store and represent information. By working through specific examples, you’ll

learn how Python implements object-oriented programming (OOP) concepts of abstraction, encapsulation of data,

inheritance, and polymorphism. Coverage also includes an overview of how imports, modules, and packages work in

Python, how you can handle errors to prevent apps from crashing, as well as file manipulation.

Course

Approach

(9 modules in

course)

This course teaches students how to write systematic code in Python and improve application efficiency with hands-on

practice, step-by-step instruction, and provides immediate feedback and troubleshooting support on their code.

Students will develop skills that are in-demand by employers by completing authentic, real-world coding projects that

can be added to their GitHub portfolios.

Module

Approach

Each module is broken into 2–6 lessons—within each lesson are activities that align to meet specific learning

objectives that are concrete and actionable.

Within each lesson, the student will read some narrative and follow up with hands-on learning. There are four types of

online labs in this course:

1. Practice Exercises (Ungraded) provide an opportunity to practice a new concept in a short coding

activity. Students are provided with guided instructional materials alongside a live computing

environment. There will typically be 1–3 practice labs in each lesson and there are on average around 5

lessons per module (around 5 practice/module).

2. Lab Activities (Auto-Graded) are coding activities that are completed by a student and contain auto-

grading that feeds directly to the gradebook. Learners demonstrate an understanding of numerous

concepts by completing tasks. Tasks are verified using unit tests, I/O tests, image and webpage

comparison, debugging tests, and many other checks. There will be a lab assessment for every lesson

and there are on average around 5 lessons per module (around 5 labs per module).

3. Module Lab Assessments (Auto- and Manual-Graded) encompass all the learning objectives in the

module. Students are asked to complete a larger, authentic assignment with many tasks. Some tasks will

be verified using unit tests, I/O tests, image and webpage comparison, debugging tests but other tasks

will be unique to each student’s project and will require manual grading. The goal of these assignments

is to prove that students have mastered the learning objectives in the module and in doing so have also

created a program for their GitHub portfolio (1 Module Lab Assessment per module).

4. Capstone Lab Assessment (Auto- and Manual-Graded) is a final project that is the summative

assessment. The goal of this assignment is to prove that students have mastered the course objectives

and in doing so have also created a program for their GitHub portfolio (1 Capstone Lab Assessment per

course).

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Learning Path

Activities

How many

in course

What is it? Why it matters? Seat time

Welcome to

Your Course

1

This is a brief overview of

the course objectives that

will be covered in the

modules of this MindTap.

Students will gain a clear understanding of the course

objectives and will explore how this course offers the

opportunity to not only read but watch videos, engage

in critical-thinking simulations and hands-on trainings,

teach them how to use the technology, and take quizzes

to practice and check their understanding.

5 minutes

Getting Started

Resources

1 This section includes videos

that provide an overview of

the MindTap platform and

the Coding IDE. There are

3 lab Pre-Requisites, 2 of

which count toward the

grade.

Students will learn how to use MindTap to its fullest

potential, which will help them excel in the course.

They’ll also be introduced to the IDE’s functionality in

6 brief videos. They’ll then complete 3 Lab Pre-

Requisites, 1 is practice and 2 count toward their grade.

30 minutes

Pre- and Post-

Course

Assessments

27

questions

each

assessment

Brief survey to-assess

students’ knowledge of the

subject matter before and

after completing the course.

For students: It creates awareness around what they

will learn (pre) and how much they have learned (post).

For instructors: It establishes a baseline of what

students already know (pre) and demonstrates how

much they learned (post).

For administrators: Coupling the pre- and post-

course assessment provides data on how much the

students learned and the overall impact of the course.

40 minutes

Module Content (9 modules total)

Readings for

each module

lesson; 2–6

lessons per

module

~7 Short

readings

per module

(69 total in

course)

Readings reinforce learning

objectives.

Students will read succinct, focused excerpts vs long

chapters (then move into an interactive activity).

55 minutes

Practice

Exercises

~5 per

module (48

total in

course)

Short coding exercises in an

IDE (non-graded)

Students complete step-by-step coding exercises that

offer a practical, hands-on approach to acquiring and

retaining new concepts and skills.

2-5 minutes

Lab Activity

(Graded)

~5 per

module (41

total in

course)

Scenario-based coding labs

in an IDE (auto-graded)

These scenario-based activities bring together skills

learned throughout the topics and lessons to solve real-

world problems.

30 minutes

Reflection ~6 per

module (51

total in

course)

Essay question The reflection prompt challenges students to develop

higher-level thinking and promotes problem-solving.

This is also an opportunity for you to confirm that

tricky topics are understood.

15 minutes

Module Quizzes ~1 per

module (9

total in

course)

Includes 10 multiple-choice

questions at the end of each

module.

The student can integrate material across the entire

lesson and check their understanding before moving on

to the next lesson.

10 minutes

Module Lab

Assessment

(Auto & Manual

Grading)

1 per

module (9

total in

course)

A larger coding project in

our IDE that assesses

whether students have

mastered the Learning

Objectives in the module.

A larger lab with an authentic development project

with many tasks. Upon completion, students will have

9 large coding projects for their GitHub portfolios.

1–2 hours

Capstone Lab

Assessment

1 per

course

Final coding project in our

IDE that assesses whether

A larger lab with an authentic development project

with many tasks. Upon completion, students will have

2–5 hours

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Topic/Chapter Assignments

Module 1

Introducing Python

Lessons 1.1 – 1.4 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz
Module 2

Data Types

Lessons 2.1 – 2.4 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Module 3

Control Statements

Lessons 3.1 – 3.9 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Module 4

Functions

Lessons 4.1 – 4.4 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Module 5

Lists and Tuples

Lessons 5.1 – 5.6 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Module 6

Dictionaries and

Sets

Lessons 6.1 – 6.6 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Module 7

Object-Oriented

Programming

Lessons 7.1 – 7.7 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Module 8

Modules, Packages,

and File Operations

Lessons 8.1 – 8.7 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Module 9

Error Handling

Lessons 9.1 – 9/4 Reading

Practice Exercises

Lab Activities

Reflection

Module Quiz

Capstone Lab

Assessment:

students have mastered the

Course Objectives.

1 additional coding project to add to their GitHub

portfolio.

Instructor Test

Bank

1 per

module (9

total in

course)

An exam of 451 objective-

based questions based on

each module available in

the CNOW app.

The Test Bank evaluates the student on their mastery of

that module.

30 minutes

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Unit Testing Rest

APIs

Lab Details
There are 48 Practice Exercises, 41 Lab Activities, 9 Module Lab Assessments, and 1 Capstone

Lab Assessment across 9 modules.

Lab Types
Practice Exercises:

• Practice Exercises are coding lab assignments within the IDE that allow you to practice

writing and running code.

• Practice Exercises are not graded and are not captured in the Progress App. These are

designated in the learning path:

Lab Activities:
• Lab Activities are coding lab assignments within the IDE that run tests against your code

to ensure that the objectives in the activity have been satisfied.

• Lab Activities are automatically graded unless otherwise noted in the learning path as

“PRACTICE”. All graded labs are designated in the learning path as “COUNTS

TOWARDS GRADE”.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

• You will work through the Lab Activities and “Run Checks” as you work through the

problems. Once you have completed the assignment, you can “Submit”, which will send

your lab to your instructor.

• Note that instructors have the capability to review code submissions and alter grades as

they see fit. Grade submissions are not final.

Module Lab Assessments and Capstone Lab Assessment:
• The Lab Assessments are coding lab assignments within the IDE that provide you with an

authentic scenario to test your coding skills.

• There is one Module Lab Assessment per module, and one Capstone Lab Assessment for

the entire course.

• Lab Assessments are partially automatically graded and partially manually graded by

your instructor. These are designated in the learning path with a “This lab is partially

auto-graded and partially manually graded by your instructor” description. All graded

labs are designated in the learning path as “COUNTS TOWARDS GRADE”.

• Note that instructors have the capability to review code submissions and alter grades as

they see fit. Grade submissions are not final.

List of Coding Labs

Coding IDE Lab Prerequisite for Practice Exercises Practice

Coding IDE Lab Prerequisite for Lab Activities Auto-Grade

Coding IDE Lab Prerequisite for Module and Capstone Lab

Assessments

Auto / Manual Grade

Module 1

Practice Exercise 1.1A: Checking our Python Installation Practice

Practice Exercise 1.1B: Working with the Python Interpreter Practice

Lab Activity 1.1: Working with the Python Shell Auto-Grade

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Practice Exercise 1.2: Creating a Script Practice

Lab Activity 1.2: Running Simple Python Scripts Auto-Grade

Practice Exercise 1.3A: Checking the Type of a Value Practice

Practice Exercise 1.3B: Using Variables Practice

Lab Activity 1.3A: Using Variables and Assign Statements Auto-Grade

Practice Exercise 1.3C: Python Keywords Practice

Lab Activity 1.3B: Variable Assignment and Variable Naming
Conventions

Auto-Grade

Practice Exercise 1.4A: Fetching and Using User Input Practice

Practice Exercise 1.4B: The Importance of Proper Indentation Practice

Lab Activity 1.4A: Fixing Indentations in a Code Block Auto-Grade

Lab Activity 1.4B: Implementing User Input and Comments in a
Script

Auto-Grade

Module Lab Assessment 1: Creating a Unit Converter Auto / Manual Grade

Module 2

Practice Exercise 2.1: Converting Between Different Types of
Number Systems

Practice

Lab Activity 2.1A: Order of Operations Auto-Grade

Lab Activity 2.1B: Using Different Arithmetic Operators Auto-Grade

Lab Activity 2.2A: String Slicing Practice

Lab Activity 2.2B: Working with Strings Auto-Grade

Practice Exercise 2.2: Using Escape Sequences Practice

Lab Activity 2.2C: Manipulating Strings Auto-Grade

Practice Exercise 2.3: List References Practice

Lab Activity 2.3: Working with Lists Auto-Grade

Lab Activity 2.4: Using Boolean Operators Auto-Grade

Module Lab Assessment 2: Resource URL Validator Auto / Manual Grade

Module 3

Practice Exercise 3.2: Using the if Statement Practice

Lab Activity 3.2: Working with the if Statement Auto-Grade

Practice Exercise 3.3A: Using the while Statement Practice

Practice Exercise 3.3B: Using while to Keep a Program Running Practice

Lab Activity 3.3: Working with the while Statement Auto-Grade

Practice Exercise 3.6: Using the for Loop Practice

Lab Activity 3.7: The for Loop and the range Function Auto-Grade

Practice Exercise 3.8: Using Nested Loops Practice

Lab Activity 3.8: Nested Loops Auto-Grade

Lab Activity 3.9: Breaking Out of Loops Auto-Grade

Module Lab Assessment 3: Abby's Ice Cream Shop Auto / Manual Grade

Module 4

Practice Exercise 4.2: Defining Global and Local Variables Practice

Lab Activity 4.3: Function Arguments Auto-Grade

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Practice Exercise 4.4: Creating a Lambda Function Practice

Lab Activity 4.4: Using Lambda Functions Auto-Grade

Module Lab Assessment 4: AppInvest Return on Investment
Function

Auto / Manual Grade

Module 5

Lab Activity 5.2: Using the List Methods Auto-Grade

Practice Exercise 5.4: Creating a Tuple Practice

Practice Exercise 5.5A: Accessing Tuple Elements Using Indexing Practice

Practice Exercise 5.5B: Accessing Tuple Elements Using Slicing Practice

Lab Activity 5.6: Using Tuple Methods Auto-Grade

Module Lab Assessment 5: Creating a Blackjack Simulator Auto / Manual Grade

Module 6

Lab Activity 6.1A: Creating a Dictionary Auto-Grade

Practice Exercise 6.1: Adding, Reading, and Iterating through a
Dictionary

Practice

Lab Activity 6.1B: Arranging and Presenting Data Using
Dictionaries

Auto-Grade

Lab Activity 6.1C: Combining Dictionaries Auto-Grade

Practice Exercise 6.2: Updating, Editing, and Copying from a
Dictionary

Practice

Lab Activity 6.4: Building a Set Auto-Grade

Practice Exercise 6.4: Adding, Reading, Editing, and Building a Set Practice

Lab Activity 6.5: Creating Unions of Elements in a Collection Auto-Grade

Practice Exercise 6.5: Unions, Differences, and Intersection of
Sets

Practice

Practice Exercise 6.6: Frozen Sets Practice

Module Lab Assessment 6: Space Explorer (Dictionaries and Sets) Auto / Manual Grade

Module 7

Practice Exercise 7.2: Adding Attributes to a Class Practice

Lab Activity 7.2: Defining a Class and Objects Auto-Grade

Lab Activity 7.3: Defining Methods in a Class Auto-Grade

Practice Exercise 7.4A: Declaring a Class with Instance Attributes Practice

Practice Exercise 7.4B: Implementing a Counter for Instances of a
Class

Practice

Lab Activity 7.4: Creating Class Attributes Auto-Grade

Practice Exercise 7.5A: Testing our Factory Method Practice

Practice Exercise 7.5B: Accessing Class Attributes from within
Class Methods

Practice

Lab Activity 7.5: Creating Class Methods and Using Information
Hiding

Auto-Grade

Practice Exercise 7.6: Implementing Class Inheritance Practice

Lab Activity 7.6: Overriding Methods Auto-Grade

Practice Exercise 7.7: Implementing Multiple Inheritance Practice

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Lab Activity 7.7: Practicing Multiple Inheritance Auto-Grade

Module Lab Assessment 7: Petri Dish Simulation (Object-
Oriented Programming)

Auto / Manual Grade

Module 8

Practice Exercise 8.1: Creating and Importing a User-Defined
Module

Practice

Practice Exercise 8.2A: Importing Modules Practice

Practice Exercise 8.2B: Importing Functions from User-Defined
Modules

Practice

Practice Exercise 8.3: Inspecting Modules and Packages Practice

Lab Activity 8.3A: Inspecting Modules Auto-Grade

Lab Activity 8.3B: Listing the Resources Defined in a Package or
Module

Auto-Grade

Lab Activity 8.3C: Using Resources in a Module Auto-Grade

Practice Exercise 8.6A: Creating and Writing to a Text File Practice

Practice Exercise 8.6B: Read Using with Keyword Practice

Practice Exercise 8.6C: File Operations Practice

Lab Activity 8.6: Performing File Operations Auto-Grade

Practice Exercise 8.7A: Reading a CSV file Practice

Practice Exercise 8.7B: Write a dict to CSV Practice

Lab Activity 8.7: Working with Files Auto-Grade

Practice Exercise 8.7C: Working with JSON Practice

Module Lab Assessment 8: Mailing List Validation File Processing Auto / Manual Grade

Module 9

Practice Exercise 9.1A: Raise an Exception Practice

Practice Exercise 9.1B: Raise an Exception with the raise
Keyword

Practice

Lab Activity 9.2: Identifying Error Scenarios Auto-Grade

Practice Exercise 9.3A: Implement a try...except Block Practice

Practice Exercise 9.3B: Implementing the try…except…else Block Practice

Lab Activity 9.3: Handling Errors Auto-Grade

Practice Exercise 9.4: Catch an Error and Raise an Exception Practice

Lab Activity 9.4: Creating Your Own Custom Exception Class Auto-Grade

Module Lab Assessment 9: Error Handling Auto / Manual Grade

Capstone Lab Assessment: Unit Testing Rest APIs Auto / Manual Grade

A Note to Instructors:

COUNTS TOWARD GRADE/PRACTICE: Whether a lab COUNTS TOWARD GRADE or

is PRACTICE, as indicated in the Learning Path, is preset and cannot be changed. Changing the

Gradeable field within MindTap will not change the gradeability of the actual labs. We

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

recommend not changing these default settings to avoid discrepancies between the MindTap

plank description and the actual lab.

• COUNTS TOWARD GRADE = lab is automatically or manually graded and the score is

captured in the Progress App

• PRACTICE = lab is not graded and the score is not captured in the Progress App

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 1

Introducing Python

Module Objectives

▪ Use the Python interactive shell to write simple programs

▪ Write and run simple Python scripts

▪ Write and run dynamic scripts that take arguments from the command line

▪ Use variables and describe the different types of values that variables can be

▪ assigned

▪ Get user input from the keyboard for your Python programs

▪ Explain the importance of comments and write them in Python

Explain the importance of whitespace and indentation in Python

Solutions to Reflection

Lesson 1.1 Reflection

1. Which other operating system shells are you familiar with?

ANS: Bourne-again shell (Bash), Z shell, and Korn shell for Unix-based systems such as

Linux and the Windows and Windows PowerShell.

2. What are the benefits of the Python interactive shell?

ANS: It allows you to quickly execute Python commands without having to compile

anything. It also allows you to do quick tests.

Lesson 1.2 Reflection

1. What are the advantages of two different methods of running Python programs?

ANS:

Pros of the interactive shell:

1) Running Python programs via the interactive shell has the benefit of being able to run

quick tests/experiments as opposed to running a saved module, which has the

overheads of creating a file and having to change and save it if you want to run those

changes.

2) You can run quick calculations using the Python interactive shell.

Pros of running a saved script:

1) You can reuse code by either running the same script or importing it into your

module.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

2) You can automate different tasks and have them run on your system on a schedule.

Lesson 1.3 Reflection

1. Why do we get a syntax error when we try to assign reserved words?

ANS: The Python interpreter tries to parse the keyword's syntactical meaning, which
doesn't fit into the context of a variable assignment. For example, when you try
assigning the keyword if, Python looks for a condition next but instead finds an equals
sign, which is invalid.

2. Mark the following variable names as valid or invalid and state why.

1) TestTOKEN
2) new-list
3) __
4) TOTAL
5) if
6) array2
7) 2_nd
8) void
9) five%
10) n123456789
11) LastLetter
12) maximum width
13) $HOME

ANS: Valid variable names: 1, 3, 4, 6, 8, 10, 11. Invalid variable names: 2, 5, 7, 9, 12, 13.

Lesson 1.4 Reflection

1. How does Python indentation help while writing scripts and code?

ANS: The indentation in Python can increase the clarity of the code by making it obvious

to a human reader which blocks of code belong together.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 2

Data Types

Module Objectives

▪ Explain the different numerical data types

▪ Use operators on numerical data types

▪ Explain strings and implement string operations, such as indexing, slicing, and

▪ string formatting

▪ Describe escape sequences

▪ Explain lists and perform simple operations on them

▪ Use Boolean expressions and Boolean operators

Solutions to Reflection

Lesson 2.1 Reflection

1. Which of the following are invalid Python operations and why?

1) 941 + 38

2) 348 / 29

3) 51 \\ 3

4) 23 - 17

5) 9^2

6) 100++

7) -35

8) exp(2, 3)

ANS: 3, 5, 6, and 8. These particular options do not use the correct mathematical

operators

Lesson 2.2 Reflection

1. What are string indices? What are indices used for?

ANS: String indices are the positions of each of the characters of the string. Indices are

used when accessing the characters of the string.

Lesson 2.3 Reflection

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1. How would you describe an array?

ANS: An array is a collection of values. They are used to hold multiple values that are
related to each other.

2. Given the following change to the list, what will be the new value of

the mystery_box list?

>>> mystery_box = ["sock", 42.5, "book", 650]

>>> mystery_box[2] = "string"

>>> print(mystery_box)

Given the following change to the list, what will be the new value of the corvids lists?

>>> corvids = ["crow", "raven", "magpie"]

>>> corvids[3] = "jackdaw"

>>> print(corvids)

ANS: ["sock", 42.5, "string", 650]. It will fail on the second line and raise an IndexError

since there is no element at index 3 to change.

Lesson 2.4 Reflection

1. What is the difference between the is and == operators?

ANS: The is operator checks the identity of each object passed to it and checks whether

they are the same object while the == operator simply compares the value of the object

regardless of whether or not they are different objects.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 3

Control Statements

Module Objectives

▪ Describe the different control statements in Python

▪ Control program execution flow using control statements such as if and while

▪ Use looping structures in your Python programs

▪ Implement branching within looping structures such as for and range

▪ Implement breaking out of loops

Solutions to Reflection

Lesson 3.1 Reflection

1. What are some example execution flow scenarios that you think Python can handle?

ANS: Mathematical computations and Boolean decisions (true-or-false scenarios)

Lesson 3.2 Reflection

1. How can we check multiple conditions using the if block?

ANS: We can use the elif (else if) block to check multiple conditions. If a condition

specified in the if block is not satisfied or if it evaluates to false, it checks for the

condition specified in the elif block. If all the specified conditions are evaluated to

False, the else block is executed.

Lesson 3.3 Reflection

1. What will happen if a condition in while statement does not become false? Will the

program still be useful?

ANS: A loop will continue to run infinitely if a condition never becomes False. This will

lead to an infinite loop. This loop can only be used where the server needs to run

continuously.

Lesson 3.4 Reflection

1. When is it best to use a while loop and when is it best to use an if loop?

ANS: When it is not possible to predict the number of iterations, you can use while loop. 'If'

statement can be used when conditions are known, and the decisions are to be made depending

upon certain conditions.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Lesson 3.5 Reflection

1. Why is iteration important? Why is it also called as looping?

ANS: Iterations simplify the programs by stating the steps that we are going to repeat, thus

helping us to avoid the code redundancy. Since we go back to one of the previous steps to

check if the condition is met, we call it looping.

Lesson 3.6 Reflection

1. What will happen if the condition is not specified in for loop and the while loop?

ANS: If the condition of the 'for' loop is not specified, the iteration will continue for

infinite times. In contrast to this, if the condition of the 'while' loop is not specified, a

compilation error occurs.

Lesson 3.7 Reflection

1. What are some supported data types for the range function arguments based on

the examples we have seen?

ANS: Integers are the supported data types for range function arguments.

Lesson 3.8 Reflection

1. How do nested for loops work?

ANS: Nested loops are loops within loops. In case we have a nested loop in the code, first

the iteration of the outer loop is executed. Next, the nested loop is triggered by this outer

loop. On execution of the inner loop, the control is again passed to the outer loop to

complete the next iteration. This repeats until the looping conditions are satisfied.

Lesson 3.9 Reflection

1. What are the differences between pass, continue, and break?

ANS: The break statement pauses or exits an execution flow if a condition is met. The

continue statement skips over a condition's result and resumes the execution flow while

the pass statement simply tells the program to do nothing.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 4

Functions

Module Objectives

▪ Describe the various function types in Python

▪ Define global and local variables

▪ Define a function that takes in a variable number of arguments

Solutions to Reflection

Lesson 4.1 Reflection

1. What are some of the names and uses of built in functions we have encountered so far?

ANS: We used print() to print the given object/text to the console. We used string functions

such as len() to calculate the length of the string. We also covered the range() function,

which is used to return a sequence of numbers until a specified limit. It starts from 0 and

increments by 1 every time.

Lesson 4.2 Reflection

1. What is the difference between functions and methods? Give an example of each.

ANS: A method always belongs to a given object while function does not necessarily

belong to an object. Function is defined as function_name(parameters) whereas a method

defined as object.method(). Functions are applicable for different type of objects. Consider

len() function. It can be used with both strings and lists while replace() is a string method

that cannot be used with list.

Lesson 4.3 Reflection

1. What are the benefits of using keyword arguments?

ANS: Keyword arguments can be rearranged to improve readability. Arguments with

default values can be left out. Arguments call can be done by using their names thus

denoting what each argument represents.

Lesson 4.4 Reflection

1. In what scenarios do we use anonymous functions?

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

ANS: When you have to repeat a single task throughout the program temporary functions can

be useful. Here, anonymous function come to the rescue as it is valid between the scope.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 5

Lists and Tuples

Module Objectives

▪ Create and access lists in Python

▪ Describe the various methods that are available in lists, and use them in your Python

programs

▪ Create and access tuples in Python

▪ Identify the differences between tuples and list

▪ Implement the various built-in methods that are available with tuples

Solutions to Reflection

Lesson 5.1 Reflection

1. What are the similarities between lists and arrays?

ANS: The similarities between list and array are that for both the datatypes are mutable

and are used for data storage. We can iterate over both the datatypes and both can be

sliced and indexed.

Lesson 5.2 Reflection

1. Which list method can be used to iterate over a string? How does it work?

ANS: list.extend(iterable) method can be used to iterate over the given string or any other

iterable datatype. It appends all the items from the string to the list by looping through

every character in the string (including the spaces) thus extending the list further.

Lesson 5.3 Reflection

1. What are the advantages of using list comprehensions?

ANS: We can reduce three lines of code into one, which can be understood by anyone who

is aware of list comprehensions. Python allocates the memory to the list before adding any

the elements to it. This helps us to avoid resizing the list on runtime, thus making the code

faster.

Lesson 5.4 Reflection

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1. Is tuple mutable or immutable? Explain why.

ANS: Tuples are immutable as we cannot make changes to the elements of a tuple once it

has been assigned. However, if the assigned element is a list (mutable in nature), we can

change its nested item.

Lesson 5.5 Reflection

1. When is it preferable to use slicing and indexing? Why?

ANS: When the index position of an object is unknown, we can use the slicing instead of

indexing. Trying to acquire the value of an invalid index will lead to IndexError. In

contrast, slicing will simply return an empty object if the given index is not found.

Lesson 5.6 Reflection

1. Is it possible to convert a list into tuple? How?

ANS: Yes, the tuple() method is used to convert a list into tuple. The syntax of the tuple()

function is tuple(list). Here, the list is the sequence that we want to convert into a tuple. If

we do not pass any sequence to the function, it will return an empty tuple.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 6

Dictionaries and Sets

Module Objectives

▪ Create and use dictionaries

▪ Use methods and attributes associated with dictionaries

▪ Describe and use ordered dictionaries to store and retrieve data in a

▪ predictable order

▪ Create sets, as well as add, read, and remove data from them

▪ Describe the attributes defined on set objects

▪ Describe frozen sets

Solutions to Reflection

Lesson 6.1 Reflection

1. What is the difference between ordered and unordered dictionary?

ANS: Insertion order is not tracked in a regular dictionary. However, the insertion order is

tracked and utilized while creating an iterator in an unordered dictionary. When testing for

equality, regular dictionary considers its contents whereas ordered dictionary looks at the

order in which items were inserted.

Lesson 6.2 Reflection

1. What are the differences in adding data to a dictionary on creation when using

the dict() function and using curly bracket notation? Do they result in the same dictionary

object being created?

ANS: Differences are in syntax (dict method takes arguments like a=b whereas curly

bracket notation uses : to denote key value pairs). The result is the same dictionary object.

Lesson 6.3 Reflection

1. What benefits would you get from using the in keyword instead of iteration?

ANS: Faster code execution and more concise syntax.

Lesson 6.4 Reflection

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1. Can you name a set of items they have encountered in real life?

ANS: A set brings to mind a collection of items. Students can name any collection of

unique items as sets they have encountered. An example could be a set of names, for

example, Peter, Paul, and Mary.

Lesson 6.5 Reflection

1. Imagine a situation where you have three sets: A, B, and C. Set A is the names of people

who ate food A, set B is of people who ate food B, and so on. A person could have eaten

more than one food type so a name could, for example, be in both set A and C. You have

another set of names D. This is a set of names of people who got food poisoning. How

would you go about finding which food caused the food poisoning?

ANS: A decent attempt would be to get the intersection of set D with A, B, and C and the

intersection with the highest number of names would reveal the culprit.

Lesson 6.6 Reflection

1. Can you name a set of items you have encountered in real life?

ANS: A set brings to mind a collection of items. Students can name any collection of

unique items as sets they have encountered. An example could be a set of names, for

example, Peter, Paul, and Mary.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 7

Object-Oriented Programming

Module Objectives

▪ Explain different OOP concepts and the importance of OOP

▪ Instantiate a class

▪ Describe how to define instance methods and pass arguments to them

▪ Declare class attributes and class methods

▪ Describe how to override methods

▪ Implement multiple inheritance

Lesson 7.1 Reflection

1. What is a programming paradigm? Name and explain any two.

ANS: A programming paradigm is way of solving problems using programming

languages. Some common paradigms are object-oriented and procedural. Functional

programming is a way of developing software by creating functions throughout.

Object-oriented programs are developed using classes and objects.

Lesson 7.2 Reflection

1. What are the benefits of using multiple inheritance?

ANS: Multiple Inheritance allows to compose classes using the functionalities of

multiple modules at the same time. This also enables code reusability.

2. What are some characteristics of a person you can think of?

ANS: Every person has a name, age, weight, occupation, and so on.

Lesson 7.3 Reflection

1. How is the this keyword used in Python?

ANS: An equivalent to self in other languages is the this keyword, such as in C++,

Java, or JavaScript.

Lesson 7.4 Reflection

1. What is the function of the __dict__ attribute?

ANS: All Python objects have a hidden dictionary attribute that holds all the

attributes of that object. It helps with stability.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Lesson 7.5 Reflection

1. What are the behaviors of an object referred to as?

ANS: Methods.

2. What is the use of pass?

ANS: pass is a placeholder for when we don't have any instructions to place in a

block. It essentially tells the interpreter to do nothing.

Lesson 7.6 Reflection

1. What is the purpose of overriding?

ANS: To modify the behavior of a subclass that's already been defined by a parent

class.

Lesson 7.7 Reflection

1. What is one of the risks with attributes in multiple inheritance, and how does python

resolve issues?

ANS: With multiple inheritance there may be issues with attributes if they have the

same name. When implementing a function with the same name Python gives priority

to the parent classes in the order of depth first, left to right.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 8

Modules, Packages, and File Operations

Module Objectives

▪ Describe what Python modules are and create your own

▪ Describe what Python packages are and create your own

▪ Work with the built-in Python modules

▪ Describe the file object in Python

▪ Read and write to Python files

▪ Work with structured data in Python files

Solutions to Reflection

Lesson 8.1 Reflection

1. Why do we use Python import statement? What happens when the interpreter

encounters an import statement?

ANS: The primary use of import statement is to gain access to the code present in

another module. The compiler then imports the module if the module is present.

Lesson 8.2 Reflection

1. In what situation can file operations fail?

ANS: File operations can fail in situations wherein the operation is not defined for some

reasons like opening a file that does not exist or writing a file opened for reading. It can

also fail in situations where usage of modes is improper.

Lesson 8.3 Reflection

1. What are some Python best practices when building user modules?

ANS: Some best practices include using four spaces for indentation, using snake_case

for variable names, and so on. The following are some examples:

1. Naming variables, functions, modules—lowercase_with_underscores.

2. Naming classes—CapitalizeFirstLetters.

3. Avoid variable names like k, c, and so on, except where their meanings can be

derived from the context, for example, looping.

4. Use comments sparingly.

5. Write tests.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Lesson 8.4 Reflection

1. What does the PATH variable normally do?

ANS: The PATH variable defines where executable items are to be found on a
computer's disk. Any commands you run will be resolved by the OS referencing this
variable to know where to look for the program you are trying to invoke.

Lesson 8.5 Reflection

1. What kind of file types have you come across?

ANS: Examples could be .txt, .xlsx, .docx, and so on.

Lesson 8.6 Reflection

1. What do you think the w flag does? What are the common errors in file operations?

ANS: Using w instead of a will clear the existing file. Examples are FileNotFound,
opening the file in the wrong mode, and so on.

2. Structured data is data that must be arranged in a particular format. Have you

ever encountered any structured data before?

ANS: Students could have encountered JSON, XML, or CSV files. Other examples are

spreadsheets, for example, Pages files or Excel files.

Lesson 8.7 Reflection

1. What is a CSV file and what are the advantages of this format?

ANS: A CSV file uses a predetermined separation character, such as a comma, to

separate data points. It can be saved as plain text or even copy and pasted, so has fairly

small files size and can easily be used by various applications.

2. When might you see JSON data?

ANS: JSON is Javascript Object Notation and is often found in data transfer used by

third-party APIs.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Module 9

Error Handling

Module Objectives

▪ Describe what errors and exceptions are

▪ Handle errors and exceptions when they occur

▪ Define and use your own custom exceptions

Solutions to Reflection

Lesson 9.1 Reflection

1. What is the difference between errors and exceptions?

ANS: Most of the times we cannot handle the errors. They are unchecked exceptions

and we cannot do anything to handle them. They are also referred to as bugs.

Exceptions are errors that occur during the execution of the program.

Lesson 9.2 Reflection

1. What leads to syntax error in Python?

ANS: Syntax errors can be caused by misplacing a keyword in the code. It can also be

caused by a missing semicolon or comma or due to extra braces. It can also be caused

by misspelling a keyword, incorrect indentation, or empty code block.

Lesson 9.3 Reflection

1. Why do you think we should handle errors and exceptions?

ANS: To prevent our code from responding unexpectedly to error conditions.

Lesson 9.4 Reflection

1. What is the advantage of creating your own custom exception class?

ANS: You can catch errors that might be specific to your code or give error reports that

specifically tell you what kind of error you have found.

Python Fundamentals, First Edition

Cengage, Python Fundamentals, 1st Edition. © 2021 Cengage. All Rights Reserved. May not be

scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

