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Preface

This solutions manual is designed to accompany the tenth edition of Linear Algebra with Applications
by Steven J. Leon and Lisette de Pillis. The manual contains the complete solutions to all of the
nonroutine exercises and Chapter test questions in the first seven chapters the book. Each of those
chapters also includes a set of MATLAB computer exercises. Most of the MATLAB computations
are straightforward. and consequently the computational results are not included in this manual.
However, the MATLAB Exercises also include questions related to the computations. The purpose
of the questions is to emphasize the significance of the computations. This manual does provide the
answers to most of these questions.
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Chapterl

Matrices and
Systems
of Equations

SYSTEMS OF LINEAR EQUATIONS

1 1 1 1 1
0 2 1 -2 1
2. @ (o o 4 1 -2
0 0 0 1 -3
0 0 0 0 2
5. (a) 3x1 + 222 =8
T+ 5582 =7

201 +3x90 —4x3 =0
(c) 221+ xo+4a3=-1

4r1 — 229 + 323 = 4

5$1+2I2+6I2:—1
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2 Chapter 1 o Matrices and Systems of Equations

9.

10.
11.

(d) 4%1 - 3.’£2 + x3+ 21’4 =4
3x1+ a9 —dxr3+6x4 =5
Ty + X9+ 2x3+4xy4 =28
S5x1+ a0+ 3x3— 204 =7
Given the system
—mTy +x2 = by
—max1 + T2 = be

one can eliminate the variable zo by subtracting the first row from the second. One then
obtains the equivalent system
—mix1 +x2 = by
(m1 — mg)xl = b2 — b1
(a) If my # mo, then one can solve the second equation for x;
by — by
T = —
m1 — Mg
One can then plug this value of x; into the first equation and solve for xo. Thus, if
my # ma, there will be a unique ordered pair (x1,xs2) that satisfies the two equations.
(b) If my = mq, then the x; term drops out in the second equation

0=0by—b;

This is possible if and only if by = bs.

(¢) If my # mg, then the two equations represent lines in the plane with different slopes.
Two nonparallel lines intersect in a point. That point will be the unique solution to
the system. If m; = mo and b; = by, then both equations represent the same line and
consequently every point on that line will satisfy both equations. If m; = mo and by # bo,
then the equations represent parallel lines. Since parallel lines do not intersect, there is
no point on both lines and hence no solution to the system.

The system must be consistent since (0, 0) is a solution.

A linear equation in 3 unknowns represents a plane in three space. The solution set to a 3 x 3

linear system would be the set of all points that lie on all three planes. If the planes are

parallel or one plane is parallel to the line of intersection of the other two, then the solution
set will be empty. The three equations could represent the same plane or the three planes
could all intersect in a line. In either case the solution set will contain infinitely many points.

If the three planes intersect in a point, then the solution set will contain only that point.

ROW ECHELON FORM

N

=]

(b) The system is consistent with a unique solution (4, —1).

(b) z1 and x3 are lead variables and x5 is a free variable.

(d) 1 and x3 are lead variables and zo and x4 are free variables.
(f) z2 and x3 are lead variables and x; is a free variable.

(

)
1) The solution is (0, —1.5, —3.5).

. (¢) The solution set consists of all ordered triples of the form (0, —a, o).
. A homogeneous linear equation in 3 unknowns corresponds to a plane that passes through

the origin in 3-space. Two such equations would correspond to two planes through the origin.
If one equation is a multiple of the other, then both represent the same plane through the
origin and every point on that plane will be a solution to the system. If one equation is not
a multiple of the other, then we have two distinct planes that intersect in a line through the

Copyright ©2020 Pearson Education, Inc.



Section 3 e  Matriz Arithmetic 3

origin. Every point on the line of intersection will be a solution to the linear system. So in
either case the system must have infinitely many solutions.

In the case of a nonhomogeneous 2 x 3 linear system, the equations correspond to planes
that do not both pass through the origin. If one equation is a multiple of the other, then both
represent the same plane and there are infinitely many solutions. If the equations represent
planes that are parallel, then they do not intersect and hence the system will not have any
solutions. If the equations represent distinct planes that are not parallel, then they must
intersect in a line and hence there will be infinitely many solutions. So the only possibilities
for a nonhomogeneous 2 x 3 linear system are 0 or infinitely many solutions.

9. (a) Since the system is homogeneous it must be consistent.

13. A homogeneous system is always consistent since it has the trivial solution (0,...,0). If the
reduced row echelon form of the coefficient matrix involves free variables, then there will be
infinitely many solutions. If there are no free variables, then the trivial solution will be the
only solution.

14. A nonhomogeneous system could be inconsistent in which case there would be no solutions.
If the system is consistent and underdetermined, then there will be free variables and this
would imply that we will have infinitely many solutions.

16. At each intersection, the number of vehicles entering must equal the number of vehicles leaving
in order for the traffic to flow. This condition leads to the following system of equations
r1tar = x2+b
To+ a2 = x3+ by
x3taz = w4+bs
Tytag = 21+
If we add all four equations, we get
1+ 22+ T3+ Ta+ar+axt+aztas=x1+T2+ T3+ T4 +by +b2+ b3+ by
and hence
a1+ as+az+ag =by + by + b3 + by
17. If (¢1, o) is a solution, then

aiic1 + a2y =
asicy +aggce = 0
Multiplying both equations through by «, one obtains
a11(acy) + aja(acy) = a-0=0
ag1(acy) + ase(acy) = a-0=0
Thus (acy, acs) is also a solution.

18. (a) If x4 = 0, then x4, x2, and x3 will all be 0. Thus if no glucose is produced, then there
is no reaction. (0,0,0,0) is the trivial solution in the sense that if there are no molecules of
carbon dioxide and water, then there will be no reaction.

(b) If we choose another value of x4, say x4 = 2, then we end up with solution z; = 12,
ro = 12, x3 = 12, x4 = 2. Note the ratios are still 6:6:6:1.

MATRIX ARITHMETIC
8 —15 11
1. (e) 0 -4 -3
-1 —6 6

Copyright ©2020 Pearson Education, Inc.



4

Chapter 1 o Matrices and Systems of Equations

5 —10 15
(2) [ 5 -1 4 ]

8 -9 6
36 10 56
2.
10 3 16
15 20
5. (a) bA = 5 5
10 35
6 8 9 12 15 20
2A+3A=| 2 2 |+ 3 3 | = 5 5
4 14 6 21 10 35
18 24
b)6A=] 6 6
12 42
6 8 18 24
32)=3| 2 2= 6 6
4 14 12 42
31 2
(c) AT =
4 1 7
T 3 4
3 1 2
4 1 7
27
5 4 6
6. (a) A+ B = —B+A
0 5 1
5 4 6 15 12 18
(b) 3(A+B) =3 -
0 5 1 0 15 3
123 18 3 9 0
3A+3B = +
6 9 15 —6 6 —12
15 12 18
0 15 3
T 5 0
- 5 4 6
() (A+B)" = =14 5
0 5 1
6 1

Copyright ©2020 Pearson Education, Inc.
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Section 3 e  Matriz Arithmetic

4 2 1 -2 5 0
AT+B" =11 3 |[+]3 2|=[4 5
6 5 0 -4 6 1
5 14 15 42
7. (a) 3(AB)=3| 15 42 | =] 45 126
0 16 0 48
6 3)([2 4 15 42
BA)B=| 18 9 =145 126
6 12 1 6 0 48
2 1 6 12 15 42
ABB)=| 6 3 =1 45 126
-2 4 ) |3 18 0 48
T
5 14
5 150
(b) (AB)T = | 15 42 ] = [ ]
0 16 14 42 16
r_ (2 1 2 6 -2) (5 15 0
BAT =14 ][1 3 4][14 42 16]
0 5 31 3 6
8. (a) (A+B)+C = + =
17 2 1 3 8
2 4 1 2 3 6
A+ (B+C)= + =
1 3 2 5 3 8
—4 18 31 24 14
(b) (AB)C = [ -2 13 [ 2 1)~ [ 20 11
2 4 4 -1 24 14
A(BC):[l 3][8 4]:[20 11]
2 4 12 10 24
(€ AB+O) =11 3 [2 5 _[ 717
4 18 14 6 10 24
ABHAC= [ 13]*[9 4]_[7 17]
0 5] 1(3 1 10 5
(d) (A+ B)C = -
1 7) |21 17 8
14 6 -4 -1 10 5
ACHBO=1 4]+[8 4]_[17 8]

9. (b) x = (2,1)7 is a solution since b = 2a; +ay. There are no other solutions since the echelon
form of A is strictly triangular.

(c) The solution to Ax = ¢ is x = (=3, —21)T. Therefore ¢ = —

Copyright ©2020 Pearson Education, Inc.
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Chapter 1 o Matrices and Systems of Equations

11.

12.

13.

14.

15.

16.

17.

The given information implies that

1 0
x1= |1 and x5 = | 1
0 1

are both solutions to the system. So the system is consistent and since there is more than one
solution, the row echelon form of A must involve a free variable. A consistent system with a
free variable has infinitely many solutions.

The system is consistent since x = (1,1,1,1)7 is a solution. The system can have at most 3
lead variables since A only has 3 rows. Therefore, there must be at least one free variable. A
consistent system with a free variable has infinitely many solutions.

(a) It follows from the reduced row echelon form that the free variables are zo, x4, 5. If we
set o = a, x4 = b, x5 = ¢, then
1 = —2—-2a—3b—c¢
T3 = 5 —2b—4c
and hence the solution consists of all vectors of the form
x=(-2-2a—3b—c,a,5—2b—4c, b, c)"

(b) If we set the free variables equal to 0, then xg = (—2,0,5,0,0)7 is a solution to Ax = b
and hence
b = Axg = —2a; + baz = (8, -7, —-1,7)T
If ws is the weight given to professional activities, then the weights for research and teaching
should be w; = 3ws and we = 2ws. Note that
1.5’LU2 = 3w3 = w1,

so the weight given to research is 1.5 times the weight given to teaching. Since the weights
must all add up to 1, we have
1:w1+w2+w3 :3w3+2w3+w3:6w3

and hence it follows that w3 = %, Wy = %, wy = % If C is the matrix in the example problem
from the Analytic Hierarchy Process Application, then the rating vector r is computed by
multiplying C' times the weight vector w.

111 1 43
2 5 4 2 120
4 2 2 3 120
103 1 1 32
4 10 4 6 120

AT is an n x m matrix. Since AT has m columns and A has m rows, the multiplication A7 A
is possible. The multiplication AAT is possible since A has n columns and A” has n rows.

If A is skew-symmetric, then AT = —A. Since the (j,7) entry of AT is a;; and the (j,j) entry
of —A is —ajj;, it follows that a;; = —a;; for each j and hence the diagonal entries of A must
all be 0.

The search vector is x = (1,0,1,0,1,0)”. The search result is given by the vector

y=ATx=(1,2,2,1,1,2, )T

Copyright ©2020 Pearson Education, Inc.



Section 4 e Matrix Algebra 7

The ith entry of y is equal to the number of search words in the title of the ith book.
18. If a = a21/a11, then

10 ann a2 | _ a1 aiz _ | an a2
a 1 0 b aar «aio +b as1  aais+b
The product will equal A provided

aar + b= aos

Thus we must choose
a21012

b= ax —aax = ax —
ai1

MATRIX ALGEBRA

1. (a) (A+B)?*=(A+B)(A+B)=(A+B)A+(A+B)B=A*>+ BA+ AB+ B?
For real numbers, ab+ ba = 2ab; however, with matrices AB + BA is generally not equal
to 2AB.

(b)

(A+B)(A—B) = (A+B)(A—B)
(A+ B)A— (A+B)B
= A’ 4+ BA— AB - B?

For real numbers, ab — ba = 0; however, with matrices AB — BA is generally not equal
to O.

2. If we replace a by A and b by the identity matrix, I, then both rules will work, since
(A+ 1) = A2 4+ TA+ AT + B> = A2 + AT + AT+ B? = A? + 2AT + B?

and
(A+DNA-D=A+TA-AI-IP=A*+ A-A-T*=A%>-1T1?
3. There are many possible choices for A and B. For example, one could choose
0 1 11

A= and B=
0 0 0 0

a b db eb
A_[ca cb] B_[—da —ea]

then AB = O for any choice of the scalars a, b, ¢, d, e.

More generally if

4. To construct nonzero matrices A, B, C with the desired properties, first find nonzero matrices
C and D such that DC' = O (see Exercise 3). Next, for any nonzero matrix A, set B = A+ D.
It follows that

BC=(A+D)C=AC+DC=AC+0=AC

5. A 2 x 2 symmetric matrix is one of the form

A:

Copyright ©2020 Pearson Education, Inc.
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Chapter 1 o Matrices and Systems of Equations

Thus

2 a?+b> ab+be

ab+be b2+ 2

If A%2 = O, then its diagonal entries must be 0.

a’?+v2=0 and P+c=0

Thus a = b=c¢ =0 and hence A = O.

6. Let
D= (AB)C = [

It follows that

a11b11 + ai2ba a11b12 + aiaba C11
a21b11 + az2b21 a21b12 + a22022 C21

C12
C22

din = (a11b11 + 012521)011 + (a11b12 + 012522)021
= anrbiicir + arzbarcrr + ar1biacar + arabazcor
di2 = (a11b11 + a12b21)c12 + (@11b12 + a12b22)co2
= an1biici2 + arebaicia + a11biacas + a12b22co
dz1 = (a21b11 + agabor)ci1 + (a21b12 + azebaa)cor
= ag1biicin + agebaicir + az1biacar + asabazcor
dao = (a21b11 + azbor)ciz + (a21b12 4 azabaz)cao
= ag1bi1c12 + azebaicia + az1b12c22 + aszbaacan
If we set
a1l a2 biici1 + bi2con biicia + biacan
E=ABC) = [ a1 a2 ] [ baici1 + bazacar barciz + baacao
then it follows that
e11 = aii(biici + biacar) + ara(barcin + bazcar)
= an1biicin + arrbiacor + aizbarcir + a1abazcor
e12 = ar1(biiciz + biacaz) + arz(barcio + bazcaa)
= anrbiiciz +aribiacas + aizbaicia + a1abaaca
ea1 = ag1(brici1 + biacar) + aza(barcir + bazcar)
= ag1brici1 + az1biacar + agzbaicir + azzbazcor
e22 = az1(bi1c12 + biacaz) + azz(barcio + bazcaa)
= ag1bi1ci2 + az1b12Ca2 + azabaicia + azabaacan
Thus
di1 = e1x di2 = ez d21 = ez do2 = €22
and hence
(AB)C =D =FE = A(BC)
9.
00 1 0 0 0 0 1
00 0 1 00 0 O
A=1000 0 A=1000 0
0 00O 00 0 O

and A* = O. If n > 4, then

A" = An74A4 _ An740 =0

Copyright ©2020 Pearson Education, Inc.
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(a) The matrix C' is symmetric since
CT=A+B)T=AT+B"=A+B=C
(b) The matrix D is symmetric since
DT = (AA)T = ATAT = A2 =D
(¢) The matrix E = AB is not symmetric since
ET = (AB)" = BT AT = BA

and in general, AB # BA.
(d) The matrix F is symmetric since

FT = (ABA)T = ATBTAT = ABA=F
(e) The matrix G is symmetric since
GT = (AB+ BA)T = (AB)" 4+ (BA)T = BTA" + ATBT = BA+ AB=CG
(f) The matrix H is not symmetric since
HT = (AB — BA)" = (AB)" — (BA)T = BTAT —ATBT = BA—- AB=-H
(a) The matrix A is symmetric since
At=C+0N) ="+ ("' =CT+C=4
(b) The matrix B is not symmetric since
Bl =cCc-chHhr=c"-(c"Y'=c"-Cc=-B
(¢) The matrix D is symmetric since
AT =Ty =ct(ctY' =cTc =D
(d) The matrix E is symmetric since
ET = (cTc-coch)T = (cTe)T — (cc™T
=T echHT - cHTect=cTc-ccT =E
(e) The matrix F' is symmetric since
Fl=(+o0)I+C")Y =1+ 1+0)' =(I+0)I+CT)=F
(e) The matrix G is not symmetric.
F=({I+0)(I-C"=1+C-Cc"-cc”
FI' = (+o)I-c")"=g-chHra+o)”
= ([I-o)I+ct=1-c+ct-cc?
F and FT are not the same. The two middle terms C — CT and —C + CT do not agree.

12. If d = a11a22 — 21012 75 0, then

a11G22 — A12021 0
1 [ a22 —ai2 ] [ a11 a12 ] _ d -7
d —ag] ary az1 a22 B 0 11022 — A1202]1 B
d
11022 — @12021 0
[ all a2 ] |:1 [ a22 —a12 ]:| _ d =7
a1 022 d | —a2 ai B 0 a11022 — (120921 -
d

Copyright ©2020 Pearson Education, Inc.



10 Chapter 1 o Matrices and Systems of Equations

Therefore
1 [ az  —aiz ] _ 4t
d —ag ail
-3 5
13. (b)
2 -3

14. If A were nonsingular and AB = A, then it would follow that A~'AB = A~!A and hence
that B =1. So if B # I, then A must be singular.

15. Since
AT A=A4A1 =T
it follows from the definition that A~! is nonsingular and its inverse is A.
16. Since
AT(AHT = (AT =1
(Afl)TAT —_ (AAfl)T =7
it follows that
(A—l)T — (AT)—l
17. If Ax = Ay and x # y, then A must be singular, for if A were nonsingular, then we could
multiply by A~' and get
A7 Ax = A Ay
X =y

18. Form =1,
(Al)—l _ A—l _ (A—l)l
Assume the result holds in the case m = k, that is,
(Ak)—l — (A—l)k

It follows that

(A—l)k-i-lAk-‘rl — A—l(A—l)kAkA _ A—lA =7
and

Ak+1(A71)k+1 _ AAk(Afl)kAfl _ AA71 =7
Therefore

(Afl)k+1 — (Ak+1)71

and the result follows by mathematical induction.

19. If A2 = O, then
(I+A)(I-A)=T+A-A+A*=1
and
(I-—AI+A)=T-A+A+A>=1
Therefore I — A is nonsingular and (I — A)~! =T + A.
20. If A**1 = O, then
I+A+ -+ AT —A) = T+A+-+A") — (A+ A%+ ...+ AFTY)
=T-Att =1
and
(I-A)I+A+-+A%) = I+A+-+A") — (A+ A%+ ... + AFTY
=T - A =7

Copyright ©2020 Pearson Education, Inc.



Section 4 e Matriz Algebra

Therefore I — A is nonsingular and (I — A)™' =T+ A+ A% ... + Ak,
21. Since

cosf sinf cosf) —sinf 1 0
RTR = =
—sinf cosf sin 6 cos 0 1
and
cos —sinf cosf sinf 1 0
RRT = —
sin 6 cos —sinf cosf 0 1

it follows that R is nonsingular and R~ = RT
22.

cos? 0 + sin® 0 0
G* = =1

0 cos? f + sin® 0

23.
H? = (I —2uu”)? = I —4uu” + 4uu’uu’
= I —4uu’ + 4u(u’u)u

= I —4uu’ +4uu’ =71 (since u'u=1)

T

24. In each case, if you square the given matrix, you will end up with the same matrix.

25. (a) If A2 = A, then
(I—A2=T-2A+A*=T-2A+A=1-A

(b) If A2 = A, then
1 1 1 1 1
T—ZAI+A)=T—ZA4+A—-A2=T—-—ZA+A--A=1
( 2 )T+ 4) g4t 2 g4t 2

and
(I+A)(I—§A)—I+A §A §A =1+ A 2A 2A—I

Therefore I + A is nonsingular and (I + A)~! =1 — %A.

26. (a)
d% O --- 0
D2 — 0 d3 -+ 0
0 0o --- d%n

Since each diagonal entry of D is equal to either 0 or 1, it follows that d?j

j=1,...,n and hence D? = D.
(b) If A= XDX™!, then

A= (XDX H)YXDX ) =XDX'X)DX'=XDX'=A

Copyright ©2020 Pearson Education, Inc.
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12 Chapter 1 o Matrices and Systems of Equations

27. If A is an involution, then A2 = I and it follows that
B?:%a+AP:iuwaA+A%:i@1+mn:%u+Ay:B
CQ:EU—AP:EQEQA+A%:1@I—LD:

4 4 4
So B and C' are both idempotent.
BC = i([—i—A)(I—A): i([—l—A—A—AQ):i(I—i—A—A—I):O

28. (ATA)T = AT(ATYT = ATA

(AAT)T:(AT)TAT:AAT
29. Let A and B be symmetric n x n matrices. If (AB)T = AB, then
BA=BTAT = (AB)T = AB
Conversely, if BA = AB, then
(AB)' = BTAT = BA= AB

30. (a)

BT = (A+ AT = AT 4 (ATYT =AT 4+ A=B
CT = (A-ATYT = AT (AT =AT —A=—C

(b) A=1(A+AT)+ F(A—AT)
34. False. For example, if

2 3 1 4 1
A= , B= , X =
2 3 1 4 1
then
5
Ax = Bx =
5
however, A # B.
35. False. For example, if
1 0 0 0
A= and B =
0 0 0 1

then it is easy to see that both A and B must be singular, however, A + B = I, which is
nonsingular.

36. True. If A and B are nonsingular, then their product AB must also be nonsingular. Using the
result from Exercise 23, we have that (AB)7 is nonsingular and ((AB)T)~! = (AB)"1)T. It
follows then that

(AB)") ™' = ((AB)™)T = (BT ATHT = (ATHT(B™)T

| 5 | ELEMENTARY MATRICES

01
2. (a) [1 0], type I

Copyright ©2020 Pearson Education, Inc.



Section 5 e  Elementary Matrices

(b) The given matrix is not an elementary matrix. Its inverse is given by

3 0

Wl

. (c) Since
C=FB=FFEA

where F' and F are elementary matrices, it follows that C' is row equivalent to A.

10 1 -1 3 0
El = ) E2 = ) ES =
-3 1 0 1 0 1
So
EsEoF A =1
and hence
1 0 1 1 2 0
A=FE{'E;'E; =
3 1 0 1 0 1

and A~ = FEsFEsE;.

Copyright ©2020 Pearson Education, Inc.
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1 0 2 4
8. (b)
-1 1 0 5
1 00 2 1 2
d -2 1 0 0 3 2
3 -2 1 0 0 2
1 0 1 1 2 -3 1 0 0
9. () |3 3 4| -1 1 —1f=]l0o 1 o0
2 2 3 0 -2 3 0 0 1
1 2 -3 1 0 1 1 0 0
~1 1 -1 3 3 4|l=|0 1 o
0 -2 -3 2 2 3 0 0 1
1 -1 0

10. (e) 0o 1 -1

12. (b) XA+B=C
X =(C—B)A™!

B 8 —14
“ |l -13 19

(d) XA+C=X
XA-XI=-C
X(A-I)=-C
X=-CA-1I)"

N

13. (a) If E is an elementary matrix of type I or type II, then E is symmetric. Thus ET = E is
an elementary matrix of the same type. If F is the elementary matrix of type III formed
by adding « times the ith row of the identity matrix to the jth row, then E7T is the
elementary matrix of type III formed from the identity matrix by adding « times the jth
row to the ¢th row.

(b) In general, the product of two elementary matrices will not be an elementary matrix.
Generally, the product of two elementary matrices will be a matrix formed from the
identity matrix by the performance of two row operations. For example, if

1 00 1 0 0
Eix=12 1 0 and Ex=10 1 0
00 0 2 0 1

Copyright ©2020 Pearson Education, Inc.
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then E; and F, are elementary matrices, but

100

EiEo= 12 1 0

is not an elementary matrix.

14. If T = UR, then

k=1
Since U and R are upper triangular
Uyl = Ujp =+ = Uj ;-1 =0
Titlj = Tj+25 = "~ Tnj =0

If i > j, then

J n
ti; = E UikTkj + E Uik Tk
k

k=1 =j+1
J n
= ZO’I“M + Z ;0
k=1 k=j+1
=0

Therefore T is upper triangular.

If 4 = j, then
1—1 n
tig =ty = D kT FuiTig t Y Wik

k=1 k=j+1
1—1 n

= E O?"k-j + uj;ri; + E U0
k=1 k=j+1

= UjjTy;

Therefore
tj; = ujiTj ji=1,...,n

15. If we set x = (2,1 — 4)7, then
Ax:2a1—|—1a2—4a3:0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous system has a
nonzero solution, then it must have infinitely many solutions. In particular, if ¢ is any scalar,
then cx is also a solution to the system since

A(cx) =cAx=c0=0

Since Ax = 0 and x # 0, it follows that the matrix A must be singular. (See Theorem 1.5.2)
16. If a; = 3a; — 2ag3, then
a1—3a2+2a3:0

Therefore x = (1,—3,2)7 is a nontrivial solution to Ax = 0. It follows from Theorem 1.5.2
that A must be singular.
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17.

18.

19.

20.

21.

22,

23.

24.

If x¢g # 0 and Axg = Bxg, then Cxy = 0 and it follows from Theorem 1.5.2 that C must be
singular.

If B is singular, then it follows from Theorem 1.5.2 that there exists a nonzero vector x such
that Bx = 0. If C = AB, then

Cx=ABx=A0=0
Thus, by Theorem 1.5.2, C' must also be singular.

(a) If U is upper triangular with nonzero diagonal entries, then using row operation II, U can
be transformed into an upper triangular matrix with 1’s on the diagonal. Row operation
IIT can then be used to eliminate all of the entries above the diagonal. Thus, U is row
equivalent to I and hence is nonsingular.

(b) The same row operations that were used to reduce U to the identity matrix will transform
I into U~!. Row operation II applied to I will just change the values of the diagonal
entries. When the row operation I1I steps referred to in part (a) are applied to a diagonal
matrix, the entries above the diagonal are filled in. The resulting matrix, U !, will be
upper triangular.

Since A is nonsingular it is row equivalent to I. Hence, there exist elementary matrices
El,Eg, ey Ek such that

E..--EiA=1
It follows that

A =E,. - E;
and

Ey---EByB=A"'B=C

The same row operations that reduce A to I, will transform B to C. Therefore, the reduced
row echelon form of (A | B) will be (I | C).

(a) If the diagonal entries of D; are aj,as,...,a, and the diagonal entries of Dy are
081, B2, - .., Bn, then Dy D5y will be a diagonal matrix with diagonal entries a1 31, .. ., @B,
and Dy D; will be a diagonal matrix with diagonal entries By, Boia, . . ., Bpa,. Since
the two have the same diagonal entries, it follows that Dy Do = Do D;.

(b)
AB = Alaol + a1 A+ -+ apA¥)

= apA+ a1 A2 + - + ap AP

= (apl + a1 A+ +apAF)A

= BA
If A is symmetric and nonsingular, then

(A7) = (A7) (AA7) = ((A)TAT) A = A7)

If A is row equivalent to B, then there exist elementary matrices F1, Es, ..., Ey such that

A=FE.Ey .- E\B
Each of the E;’s is invertible and F; ! is also an elementary matrix (Theorem 1.4.1). Thus

B=FE{'Ey' - E'A

and hence B is row equivalent to A.

(a) If A is row equivalent to B, then there exist elementary matrices Ep, Fa, ..., E; such
that

A=EwE),_, - EB

Copyright ©2020 Pearson Education, Inc.
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26.

27.

28.

Section 5 e  Elementary Matrices 17

Since B is row equivalent to C, there exist elementary matrices Hy, Hs, ..., H; such that
B = Hjijl o ch

Thus
A=FEwE_---E1H;H;_1---HC
and hence A is row equivalent to C.

(b) If A and B are nonsingular n X n matrices, then A and B are row equivalent to I. Since
A is row equivalent to I and I is row equivalent to B, it follows from part (a) that A is
row equivalent to B.

If U is any row echelon form of A, then A can be reduced to U using row operations, so

A is row equivalent to U. If B is row equivalent to A, then it follows from the result in

Exercise 24(a) that B is row equivalent to U.

If B is row equivalent to A, then there exist elementary matrices Eq, Es, ..., Ey such that

B=FEyE;_1---EA

Let M = ExEy_1--- E1. The matrix M is nonsingular since each of the F;’s is nonsingular.

Conversely, suppose there exists a nonsingular matrix M such that B = M A. Since M
is nonsingular, it is row equivalent to I. Thus, there exist elementary matrices E1, Fo, ..., Ey
such that

M = ExEy 1Byl
It follows that
B=MA=EyE;_1---FE1A
Therefore, B is row equivalent to A.

If A is nonsingular, then A is row equivalent to I. If B is row equivalent to A, then using
the result from Exercise 24(a), we can conclude that B is row equivalent to I. Therefore, B
must be nonsingular. So it is not possible for B to be singular and also be row equivalent to
a nonsingular matrix.

(a) The system V¢ =y is given by

2
1z 7 T 1 (1
1 To x% e Ty Co Y
1 T x2 cee xl c
n+1 n+1 n+1 n+1 Yn41

Comparing the ith row of each side, we have
c1texit+ o+ T =y

Thus
(i) = y; 1=1,2,...,n+1

(b) If x1,xa, ..., x,y1 are distinct and Ve = 0, then we can apply part (a) with y = 0. Thus
if p() =c1 + cox + -+ + cpp12™, then

p(z;) =0 i=1,2,...,n+1

The polynomial p(z) has n 4+ 1 roots. Since the degree of p(z) is less than n + 1, p(z)
must be the zero polynomial. Hence

¢l =C=-"=Cpy1 =0

Since the system V¢ = 0 has only the trivial solution, the matrix V' must be nonsingular.
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29.

30.

31.

32.

True. If A is row equivalent to I, then A is nonsingular, so if AB = AC, then we can multiply
both sides of this equation by A~".

AT'AB = A7tAC
B=C

True. If F and F' are elementary matrices, then they are both nonsingular and the product
of two nonsingular matrices is a nonsingular matrix. Indeed, G=! = F~1E~1,

True. If a + a5 = ag + 2a4, then
a4+ay—az—2a;,=0

If we let x = (1,1, —1,—2)7, then x is a solution to Ax = 0. Since x # 0 the matrix A must
be singular.
False. Let I be the 2 x 2 identity matrix and let A =1, B= —1I, and

C:
01

Since B and C' are nonsingular, they are both row equivalent to A; however,

1 0
B+C=
0 0
is singular, so it cannot be row equivalent to A.
| 6 | PARTITIONED MATRICES
ai aial aiag e aian
a as ap as as e a5 an
2. B=ATA= 2 (a1,a9,...,a,) = 2, 2 2
al ala; aTa, ala,
11 1 4 -2 1 —1
5. () [2 31]+ T A
2 1 2 1 1 2 —1
(c¢) Let
3 4 0 0
Ap = [ A ] Ay =
5 5 0 0
Ay = (O O) Agp = (1 O)
The block multiplication is performed as follows:
A Arp Al AL AnAfy + A Ay AnAg + A Al
A1 Asp Al A%, Aq ATy + Agp Ay A9y AJ) + A AT,
1 00
= 0 1 0
0O 0] O

Copyright ©2020 Pearson Education, Inc.
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Section 6 e  Partitioned Matrices

XYT = x1y] + xoy3 +X3y3

Lo ] o)

2 3

(b) Since y;xI' = (x;y7)T for j = 1,2,3, the outer product expansion of Y X7 is just the
transpose of the outer product expansion of XY 7. Thus

YXT = yix{ +y.x5 JrY:sz?)T

. It is possible to perform both block multiplications. To see this, suppose A1 is a k X r matrix,

A is a k x (n —r) matrix, Agy is an (m — k) x r matrix and Ags is (m — k) x (n —r). It is
possible to perform the block multiplication of AAT since the matrix multiplications A;; A7},
A11A2Tl, A12A?2, AlgAgQ, AQlA{l, AglAgl, AQQA,{Q, AQQA%; are all possible. It is possible to
perform the block multiplication of AT A since the matrix multiplications AT} 411, AT} Ao,
AL Aoy, AT AL, AT Ava, AL Ay, AL, Ago are all possible.

,Xp) = (Axq, Axa, ..
B = (by,ba,...,b,)
AX = B if and only if the column vectors of AX and B are equal

. Ax,)

AXj:bj j:17...,7’

(a) Since D is a diagonal matrix, its jth column will have d;; in the jth row and the other
entries will all be 0. Thus d; = dj;e; for j =1,...,n.

(b)

AD = A(dueh d22e27'~~;dnnen)
= (dnAel, d22A627 e ,dnnAen)
= (dy1a1, dxpay,...,dyay)

2

U = [U1 Uz] =U1%1 + U0 = Ui %y

@)
(b) If we let X = UX, then
X = U1§31 = (0’1111,0’2112, e 7(J’TLIL,L)

and it follows that

A=UxvT =xvT = JlulvlT + UQUQVg 4+t anunvf

Copyright ©2020 Pearson Education, Inc.
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11.
At C A A I A'Ap+ CAg
O Ay O Aso @) I
If
AT A + CAyp =0

then

C=—A[ApAY
Let

A1_11 *A1_11A12A2_21

B =
o) Ay

Since AB = BA = I, it follows that B = A~'.
12. Let 0 denote the zero vector in R™. If A is singular, then there exists a vector x; # 0 such
that Ax; = 0. If we set

X1
X =
0
then
A O X1 AX1 + 00 0
MX = = =
O B 0 Ox1 + BO 0

By Theorem 1.5.2, M must be singular. Similarly, if B is singular, then there exists a vector
X9 # 0 such that Bx,; = 0. So if we set

0

X2

then x is a nonzero vector and Mx is equal to the zero vector.

15.
. O I 42 I B o B I
I —-B B I I 2B
and hence
I+B 2[+B
A4 A%+ A% =
2I+B I+ B

16. The block form of S~! is given by

It follows that

I -A AB O I A
STIMS =

Copyright ©2020 Pearson Education, Inc.
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I A AB  ABA

(0] 1 B BA

B BA
17. The block multiplication of the two factors yields
[I O][An A12]:[ Ay Arz ]
B I @) C BAy1  BAp+C
If we equate this matrix with the block form of A and solve for B and C, we get
B = Ay Ay} and C = Ay — Ay A Arg
To check that this works note that

BA;; = A21Af11A11 = Ay
BA; s+ C = A21A1_11A12 + Ago — A21A1_11A12 = Ay

I o A A | _ [ An A | _ A
B I 0] C Ay Ay
18. In order for the block multiplication to work, we must have

XB=S and YM=T

and hence

Since both B and M are nonsingular, we can satisfy these conditions by choosing X = SB~!
and Y = TM~1L.

19. (a)
by bic
BC = b_2 (c) = béc =cb
b,, b,c
(b)
x1
Ax = (aj,as,...,a,) ©
In

= ai(z1) +az(z2) + -+ ay(zn)
(c) It follows from parts (a) and (b) that
Ax = aj(x1) +az(xa) + -+ a,(zy)

= T1a1 + T2a2 + - + Tpay
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20. If Ax =0 for all x € R", then
aj=Ae; =0 for j=1,...,n

and hence A must be the zero matrix.

21. If
Bx=Cx forall xeR"

then
(B-C)x=0 forall xeR"

It follows from Exercise 20 that

B-C =0
B =C
22. (a)
AL 0 A a X AL 0 b
—cTA-1 1 ' 3 Tt —cTA-1 1 brt1
1 A~ la x _ A" b
OT —cTA_la + 5 Ln+1 - —CTAilb + bn+1
(b) If
y=A"la and z=A"b
then
(_CTy + 5)xn+1 =—c'z+ b1
_CTZ + bn-‘,—l T
1= ————— —c 0
Tn+1 —Ty+ 8 (B y #0)
and

Xx+z,1A'a=A"b
x=A"'b— :1:7,+1A*1a =Z— Tp1y

MATLAB EXERCISES

1. In parts (a), (b), (c) it should turn out that A1 = A4 and A2 = A3. In part (d) Al = A3
and A2 = A4. Exact equality will not occur in parts (c¢) and (d) because of roundoff error.

2. The solution x obtained using the \ operation will be more accurate and yield the smaller
residual vector. The computation of x is also more efficient since the solution is computed
using Gaussian elimination with partial pivoting and this involves less arithmetic than com-
puting the inverse matrix and multiplying it times b.

3. (a) Since Ax =0 and x # 0, it follows from Theorem 1.5.2 that A is singular.

(b) The columns of B are all multiples of x. Indeed,

B = (x,2x, 3x, 4x, 5x, 6x)
and hence
AB = (Ax,2Ax,3Ax,4Ax%,5A%,6Ax) = O
(¢c) If D= B+ C, then
AD =AB+ AC =0+ AC = AC

4. By construction, B is upper triangular whose diagonal entries are all equal to 1. Thus B is

row equivalent to I and hence B is nonsingular. If one changes B by setting b1o1 = —1/256

and computes Bx, the result is the zero vector. Since x # 0, the matrix B must be singular.
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5. (a) Since A is nonsingular, its reduced row echelon form is I. If Ey, ..., F}y are elementary
matrices such that Ey --- E1A = I, then these same matrices can be used to transform
(A Db) to its reduced row echelon form U. It follows then that

U=Ey---FEi(A b)=A"YA b)=(1 A™'b)

Thus, the last column of U should be equal to the solution x of the system Ax = b.

(b) After the third column of A is changed, the new matrix A is now singular. Examining
the last row of the reduced row echelon form of the augmented matrix (A b), we see that
the system is inconsistent.

(c) The system Ax = c is consistent since y is a solution. There is a free variable x3, so the
system will have infinitely many solutions.

(f) The vector v is a solution since

Av=A(w+3z)=Aw + 34z =c

For this solution, the free variable x3 = vs = 3. To determine the general solution just
set x = w + tz. This will give the solution corresponding to x3 = ¢ for any real number
t.

c¢) There will be no walks of even length from V; to V; whenever ¢ + j is odd.

d) There will be no walks of length & from V; to V; whenever ¢ + j + k is odd.

e) The conjecture is still valid for the graph containing the additional edges.

f) If the edge {Vg, Vs} is included, then the conjecture is no longer valid. There is now a
walk of length 1 from Vg to Vs and i+ j+k =648+ 1 is odd.

8. The change in part (b) should not have a significant effect on the survival potential for the
turtles. The change in part (c) will effect the (2,2) and (3,2) of the Leslie matrix. The new
values for these entries will be l3o = 0.9540 and I35 = 0.0101. With these values, the Leslie
population model should predict that the survival period will double but the turtles will still
eventually die out.

9. (b) x1 =c—Vx2.

10. (b)

—~N T N

AQk _
kB I

This can be proved using mathematical induction. In the case k = 1

o I|flo 1 I B
A2 = =

I B I B B I

If the result holds for k =m

I mB
A2m —
mB I
then
A2m+2 — A2A2m
I B I mB
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I (m+1)B
(m+1)B I

(b) It follows by mathematical induction that the result holds for all positive integers k.
b

I I kB kB I
A2k+1 _ AA2k _
I B |kB I I (k+1)B

11. (a) By construction, the entries of A were rounded to the nearest integer. The matrix B =

ATA must also have integer entries and it is symmetric since
BT = (ATA)T = AT(AT)T = ATA=B
(b)

IDLT I O Bii O I ET

E 1 O FJ] |0 I

By B ET

EB;;, EBEY+F
where

E = BBy} and F = Boy — By By}' B2
It follows that

BnET = By (B)"BY, = Bi1B' Bia = Bia
EBy = B2lBﬂlB11 = By

EBLET+F

Boy1 ET + Byy — Boy By' Bia
= By B}'Bia + Bas — B21 By Bio
= B2

Therefore

LDLT =B

CHAPTER TEST A

1. The statement is false. If the row echelon form has free variables and the linear system
is consistent, then there will be infinitely many solutions. However, it is possible to have an

inconsistent system whose coefficient matrix will reduce to an echelon form with free variables.
For example, if

11 1
A: b:

0 0 1

then A involves one free variable, but the system Ax = b is inconsistent.

2. The statement is true since the zero vector will always be a solution.
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. The statement is true. A matrix A is nonsingular if and only if it is row equivalent to the
I (the identity matrix). A will be row equivalent to I if and only if its reduced row echelon
form is I.

. The statement is true. If A is nonsingular, then A is row equivalent to I. So there exist
elementary matrices F1, Fo, ..., Fy, such that

A=EyEy_ - Bl =EyEp_1--- By
. The statement is false. For example, if A = I and B = —I, the matrices A and B are both
nonsingular, but A 4+ B = O is singular.
. The statement is false. For example, if A is any matrix of the form

cos 0 sin 6
A =

sinf —cosf

Then A = A~ 1.

. The statement is false.

(A—B)*>=A? - BA— AB+ B> # A? - 2AB + B*
since in general BA # AB. For example, if

1 1 0 1
A= and B=
1 1 0 0
then
2
1 0 1 0
(A-—B)* = =
1 1 2 1
however,
) ) 2 2 0 2 0 0 2 0
A —2AB + B* = — + =
2 2 0 2 0 0 2 0

. The statement is false. If A is nonsingular and AB = AC, then we can multiply both sides of
the equation by A~! and conclude that B = C. However, if A is singular, then it is possible
to have AB = AC and B # C. For example, if

1 1 1 1 2 2
A= , B= , C=
1 1 4 4 3 3
then
1 1 1 1 5 5
AB = =
1 1 4 4 5 5
1 1 2 2 5 5
AC = =
1 1 3 3 5 5
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9.

10.
11.

12.

13.

14.

The statement is false. In general, AB and BA are usually not equal, so it is possible for
AB = O and BA to be a nonzero matrix. For example, if

1 1 -1 -1
A= and B =
1 1 1 1
then
0 0 -2 =2
AB = and BA=
0 0 2 2

The statement is true. If x = (1,2, —1)7, then x # 0 and Ax = 0, so A must be singular.
The statement is true. If b = a; + a3 and x = (1,0,1)7, then

Ax = 21321 + x9a3 +x3a3 = la; +0ay +lag=D>b

So x is a solution to Ax = b.

The statement is true. If b = a; + a + a3, then x = (1,1,1)7 is a solution to Ax = b, since
Ax = x1a; +20a3 +r3a3 =a; +as+a3=>b
If a; = a3, then we can also express b as a linear combination
b = a; + 0as + 2a3

Thus y = (1,0,2)7 is also a solution to the system. However, if there is more than one
solution, then the reduced row echelon form of A must involve a free variable. A consistent
system with a free variable must have infinitely many solutions.

The statement is true. An elementary matrix I of type I or type II is symmetric. So in either
case we have ET = E is elementary. If F is an elementary matrix of type III formed from
the identity matrix by adding a nonzero multiple ¢ of row k to row j, then ET will be the
elementary matrix of type III formed from the identity matrix by adding ¢ times row j to
row k.

The statement is false. An elementary matrix is a matrix that is constructed by performing
exactly one elementary row operation on the identity matrix. The product of two elementary
matrices will be a matrix formed by performing two elementary row operations on the identity
matrix. For example,

1 00 1 0 0
Er=12 1 0 and Ex=10 10
0 0 1 30 1

are elementary matrices, however;

EiE,=12 1 0

3 01

is not an elementary matrix.
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15. The statement is true. The row vectors of A are z1y7, 22y, ..., 2z,y". Note, all of the row
vectors are multiples of y”. Since x and y are nonzero vectors, at least one of these row
vectors must be nonzero. However, if any nonzero row is picked as a pivot row, then since all
of the other rows are multiples of the pivot row, they will all be eliminated in the first step
of the reduction process. The resulting row echelon form will have exactly one nonzero row.

CHAPTER TEST B

1.

-1 1-21|-2| — |0 01 3|-1

— |0 01 3] -1

0O 00 0] O

The free variables are xo and x4. If we set x5 = a and x4 = b, then

r1=4+a+7b and r3=—1-—3b

and hence the solution set consists of all vectors of the form

()
(b)

4+a+Tb
a

—-1-3b

b

A linear equation in 3 unknowns corresponds to a plane in 3-space.

Given 2 equations in 3 unknowns, each equation corresponds to a plane. If one equation
is a multiple of the other, then the equations represent the same plane and any point on
the that plane will be a solution to the system. If the two planes are distinct, then they
are either parallel or they intersect in a line. If they are parallel they do not intersect, so
the system will have no solutions. If they intersect in a line, then there will be infinitely
many solutions.

A homogeneous linear system is always consistent since it has the trivial solution x = 0.
It follows from part (b) then that a homogeneous system of 2 equations in 3 unknowns
must have infinitely many solutions. Geometrically the 2 equations represent planes that
both pass through the origin, so if the planes are distinct they must intersect in a line.

If the system is consistent and there are two distinct solutions, then there must be a free
variable and hence there must be infinitely many solutions. In fact, all vectors of the
form x = x1 + ¢(x1 — x2) will be solutions since

Ax = Axy + ¢(Ax; — Ax2) =b+c¢(b—b)=Db

If we set z = x; — x2, then z # 0 and Az = 0. Therefore, it follows from Theorem 1.5.2
that A must be singular.
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4.

(a) The system will be consistent if and only if the vector b = (3,1)T can be written as a
linear combination of the column vectors of A. Linear combinations of the column vectors
of A are vectors of the form

Q@ 16 1
1 + co = (a1 + 2/3)
2a 203 2

Since b is not a multiple of (1,2)” the system must be inconsistent.

(b) To obtain a consistent system, choose b to be a multiple of (1,2)7. If this is done the
second row of the augmented matrix will zero out in the elimination process and you will
end up with one equation in 2 unknowns. The reduced system will have infinitely many
solutions.

(a) To transform A to B, you need to interchange the second and third rows of A. The
elementary matrix that does this is

(b) To transform A to C using a column operation, you need to subtract twice the second
column of A from the first column. The elementary matrix that does this is

1 0 0
F=1_-2 10

0 01

. If b = 3a; +as +4a3, then b is a linear combination of the column vectors of A and it follows

from the consistency theorem that the system Ax = b is consistent. In fact, x = (3,1,4)7 is
a solution to the system.

If a; — 3ay + 2a3 = 0, then x = (1,-3,2)7 is a solution to Ax = 0. It follows from Theo-
rem 1.5.2 that A must be singular.

CIf

then

Ax = = = = Bx
1 4 1 5 2 3 1

A= , B=
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then A and B are both symmetric but their product

1 2 11 3 9
AB = =

2 2 1 4 4 10

is not symmetric.

10. If £ and F' are elementary matrices, then they are both nonsingular and their inverses are
elementary matrices of the same type. If C = E'F, then C'is a product of nonsingular matrices,
so C is nonsingular and C~! = F~1E~1,

11.
I 0 0

A'=1o 1 o

O -B I

12. (a) The column partition of A and the row partition of B must match up, so k must be equal
to 5. There is really no restriction on r, it can be any integer in the range 1 <r < 9. In
fact, r = 10 will work when B has block structure

By

Boy
(b) The (2,2) block of the product is given by As; B1a + A22Baa

Copyright ©2020 Pearson Education, Inc.



Chapter?2

Determinants

1 | THE DETERMINANT OF A MATRIX
1. (c) det(A) = -3

7. Given that a;; = 0 and ag; # 0, let us interchange the first two rows of A and also multiply
the third row through by —as;. We end up with the matrix

a1 Q22 a23
0 a2 a3
—a21G31 —a21a32 —a21a33

Now if we add as; times the first row to the third, we obtain the matrix

a1 a2 Q23
0 a2 a13
0 31022 — (21032 31023 — 121433

This matrix will be row equivalent to I if and only if

ai2 a13
(31022 — 421032 31023 — 421433

Thus the original matrix A will be row equivalent to I if and only if

1231023 — (12021033 — Q13031022 + G130A21032 # 0

30
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