
INSTRUCTOR’S 
SOLUTIONS MANUAL 

NUMERICAL ANALYSIS 
THIRD EDITION 

Timothy Sauer 
George Mason University 

 

 
  



 

 

 

 

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the 
development, research, and testing of the theories and programs to determine their effectiveness. The author and 
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation 
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential 
damages in connection with, or arising out of, the furnishing, performance, or use of these programs. 
 
Reproduced by Pearson from electronic files supplied by the author. 
 
Copyright © 2018, 2012 by Pearson Education, Inc. 
Publishing as Pearson, 501 Boylston Street, Boston, MA 02116. 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in  
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written 
permission of the publisher. Printed in the United States of America. 

1  17 

ISBN-13: 978-0-13-469732-1 
ISBN-10: 0-13-469732-4 



© 2018, 2012 Pearson Education, Inc.  
 

iii

Table of Contents 
 

 

 Chapter 0: Fundamentals 

 0.1 Evaluating a Polynomial 1 
 0.2 Binary Numbers 2 
 0.3 Floating Point Representation of Real Numbers 8 
 0.4 Loss of Significance 13 
 0.5 Review of Calculus 15 

 Chapter 1: Solving Equations 

 1.1 The Bisection Method 17 
 1.2 Fixed-Point Iteration 19 
 1.3 Limits of Accuracy 24 
 1.4 Newton’s Method 25 
 1.5 Root-Finding without Derivatives 28 

 Chapter 2: Systems of Equations 

 2.1 Gaussian Elimination 31 
 2.2 The LU Factorization 32 
 2.3 Sources of Error 35 
 2.4 The PA=LU Factorization 40 
 2.5 Iterative Methods 45 
 2.6 Methods for Symmetric Positive-Definite Matrices 49 
 2.7 Nonlinear Systems of Equations 57 

 Chapter 3: Interpolation 

 3.1 Data and Interpolating Functions 63 
 3.2 Interpolation Error 67 
 3.3 Chebyshev Interpolation 71 
 3.4 Cubic Splines 75 
 3.5 Bézier Curves 85 

 Chapter 4: Least Squares 

 4.1 Least Squares and the Normal Equations 91 
 4.2 A Survey of Models 98 
 4.3 QR Factorization 105 
 4.4 GMRES Method 115 
 4.5 Nonlinear Least Squares 121 



© 2018, 2012 Pearson Education, Inc.  
 
iv 

 Chapter 5: Numerical Differentiation and Integration 

 5.1 Numerical Differentiation 127 
 5.2 Newton-Cotes Formulas for Numerical Integration 136 
 5.3 Romberg Integration 146 
 5.4 Adaptive Quadrature 150 
 5.5 Gaussian Quadrature 155 

 Chapter 6: Ordinary Differential Equations 

 6.1 Initial Value Problems 159 
 6.2 Analysis of IVP Solvers 168 
 6.3 Systems of Ordinary Differential Equations 176 
 6.4 Runge-Kutta Methods and Applications 182 
 6.5 Variable Step-Size Methods 192 
 6.6 Implicit Methods and Stiff Equations 193 
 6.7 Multistep Methods 195 

 Chapter 7: Boundary Value Problems 

 7.1 Shooting Method 207 
 7.2 Finite Difference Methods 211 
 7.3 Collocation and the Finite Element Method 220 

 Chapter 8: Partial Differential Equations 

 8.1 Parabolic Equations 225 
 8.2 Hyperbolic Equations 228 
 8.3 Elliptic Equations 230 
 8.4 Nonlinear Partial Differential Equations 237 

 Chapter 9: Random Numbers and Applications 

 9.1 Random Numbers 239 
 9.2 Monte Carlo Simulation 242 
 9.3 Discrete and Continuous Brownian Motion 243 
 9.4 Stochastic Differential Equations 245 

 Chapter 10: Trigonometric Interpolation and the FFT 

 10.1 The Fourier Transform 253 
 10.2 Trigonometric Interpolation 256 
 10.3 The FFT and Signal Processing 265 

  



© 2018, 2012 Pearson Education, Inc.  
 

v 

 Chapter 11: Compression 

 11.1 The Discrete Cosine Transform 271 
 11.2 Two-Dimensional DCT and Image Compression 276 
 11.3 Huffman Coding 280 
 11.4 Modified DCT and Audio Compression 284 

 Chapter 12: Eigenvalues and Singular Values 

 12.1 Power Iteration Methods 293 
 12.2 QR Algorithm 297 
 12.3 Singular Value Decomposition 301 
 12.4 Applications of the SVD 305 

 Chapter 13: Optimization 

 13.1 Unconstrained Optimization without Derivatives 307 
 13.2 Unconstrained Optimization with Derivatives 309 
  



CHAPTER 1
Solving Equations

EXERCISES 1.1 The Bisection Method

1 (a) Check that f(x) = x3−9 satisfies f(2) = −1 and f(3) = 27−9 = 18. By the Intermediate
Value Theorem, f(2)f(3) < 0 implies the existence of a root between x = 2 and x = 3.

1 (b) Define f(x) = 3x3 + x2 − x− 5. Check that f(1) = −2 and f(2) = 21, so there is a root
in [1, 2].

1 (c) Define f(x) = cos2 x− x+ 6. Check that f(6) > 0 and f(7) < 0. There is a root in [6, 7].

2 (a) [0, 1]
2 (b) [−1, 0]
2 (c) [1, 2]

3 (a) Start with f(x) = x3 + 9 on [2, 3], where f(2) < 0 and f(3) > 0. The first step is
to evaluate f(5

2
) = 53

8
> 0, which implies the new interval is [2, 5

2
]. The second step is to

evaluate f(9
4
) = 729

64
− 9 > 0, giving the interval [2, 9

4
]. The best estimate is the midpoint

xc = 17
8

.
3 (b) Start with f(x) = 3x3+x2−x−5 on [1, 2], where f(1) > 0 and f(2) < 0. Since f(3

2
) > 0,

the second interval is [1, 3
2
]. Since f(5

4
) > 0, the third interval is [1, 5

4
]. The best estimate is

the endpoint xc = 9
8
.

3 (c) Start with f(x) = cos2 x+ 6−x on [6, 7], where f(6) > 0 and f(7) < 0. Since f(6.5) > 0,
the second interval is [6.5, 7]. Since f(6.75) > 0, the third interval is [6.75, 7]. The best
estimate is the midpoint xc = 6.875.

4 (a) 0.875
4 (b) −0.875
4 (c) 1.625

5 (a) Setting f(x) = x4 − x3 − 10, check that f(2) = −2 and f(3) = 44, so there is a root in
[2, 3].

5 (b) According to (1.1), the error after n steps is less than (3−2)/2n+1. Ensuring that the error is
less than 10−10 requires

(
1
2

)n+1
< 10−10, or 2n+1 > 1010, which yields n > 10/ log10(2)−1 ≈

32.2. Therefore 33 steps are required.

6 Bisection Method converges to 0, but 0 is not a root.

c©2018 Pearson Education, Inc.
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COMPUTER PROBLEMS 1.1

1 (a) There is a root in [2, 3] (see Exercise 1.1.1). In MATLAB , use the textbook’s Program 1.1,
bisect.m. Six correct decimal places corresponds to error tolerances 5 × 10−7, according
to Def. 1.3. The calling sequence

>> f=@(x) xˆ3-9;
>> xc=bisect(f,2,3,5e-7)

returns the approximate root 2.080083.
1 (b) Similar to (a), on interval [1, 2]. The command

>> xc=bisect(@(x) 3*xˆ3+xˆ2-x-5,1,2,5e-7)

returns the approximate root 1.169726.
1 (c) Similar to (a), on interval [6, 7]. The command

>> xc=bisect(@(x) cos(x)ˆ2+6-x,6,7,5e-7)

returns the approximate root 6.776092.

2 (a) 0.75487767
2 (b) −0.97089892
2 (c) 1.59214294

3 (a) Plots for parts (a) - (c) are:

−2 −1 1 2

−4
−3
−2
−1

1
2
3
4

(a)

−2 −1 1 2

−2
−1

1
2

(b)

−2 −1 1 2

−2
−1

1
2

(c)

In part (a), it is clear from the graph that there is a root in each of the three intervals
[−2,−1], [−1, 0], and [1, 2]. The command

>> bisect(@(x) 2*xˆ3-6*x-1,-2,-1,5e-7)

yields the first approximate root −1.641783. Repeating for the next two intervals gives the
approximate roots −0.168254 and 1.810038.

(b) There are roots in [−2,−1], [−0.5, 0.5], and [0.5, 1.5]. Using bisect as in part (a) yields
the approximate roots −1.023482, 0.163823, and 0.788942.

(c) There are roots in [−1.7,−0.7], [−0.7, 0.3], and [0.3, 1.3]. Using bisect as in part (a) yields
the approximate roots −0.818094, 0, and 0.506308.

c©2018 Pearson Education, Inc.
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4 (a) [1, 2], 27 steps, 1.41421356
4 (b) [1, 2], 27 steps, 1.73205081
4 (c) [2, 3], 27 steps, 2.23606798

5 (a) There is a root in the interval [1, 2]. Eight decimal place accuracy implies an error tolerance
of 5× 10−9. The command

>> bisect(@(x) xˆ3-2,1,2,5e-9)

yields the approximate cube root 1.25992105 in 27 steps.
5 (b) There is a root in the interval [1, 2]. Using bisect as in (a) gives the approximate cube

root 1.44224957 in 27 steps.
5 (c) There is a root in the interval [1, 2]. Using bisect as in (a) gives the approximate cube

root 1.70997595 in 27 steps.

6 0.785398

7 Trial and error, or a plot of f(x) = det(A) − 1000, shows that f(−18)f(−17) < 0 and
f(9)f(10) < 0. Applying bisect to f(x) yields the roots −17.188498 and 9.708299. The
backward errors of the roots are |f(−17.188498)| = 0.0018 and |f(9.708299)| = 0.00014.

8 2.948011

9 The desired height is the root of the function f(H) = πH2(1− 1
3
H)− 1. Using

>> bisect(@(H) pi*Hˆ2*(1-H/3)-1,0,1,0.001)

gives the solution 636 mm.

EXERCISES 1.2 Fixed-Point Iteration

1 (a)
3

x
= x⇒ x2 = 3⇒ x = ±

√
3

1 (b) x2 − 2x+ 2 = x⇒ x2 − 3x+ 2 = 0⇒ x = 1, 2

1 (c) x2 − 4x+ 2 = x⇒ x2 − 5x+ 2 = 0⇒ x =
5±
√

17

2

2 (a) −1, 2
2 (b) 2
2 (c) −1, 0, 1

3 (a) Check by substitution. For example,
13 + 1− 6

6(1)− 10
= 1.

3 (b) Check by substitution.

c©2018 Pearson Education, Inc.
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4 (a) Check by substitution.
4 (b) Check by substitution.

5 (a) No, g(
√

3) 6=
√

3.

5 (b) Yes, g(
√

3) =
2
√

3

3
+

1√
3

=
√

3.

5 (c) No, g(
√

3) 6=
√

3.

5 (d) Yes, g(
√

3) = 1 +
2√

3 + 1
=
√

3.

6 (a) Yes.
6 (b) Yes.
6 (c) No.
6 (d) Yes.

7 (a) g′(x) = 2
3
(2x − 1)−

2
3 , and |g′(1)| = 2

3
< 1. Theorem 1.6 implies that FPI is locally

convergent to r = 1.
7 (b) g′(x) = 3

2
x2, and |g′(1)| = 3

2
> 1; FPI diverges from r = 1.

7 (c) g′(x) = cos x+ 1, and |g′(0)| = 2 > 1; FPI diverges from r = 0.

8 (a) locally convergent
8 (b) locally convergent
8 (c) divergent

9 (a) Solve 1
2
x2 + 1

2
x = x to find the fixed points r = 0, 1. The derivative g′(x) = x + 1

2
.

By Theorem 1.6, |g′(0)| = 1
2
< 1 implies that FPI converges to r = 0, and |g′(1)| = 3

2
> 1

implies that FPI diverges from r = 1.
9 (b) Solve x2 − 1

4
x + 3

8
= x to find the fixed points r = 1

2
, 3
4
. The derivative g′(x) = 2x − 1

4
.

|g′(1
2
)| = 3

4
< 1 implies that FPI is locally convergent to r = 1

2
. |g′(3

4
)| = 5

4
> 1 implies that

FPI diverges from r = 3
4
.

10 (a) FPI diverges from 3/2, while 1 is locally convergent
10 (b) FPI diverges from 1, while −1/2 is locally convergent

11 (a) There is a variety of answers, obtained by rearranging the equation x3 − x + ex = 0 to
isolate x. For example, x = x3 + ex, x = 3

√
x− ex, x = ln(x− x3).

11 (b) As in (a), rearrange 3x−2+9x3 = x2 to isolate x. For example, x =
3

x3
+9x2, x =

1

9
− 1

3x4
,

x =
x5 − 9x6

3
.

12 (a) Faster than Bisection Method
12 (b) FPI diverges from the fixed point 1.2

c©2018 Pearson Education, Inc.
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13 (a) Solving the fixed point equationx = g(x) = 0.39− x2 yields the fixed points r = 0.3 and
−1.3.

13 (b) g′(x) = −2x so |g′(0.3)| = 0.6 and |g′(−1.3)| = 2.6. By Theorem 1.6, Fixed Point
Iteration is locally convergent to r = 0.3.

13 (c) Convergence by FPI is at the rate ei+1 ≈ 0.6ei, which is slower than the Bisection Method.

14 All converge to
√

2, from fastest to slowest: (A), (B), (C).

15 Check that
√

5 is a fixed point for each iteration. Then calculate convergence rates for the

three iterations. (A) g′(x) =
4

5
− 1

x2
, g′(
√

5) =
4

5
− 1
√

5
2 =

3

5
.

(B) g′(x) =
1

2
+

5

2

(
− 1

x2

)
, g′(
√

5) =
1

2
− 1

2
= 0.

(C) g′(x) = − 4

(x+ 1)2
, g′(
√

5) = − 4

(
√

5 + 1)2
≈ −0.382.

From fastest to slowest: (B), (C), (A).

16 All converge to 41/3, from fastest to slowest: (C), (B), (A).

17 Solving x2 =
1− x

2
for x results in the two separate equations g1(x) =

√
1− x

2
and

g2(x) = −
√

1− x
2

. First notice that g1(x) returns only positive numbers, and g2(x) only

negative. Therefore −1 cannot be a fixed point of g1(x), and 1
2

cannot be a fixed point of

g2(x). Check that g1(12) = 1
2

and g′1(x) = − 1

2
√

2− 2x
. |g′1(12)| = 1

2
< 1 confirms that FPI

with g1(x) is locally convergent to r = 1
2
. Likewise, g2(−1) = −1, g′2(x) =

1

2
√

2− 2x
and

|g′2(−1)| = 1
4

implies that FPI with g2(x) is locally convergent to r = −1.

18 For a positive number A, consider applying Fixed Point Iteration to g(x) = (x + A/x)/2.
Note that g′(

√
A) = 0, so FPI is locally convergent to

√
A by Theorem 1.6. A simple sketch

of y = g(x) shows that FPI converges to
√
A for all positive initial guesses.

19 Define g(x) = (x+A/x2)/2. Since |g′( 3
√
A)| = 1

2
< 1, FPI is locally convergent to the cube

root 3
√
A.

20 w = 2/3

21 (a) Substitute roots and check.
21 (b) g′(x) = −5 + 15x − 15

2
x2. FPI diverges from all three roots, because |g′(1 −

√
3/5)| =

|g′(1 +
√

3/5)| = 2 and |g′(1)| = 2.5.

c©2018 Pearson Education, Inc.
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22 Initial guesses 0, 1 and 2 all lead to r = 1. Neaby initial guesses cause FPI to move away
from the divergent fixed point 1 and oscillate chaotically.

23 The slopes of g at r1 and r3 imply that the graph of y = g(x) must pass through the line y = x
at x = r2 from below the line to above the line. Therefore g′(r2) must belong to the interval
(1,∞).

24 g′(1) = 1

25 Let x belong to [a, b]. By the Mean Value Theorem, |g(x0)− r| ≤ B|x0− r| < |x0− r|. Since
r belongs to [a, b], x1 = g(x0) does also, and by extension, so does x2, x3, etc. Similarly,
|x1 − r| ≤ B|x0 − r| extends to |xi − r| ≤ Bi|x0 − r|, which converges to zero as i→∞.

26 If x1 = g(x1) and x2 = g(x2) are both fixed points, then by the Mean Value Theorem, there
exists c between x1 and x2 for which x2−x1 = g(x2)−g(x1) = g′(c)(x2−x1), which implies
g′(c) = 1, a contradiction.

27 (a) Solving x− x3 = x yields x3 = 0, or x = 0.
27 (b) Assume 0 < x0 < 1. Then x30 < x0, and so 0 < x1 = x0 − x30 < x0 < 1. The same

argument implies by induction that x0 > x1 > x2 > ... > 0.
27 (c) The limit L = lim

i→∞
xi exists because the xi form a bounded monotonic sequence. Since

g(x) is continuous, g(L) = g( lim
i→∞

xi) = lim
i→∞

g(xi) = lim
i→∞

xi+1 = L, so L is a fixed point,
and by (a), L = 0.

28 (a) x = x+ x3 implies x = 0
28 (b) If 0 < xi, then xi+1 = xi + x3i = xi(1 + x2i ) > xi.
28 (c) g′(0) = 1, but the xi move away from r = 0.

29 (a) Set g(x) =
x3 + (c+ 1)x− 2

c
. Then g′(x) =

3x2 + (c+ 1)

c
, and |g′(1)| = |4 + c

c
| < 1

for c < −2. By Theorem 1.6, FPI is locally convergent to r = 1 if c < −2.
29 (b) g′(1) = 0 if c = −4.

30 By Taylor’s Theorem, g(xi) = g(r) + g′(r)(xi− r) + g′′(c)(x− r)2/2, where c is between xi
and r. Thus ei+1 = |r− xi+1| = |g′′(c)|(r− xi)2/2 = |g′′(c)|e2i /2. In the limit, c converges to
r.

31 By factoring or the quadratic formula, the roots of the equation are −5
4

and 1
4
. Set g(x) =

5
16
− x2. Using the cobweb diagram of g(x), it is clear that initial guesses in (−5

4
, 5
4
) converge

to r2 = 1
4
, and initial guesses in (−∞,−5

4
)∪ (5

4
,∞) diverge to−∞ under FPI. Initial guesses

−5
4

and 5
4

limit on −5
4
.

32 The open interval (−4/3, 4/3) of initial guesses converge to the fixed point 1/3; the two initial
guesses −4/3, 4/3 lead to −4/3.

c©2018 Pearson Education, Inc.
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33 (a) Choose a = 0 and |b| < 1, c arbitrary. Since a = 0, r = 0 is a fixed point, and
g′(x) = b+ 2cx implies |g′(0)| = |b| < 1, so FPI is locally convergent to 0 by Theorem 1.6.

33 (b) Choose a = 0 and |b| > 1 to make initial guesses move away from the fixed point 0.

COMPUTER PROBLEMS 1.2

1 (a) Define g(x) = (2x+ 2)
1
3 , for example. Using the fpi code, the command

>> x=fpi(@(x) (2*x+2)ˆ(1/3),1/2,20)

yields the solution 1.76929235 to 8 correct decimal places.
1 (b) Define g(x) = ln(7 − x). Using fpi as in part (a) returns the solution 1.67282170 to 8

correct decimal places.
1 (c) Define g(x) = ln(4− sinx). Using fpi as in part (a) returns the solution 1.12998050 to 8

correct decimal places.

2 (a) 0.75487767
2 (b) −0.97089892
2 (c) 1.59214294

3 (a) Iterate g(x) = (x + 3/x)/2 with starting guess 1. After 4 steps of FPI, the results is
1.73205081 to 8 correct places.

3 (b) Iterate g(x) = (x + 5/x)/2 with starting guess 1. After 5 steps of FPI, the results is
2.23606798 to 8 correct places.

4 (a) 1.25992105
4 (b) 1.44224957
4 (c) 1.70997595

5 Iterating g(x) = cos2 x with initial guess x0 = 1 results in 0.641714 to six correct places after
350 steps. Checking |g′(0.641714)| ≈ 0.96 verifies that FPI is locally convergent by Theorem
1.6.

6 (a) −1.641784,−0.168254, 1.810038
6 (b) −1.023482, 0.163822, 0.788941
6 (c) −0.818094, 0, 0.506308.

7 (a) Almost all numbers between 0 and 1.
7 (b) Almost all numbers between 1 and 2.
7 (c) Any number greater than 3 or less than −1 will work.

c©2018 Pearson Education, Inc.
23



EXERCISES 1.3 Limits of Accuracy

1 (a) The forward error is |r − xc| = |0.75 − 0.74| = 0.01. The backward error is |f(xc)| =
|4(0.74)− 3| = 0.04.

1 (b) FE = |r − xc| = 0.01 as in (a). BE = |f(0.74)| = (0.04)2 = 0.0016.
1 (c) FE = |r − xc| = 0.01 as in (a). BE = |f(0.74)| = (0.04)3 = 0.000064.
1 (d) FE = |r − xc| = 0.01 as in (a). BE = |f(0.74)| = (0.04)

1
3 = 0.342.

2 (a) FE = 0.00003, BE = 10−4

2 (b) FE = 0.00003, BE = 10−8

2 (c) FE = 0.00003, BE = 10−12

2 (d) FE = 0.00003, BE = 0.0464

3 (a) Check derivatives: f(0) = f ′(0) = 0, f ′′(0) = cos 0 = 1. The multiplicity of the root r = 0
is 2.

3 (b) The forward error is |r − xc| = |0 − 0.0001| = 0.0001. The backward error is |f(xc)| =
|1− cos 0.0001| ≈ 5× 10−9.

4 (a) 4
4 (b) FE = 10−2, BE = 10−8

5 The root of f(x) = ax − b is r = b/a. If xc is an approximate root, the forward error is
FE = |b/a−xc|while the backward error isBE = |f(xc)| = |axc−b| = |a|| ba−xc| = |a|FE.
Therefore the backward error is a factor of |a| larger than the forward error.

6 (a) 1
6 (b) Let ε be the backward error. By the Sensitivity Formula, the forward error ∆r is ε/f ′(A1/n) =

ε/(nA(n−1)/n).

7 (a) W ′(x) = (x− 2) · · · (x− 20) + (x− 1)(x− 3) · · · (x− 20) + . . .+ (x− 1) · · · (x− 19),
so W ′(16) = (16− 1)(16− 2) · · · (16− 15)(16− 17)(16− 18)(16− 19)(16− 20) = 15!4!

7 (b) For a general integer j between 1 and 20,
W ′(j) = (j − 1)(j − 2) · · · (1)(−1)(−2) · · · (j − 20) = (−1)j(j − 1)!(20− j)!

8 (a) Predicted root a+ ∆r = a− εa
8 (b) Actual root a/(1 + ε) = a− εa+ ε2a− ε3a+ . . .

COMPUTER PROBLEMS 1.3

1 (a) Check the derivatives of f(x) = sinx − x to see that f(0) = f ′(0) = f ′′(0) = 0 and
f ′′′(0) = − cos 0 = −1, giving multiplicity 3.

1 (b) fzero returns xc = −2.0735 × 10−8. The forward error is 2.0735 × 10−8 and MATLAB

c©2018 Pearson Education, Inc.
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reports the backward error to be |f(xc)| = 0. This means the true backward error is likely less
than machine epsilon.

2 (a) m = 9
2 (b) xc = FE = 0.0014, BE = 0

3 (a) The MATLAB command

>> xc=fzero(@(x) 2*x*cos(x)-2*x+sin(xˆ3),[-0.1,0.2])

returns xc = 0.00016881. The forward error is |xc − r| = 0.00016881 and the backward error
is reported by MATLAB as |f(xc)| = 0.

3 (b) The bisection method with starting interval [−0.1, 0.2] stops after 13 steps, giving xc =
−0.00006103. Neither method can determine the root r = 0 to more than about 3 correct
decimal places.

4 (a) r + ∆r = 3− 2.7ε
4 (b) Predicted root = 3− 0.0027 = 2.9973, actual root = 2.9973029

5 To use (1.21), set f(x) = (x− 1)(x− 2)(x− 3)(x− 4), ε = −10−6 and g(x) = x6. Then near
the root r = 4, ∆r ≈ −εg(r)/f ′(r) = 46/6 ≈ 0.00068267. According to (1.22), the error
magnification factor is |g(r)|/|rf ′(r)| = 46/24 ≈ 170.7. fzero returns the approximate root
4.00068251, close to the guess 4.00068267 given by (1.21).

6 Actual root xc = 14.856, predicted root = r + ∆r = 15− 0.14 = 14.86

EXERCISES 1.4 Newton’s Method

1 (a) x1 = x0−(x30+x0−2)/(3x20+1) = 0−(−2)/(1) = 2; x2 = 2−(23+2−2)/(3(22)+1) =
18/13.

1 (b) x1 = x0 − (x40 − x20 + x0 − 1)/(4x30 − 2x0 + 1) = 1; x2 = 1.
1 (c) x1 = x0 − (x20 − x0 − 1)/(2x0 − 1) = −1; x2 = −2

3
.

2 (a) x1 = 0.8, x2 = 0.756818
2 (b) x1 = −0.2, x2 = 0.180856
2 (c) x1 = x2 = 2

3 (a) According to Theorem 1.11, f ′(−1) = 8 implies that convergence to r = −1 is quadratic,
with ei+1 ≈ |f ′′(−1)/(2f ′(−1))|e2i = | − 40/(2)(8)|e2i = 2.5e2i ; f ′(0) = −1 implies conver-
gence to r = 0 is quadratic, ei+1 ≈ 2e2i ; f ′(1) = f ′′(1) = 0 and f ′′′(1) = 12 implies that
convergence to r = 1 is linear, ei+1 ≈ 2

3
ei.

3 (b) f ′(−1
2
) = −27/4 implies that convergence to r = −1

2
is quadratic, with error relationship

ei+1 ≈ |27/2(−27
4

)|e2i = 2e2i ; f ′(1) = f ′′(1) = 0 and f ′′′(1) = 18 implies that convergence to
r = 1 is linear, ei+1 ≈ 2

3
ei.
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4 (a) r = −1/2, ei+1 = 1.6e2i ; r = 3/4, ei+1 = 1
2
ei

4 (b) r = −1, ei+1 = 1
2
ei; r = 3, ei+1 = 1

2
e2i

5 Convergence to r = 0 is quadratic since f ′(0) = −1 6= 0, so Newton’s Method converges
faster than the Bisection Method. Convergence to r = 1

2
is linear since f ′(1

2
) = f ′′(1

2
) = 0

and f ′′′(1
2
) = 24, with ei+1 ≈ 2

3
ei. Since S = 2

3
> 1

2
, Newton’s Method will converge to

r = 1
2

slower than the Bisection Method.

6 Many possible answers; for example, f(x) = xe−x with initial guess greater than 1.

7 Computing derivatives, f ′(2) = f ′′(2) = 0 and f ′′′(2) = 6 implies that r = 2 is a triple
root. Therefore Newton’s Method does not converge quadratically, but converges linearly and
ei+1/ei → 2

3
according to Theorem 1.12.

8 x1 = x0 − (ax0 + b)/a = −b/a

9 Since f ′(x) = 2x, Newton’s Method is

xi+1 = xi −
x2i − A

2xi
=
xi
2

+
A

2xi
=
xi + A/xi

2
.

10 xi+1 = (2xi + A/x2i )/3

11 The nth root of A is the real root of f(x) = xn − A = 0. Newton’s Method applied to the
equation is

xi+1 = xi −
xni − A
nxn−1i

=
n− 1

n
xi +

A

nxn−1i

=
(n− 1)xi + A/xn−1i

n
.

Since f ′(A
1
n ) = nA

n−1
n , Theorem 1.11 implies that Newton’s Method converges quadratically

as long as A 6= 0.

12 x50 = 250

13 (a) Newton’s Method converges quadratically to r = 2 since f ′(2) = 8 6= 0, and e5 ≈
f ′′(2)/(2f ′(2))e24 = 3

4
(10−6)

2
= 0.75× 10−12.

13 (b) Since f ′(0) = −4 and f ′′(0) = 0, Theorem 1.11 implies that lim
i→∞

ei+1/e
2
i = 0, and no

useful estimate of e5 follows. Essentially, convergence is faster than quadratic. Reverting to

the definition of Newton’s Method, xi+1 = xi −
x3i − 4xi
3x2i − 4

=
2x3i

3x2i − 4
, and because r = 0,

ei+1 =

∣∣∣∣ 2e3i
3e2i − 4

∣∣∣∣. Substituting e4 = 10−6 yields e5 =

∣∣∣∣ 2× 10−18

3× 10−12 − 4

∣∣∣∣ ≈ 0.5× 10−18.
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COMPUTER PROBLEMS 1.4

1 (a) Newton’s Method is xi+1 = xi − (x3i − 2xi − 2)/(3x2i − 2). Setting x0 = 1 yields
x7 = 1.76929235 to eight decimal places.

1 (b) Applying Newton’s Method with x0 = 1 yields x5 = 1.67282170 to eight places.
1 (c) Applying Newton’s Method with x0 = 1 yields x3 = 1.12998050 to eight places.

2 (a) 0.75487767
2 (b) −0.97089892
2 (c) 1.59214294

3 (a) Newton’s Method converges linearly to xc = −0.6666648. Subtracting xc from xi shows
error ratios |xi+1 − xc|/|xi − xc| ≈ 2

3
, implying a multiplicity 3 root. Applying Modified

Newton’s Method with m = 3 and x0 = 0.5 converges to xc = −2
3
.

3 (b) Newton’s Method converges linearly to xc = 0.166666669. The error ratios |xi+1−xc|/|xi−
xc| ≈ 1

2
, implying a multiplicity 2 root. Applying Modified Newton’s Method withm = 2 and

x0 = 1 converges quadratically to 0.166666667 ≈ 1
6
. In fact, one checks by direct substitution

that the root is r = 1
6
.

4 (a) r = 1,m = 3
4 (b) r = 2,m = 2

5 The volume of the silo is 400 = 10πr2 + 2
3
πr3. Solving for r by Newton’s Method yields

3.2362 meters.

6 r = 2.0201 cm

7 Newton’s Method converges quadratically to −1.197624 and 1.530134, and converges linearly
to the root 0. The error ratio is |xi+1 − 0|/|xi − 0| ≈ 3

4
, implying that r = 0 is a multiplicity 4

root. This can be confirmed by evaluating the first four derivatives.

8 0.841069, quadratic convergence; π/3 ≈ 1.047198, linear convergence, m = 3; 2.300524,
quadratic convergence

9 Newton’s Method converges quadratically to 0.8571428571 with quadratic error ratio M =

lim
i→∞

ei+1/e
2
i ≈ 2.4, and converges linearly to the root 2 with error ratio S = lim

i→∞
ei+1/ei ≈

2

3
.

10 −1.381298, quadratic convergence; −2/3, linear convergence, m = 2; 0.205183, quadratic
convergence; 1/2, quadratic convergence; 1.176116, quadratic convergence

11 Solving the ideal gas law for an initial approximation gives V0 = nRT/P = 1.75. Applying
Newton’s Method to the non-ideal gas Van der Waal’s equation with initial guess V0 = 1.75
converges to V = 1.701.
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12 initial guess V0 = 2.87, solution V = 2.66 L

13 (a) The equation is equivalent to 1− 3/(4x) = 0, and has the root r = 3
4
.

13 (b) Newton’s Method applied to f(x) = (1− 3/(4x))
1
3 does not converge.

13 (c) f(x) is not differentiable at 0.

14 (a) Assume that h(c) = c, g(c) 6= c, and f ′′(c) = 0. First note that

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)

f ′(x)2
=
f(x)f ′′(x)

f ′(x)2
,

implying that g′(c) = 0, and therefore that h′(c) = g′(g(c))g′(c) = 0. By Theorem 1.6, the
fixed point iteration h is locally convergent to c.

14 (b) Define f(x) = 4x4 − 6x2 − 11/4; then f ′(x) = 16x3 − 12x. Set c = 1/2. Then

g(1/2) =
1

2
− f(1/2)

f ′(1/2)
=

1

2
− −4

−4
= −1

2

and likewise g(−1/2) = 1/2. Now we can verify that h(1/2) = g(g(1/2)) = g(−1/2) = 1/2,
that g(1/2) 6= 1/2, and that f ′′(1/2) = 48(1/2)2 − 12 = 0, as required.

15 0.6355

16 (a) 0.578 and 1.670
16 (b) 0.644 and 1.767

17 (a) 0.866% per year
17 (b) 0.576% per year

18 (a) 0.02098

EXERCISES 1.5 Root-Finding without Derivatives

1 (a) Applying the Secant Method with x0 = 1 and x1 = 2 yields x2 = x1−
(x1 − x0)f(x1)

f(x1)− f(x0)
=

8

5
and x3 ≈ 1.742268.

1 (b) Using the Secant Method formula with x0 = 1 and x1 = 2 as in (a) returns x2 ≈ 1.578707
and x3 ≈ 1.660160.

1 (c) The Secant Method yields x2 ≈ 1.092907 and x3 ≈ 1.119357.

2 (a) x2 = 8/5, x3 = 1.742268
2 (b) x2 = 1.578707, x3 = 1.66016
2 (c) x2 = 1.092907, x3 = 1.119357
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3 (a) Applying IQI with x0 = 1, x1 = 2 and x2 = 0 yields x3 = −1
5

and x4 ≈ −0.11996018
from formula (1.37).

3 (b) Applying the IQI formula gives x3 ≈ 1.75771279 and x4 ≈ 1.66253117.
3 (c) Applying IQI as in (a) and (b) yields x3 ≈ 1.13948155 and x4 ≈ 1.12927246.

4 10.25 m

5 Setting A = f(a), B = f(b), C = f(c), and y = 0 in (1.35) gives

P (0) =
af(b)f(c)

(f(a)− f(b))(f(a)− f(c))
+

bf(a)f(c)

(f(b)− f(a))(f(b)− f(c))

+
cf(a)f(b)

(f(c)− f(a))(f(c)− f(b))

=
af(b)−f(c)

f(a)
+ bf(c)−f(a)

f(b)
+ cf(a)−f(b)

f(c)

(1− f(b)
f(a)

)(f(a)
f(c)
− 1)(1− f(c)

f(b)
)

=
as(1− qs) + bqs(r − q) + c(q − 1)

(q − 1)(r − 1)(s− 1)

= c+
as(1− r) + br(r − q)− c(r2 − qr − rs+ s)

(q − 1)(r − 1)(s− 1)

= c− (c− b)r(r − q) + (c− a)s(1− r)
(q − 1)(r − 1)(s− 1)

.

7 (a) (A) is the Bisection Method, which cuts uncertainty in half on each step.
(B) Check that f(21/4) = 0 and f ′(21/4) = (4)23/4 6= 0. Therefore the Secant Method
converges superlinearly.

(C) 21/4 is a fixed point because g(21/4) =
21/4

2
+

1

23/4
=

21/4 + 21/4

2
= 21/4.

Note that g′(x) =
1

2
− 3

x4
⇒ g′(21/4) =

1

2
− 3

(21/4)4
=

1

2
− 3

2
= −1.

(D) 21/4 is a fixed point because g(21/4) =
21/4

3
+

1

(3)23/4
=

2 + 1

(3)23/4
= 21/4.

Note that g′(x) =
1

3
− 3

3x4
⇒ g′(21/4) =

1

3
− 1

(21/4)4
=

1

3
− 1

2
= −1/6.

Fastest to slowest: (B), (D), (A); (C) does not converge to 21/4.
7 (b) Newton’s Method will converge faster than the four above choices.

COMPUTER PROBLEMS 1.5

1 (a) Applying the Secant Method formula shows convergence to the root 1.76929235
1 (b) 1.67282170
1 (c) 1.12998050.
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2 (a) 1.76929235
2 (b) 1.67282170
2 (c) 1.12998050

3 (a) Applying formula (1.37) for Inverse Quadratic Interpolation shows convergence to 1.76929235.
3 (b) Similar to part (a). Converges to 1.67282170
3 (c) Similar to part (a). Converges to 1.129998050.

4 −1.381298, superlinear; −2/3, linear; 0.205183, superlinear; 1/2, superlinear; 1.176116,
superlinear

5 The MATLAB command

>> fzero(@(x) 1/x,[-2,1])

converges to zero, although there is no root there.

6 fzero fails in both cases because the functions never cross zero
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