
Assume all gases are perfect unless stated otherwise. Unless otherwise stated, 
thermochemical data are for 298.15 K. 

2  The First Law 
 
2A  Internal energy 
 

Answers to discussion questions 
 
 
2A.2 Work is a precisely defined mechanical concept. It is produced from the application of a force through 

a distance. The technical definition is based on the realization that both force and displacement are 
vector quantities and it is the component of the force acting in the direction of the displacement that is 
used in the calculation of the amount of work, that is, work is the scalar product of the two vectors. In 
vector notation cosw fd θ= − ⋅ = −dF , where θ  is the angle between the force and the displacement. 
The negative sign is inserted to conform to the standard thermodynamic convention. 
Heat is associated with a non-adiabatic process and is defined as the difference between the adiabatic 
work and the non-adiabatic work associated with the same change in state of the system. This is the 
formal (and best) definition of heat and is based on the definition of work. A less precise definition of 
heat is the statement that heat is the form of energy that is transferred between bodies in thermal 
contact with each other by virtue of a difference in temperature. 

 The interpretations of heat and work in terms of energy levels and populations is based upon the 
change in the total energy of a system that arises from a change in the molecular energy levels of a 
system and from a change in the populations of those levels as explained more fully in Chapter 15 of 
this text. The statistical thermodynamics of Chapter 15 allows us to express the change in total energy 
of a system in the following form:  

  d d di i i i
i i

N N Nε ε ε〈 〉 = +∑ ∑  

 The work done by the system in a reversible, isothermal expansion can be identified with the second 
term on the right of this expression, since there is no change in the populations of the levels which 
depend only on temperature; hence, the first term on the right is zero. Because the influx of energy as 
heat does not change the energy levels of a system, but does result in a change in temperature, the 
second term on the right of the above equation is zero and the heat associated with the process (a 
constant volume process, with no additional work) can be identified with the first term. The change in 
populations is due to the change in temperature, which redistributes the molecules over the fixed 
energy levels.  

 
Solutions to exercises 

 
2A.1(b) See the solution to Exercise 2A.1(a) where we introduced the following equation based on the 

material of Chapter 15. 

   
  
CV ,m = 1

2 (3+ vR
* + 2vV

* )R   

with a mode active if 
  
T > θ M  (where M is T, R, or V). 

(i) 
  
O3 : CV ,m = 1

2 (3+ 3+ 0)R = 3R  [experimental = 3.7R] 

 1 1 13 3 8.314 J K  mol 298.15 K= 7.436 kJ molE RT − − −= = × ×  

(ii) 
  
C2H6 : CV ,m = 1

2 (3+ 3+ 2 ×1)R = 4R  [experimental = 6.3R] 

 1 1 14 4 8.314 J K  mol 298.15 K= 9.915 kJ molRTE − − −= × ×=  
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(iii) 1
2 ,m 2SO : (3 3 0) 3VC R R= + + =  [experimental = 3.8R] 

 1 1 13 3 8.314 J K  mol 298.15 K= 7.436 kJ molE RT − − −= = × ×  
 
Consultation of Herzberg references, G. Herzberg, Molecular spectra and Molecular structure, II, 
Chapters 13 and 14, Van Nostrand, 1945, turns up only one vibrational mode among these molecules 
whose frequency is low enough to have a vibrational temperature near room temperature.  That mode 
was in C2H6, corresponding to the “internal rotation” of CH3 groups.  The discrepancies between the 
estimates and the experimental values suggest that there are vibrational modes in each molecule that 
contribute to the heat capacity—albeit not to the full equipartition value—that our estimates have 
classified as inactive. 

 
2A.2(b)  (i) volume, (iii) internal energy, and (iv) density are state functions. 
 
2A.3(b) This is an expansion against a constant external pressure; hence ex  [2A.6]w p V= − ∆  

The change in volume is the cross-sectional area times the linear displacement: 

 
3

2 3 31m(75.0cm ) (25.0cm) 1.87 10 m
100cm

V − 
∆ = × × = × 

 
  

so 3 3 3(150 10 Pa) (1.87 10 m ) 281Jw −= − × × × = −  as 1 Pa m
3
 = 1 J  

 
 
2A.4(b) For all cases   ∆U = 0,  since the internal energy of a perfect gas depends only on temperature.  From the 

definition of enthalpy, H = U + pV, so   ∆H = ∆U + ∆( pV ) = ∆U + ∆(nRT )  (perfect gas).   ∆H = 0  as 
well, at constant temperature for all processes in a perfect gas. 

(i)   ∆U = ∆H = 0  

 

f

i

3
1 1 3

3

3

ln  [2A.9]

20.0dm(2 00mol) (8 3145J K mol ) 273K ln 6.29 10 J
5.0dm

6.29 10 J

Vw nRT
V

q w

− −

 
= −  

 

= − . × . × × = − ×

= − = ×

 

(ii)   ∆U = ∆H = 0  

  w = − pex∆V  [2A.6] 

where   pex  in this case can be computed from the perfect gas law  

 pV = nRT   

so 
1 1

1 3 5
3

(2 00mol) (8 3145JK mol ) 273K (10dm m ) 2.22 10 Pa
20.0dm

p
− −

−. × . ×
= × = ×  

and 
5 3

3
1 3

(2.22 10 Pa) (20.0 5.0)dm 3.34 10 J
(10dm m )

w −

− × × −
= = − ×   

33.34 10 Jq w= − = ×  

(iii)   ∆U = ∆H = 0  

   w = 0  [free expansion]   q = ∆U − w = 0 − 0 = 0  

 Comment. An isothermal free expansion of a perfect gas is also adiabatic. 
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2A.5(b) The perfect gas law leads to  

  

p1V
p2V

=
nRT1

nRT2

or p2 =
p1T2

T1

=
(111k Pa) × (356 K)

277 K
= 143k Pa  

There is no change in volume, so w = 0.  The heat flow is 

  

q = CV dT ≈ CV∆T = (2.5) × (8.3145J K−1 mol−1) × (2.00 mol) × (356 − 277) K∫
= 3.28 ×103 J

 

   ∆U = q + w = 3.28 ×103J  
 
 

2A.6(b) (i) 
3 3

ex 1 3

(7 7 10 Pa) (2 5dm ) 19J
(10dm m )

w p V −

− . × × .
= − ∆ = = −   

(ii) f

i

ln  [2A.9]
Vw nRT
V

 
= −  

 
 

 
( ) ( ) ( ) 3

1 1
1 3

2.5 18.5 dm6.56g 8.3145J K mol 305 K ln
39.95g mol 18.5dm

52.8 J

w − −
−

+ 
= − × × × 

 

= −

 

 
 

Solutions to problems 
 

2A.2   ex f i f
ex

[2A.6] sonRTw p V V V V V
p

= − ∆ = >> ; ∆ ≈   

Hence 
  
w ≈ (− pex ) × nRT

pex







= −nRT = (−1.0 mol) × (8.314 J K−1 mol−1) × (1073K)  

 w ≈ –8.9 kJ 
Even if there is no physical piston, the gas drives back the atmosphere, so the work is also 

  w ≈ –8.9 kJ 

 
 
2A.4 
 
 
    

 
 
 
By multiplying and dividing the value of each variable by its critical value we obtain  

  

  

w = −nR ×
T
Tc







Tc × ln

V2

Vc

−
nb
Vc

V1

Vc

−
nb
Vc



















−
n2a
Vc







×

Vc

V2

−
Vc

V1







 

  

w = −
V1

V2∫ pdV = −nRT
V1

V2∫
dV

V − nb
+ n2a

V1

V2∫
dV
V 2

= −nRT ln
V2 − nb
V1 − nb







− n2a 1

V2

−
1
V1







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  r r c c
c c

8 3 [Table 1C.4]
27

T V aT V T V nb
T V Rb

= , = , = , =  

  

  

w = −
8na
27b






× (Tr ) × ln

Vr,2 −
1
3

Vr,1 −
1
3
















−

na
3b






×

1
Vr,2

−
1

Vr,1









  

The van der Waals constants can be eliminated by defining 
  
wr =

3bw
a

, then 
  
w =

awr

3b
and  

  

wr = −
8
9

nTr ln
Vr,2 −1 / 3
Vr,1 −1 / 3









 − n 1

Vr,2

−
1

Vr,1









  

Along the critical isotherm, Tr = 1, Vr,1 = 1, and Vr,2 = x.  Hence  

  

wr

n
= −

8
9

ln 3x −1
2






−

1
x
+1  

 
 

2A.6  One obvious limitation is that the model treats only displacements along the chain, not displacements that 
take an end away from the chain.  (See Fig. 2A.2 in the Student’s Solutions Manual) 
(a) The displacement is twice the persistence length, so 
 x = 2l, n = 2, ν = n/N = 2/200 = 1/100 

and 
  
F =

kT
2l

 ln 1+ν
1− ν





=

(1.381×10−23  J K−1)(298 K)
2 × 45×10−9  m

 ln 1.01
0.99






= 9.1×10−16  N  

Figure 2A.1 
 
 

  
 
(b) Fig. 2A.1 displays a plot of force vs. displacement for Hooke’s law and for the one-dimensional 
freely jointed chain.  For small displacements the plots very nearly coincide.  However, for large 
displacements, the magnitude of the force in the one-dimensional model grows much faster.  In fact, in 
the one-dimensional model, the magnitude of the force approaches infinity for a finite displacement, 
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namely a displacement the size of the chain itself (|ν| = 1).  (For Hooke’s law, the force approaches 
infinity only for infinitely large displacements.) 

 (c) Work is 
  
dw = − F  dx = kT

2l
 ln 1+ν

1− ν






dx = kNT
2

 ln 1+ν
1− ν






dν  

 This integrates to 

  

  

w = kNT
2

 ln 1+ν
1−ν






dν
0

νf∫ =
kNT

2
 [ln(1+ν ) − ln(1−ν )]dν

0

νf∫

=
kNT

2
[(1+ν ) ln(1+ν ) −ν + (1−ν ) ln(1−ν ) +ν]

0

νf

=
kNT

2
[(1+ν f ) ln(1+ν f ) + (1−ν f ) ln(1−ν f )]

 

(d) The expression for work is well behaved for displacements less than the length of the chain; 
however, for νf = ±1, we must be a bit more careful, for the expression above is indeterminate at these 
points.  In particular, for expansion to the full length of the chain 

 

  

w = lim
ν→1

kNT
2

[(1+ ν ) ln(1+ ν ) + (1− ν ) ln(1− ν )]

=
kNT

2
(1+1) ln(1+1) + lim

ν→1
(1− ν ) ln(1− ν )



 =

kNT
2

2 ln 2 + lim
ν→1

ln(1−ν )
(1− ν )−1











 

where we have written the indeterminate term in the form of a ratio in order to apply l’Hospital’s rule.  
Focusing on the problematic limit and taking the required derivatives of numerator and denominator 
yields: 

 
 
lim
ν→1

ln(1−ν )
(1−ν )−1 = lim

ν→1

−(1−ν )−1

(1−ν )−2 = lim
ν→1

[−(1−ν )] = 0  

Therefore; 
  
w =

kNT
2

(2 ln 2) = kNT ln 2  

 
2B  Enthalpy 
 

Answers to discussion questions 
 
2B.2 See figure 2B.3 of the text. There are two related reasons that can be given as to why Cp is greater than CV. 

For ideal gases Cp − CV = nR. For other gases that can be considered roughly ideal the difference is still 
approximately nR. Upon examination of figure 2B.3, we see that the slope of the curve of enthalpy 
against temperature is in most cases greater that the slope of the curve of energy against temperature; 
hence Cp is in most cases greater than CV. 

 
 

Solutions to exercises 
 

 
2B.1(b) 

  
qp = nCp,m∆T  [2B.7] 

 
  
Cp,m =

qp

n∆T
=

178J
1.9 mol ×1.78 K

= 53J K−1 mol−1  

  
  
CV ,m = Cp,m − R = (53− 8.3) J K−1 mol−1 = 45J K−1 mol−1  
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2B.2(b) (i) At constant pressure, q = ∆H.  

( )

100 273K 1
p 25 273K

373K
2

1

298K

2 2 3

d [20 17 (0 4001) K]d J K

120 17 (0 4001) J K
2 K

1(20 17) (373 298) (0 4001) (373 298 ) J 11 6 10 J
2

q C T T T

TT

H

+ −

+

−

= = . + . /

  
= . + . ×  

  

 = . × − + . × − = . × = ∆  

∫ ∫

 

 ( ) ( ) ( )1 11.00 mol 8.3145 J K  mol 75 K 623 Jw p V nR T − −= − ∆ = − ∆ = − × × = −  
 ( )11.6 0.623  kJ 11.0 kJU q w∆ = + = − =  

(ii) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, 
11.6kJH∆ =  and 11.0 kJU∆ = , as above. At constant volume, w = 0 and  ∆U = q , so 

11.0 kJq = + . 

 
2B.3(b) ,m[2B.2, 2B.7]p p pH q C T nC T∆ = = ∆ = ∆  

  
  
∆H = qp = (2.0 mol) × (37.11J K−1 mol−1) × (277 − 250) K = 2.0 ×103 J mol−1  

   ∆H = ∆U + ∆( pV ) = ∆U + nR∆T so ∆U = ∆H − nR∆T  

 
  

∆U = 2.0 ×103 J mol−1 − (2.0 mol) × (8.3145J K−1 mol−1) × (277 − 250) K

= 1.6 ×103 J mol−1
 

 
 

Solutions to problems 
 
 
2B.2   In order to explore which of the two proposed equations best fit the data we have used PSI-
 PLOT®. The parameters obtained with the fitting process to eqn. 2B.8 along with their standard 
 deviations are given in the following table. 

  

parameters a b/10-3 K-1 c/105 K2 

values 28.796 27.89 -1.490 

std dev of  parameter 0.820 0.91 0.6480 

 

 The correlation coefficient is 0.99947. The parameters and their standard deviations obtained with  the  
 fitting process to the suggested alternate equation are as follows: 

  

parameters α β/10-3 K-1 γ/10-6 K-2 

values 24.636 38.18 -6.495 

std dev of  parameter 0.437 1.45 1.106 
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The correlation coefficient is 0.99986. It appears that the alternate form for the heat capacity equation 
fits the data slightly better, but there is very little difference. 

 

2B.4 
 
CV =

V

∂U
∂T







 

 
T

∂CV

∂V






=

T

∂
∂V V

∂U
∂T

















=
V

∂
∂T T

∂U
∂V

















[Derivatives may be taken in any order.] 

  T

∂U
∂V







= 0  for a perfect gas [Section 2D.2(a)] 

Hence, 

  T

∂CV

∂V






= 0  

Likewise 
 
Cp =

p

∂H
∂T







 so 

 
T

∂Cp

∂p








 =

T

∂
∂p p

∂H
∂T

















=
p

∂
∂T T

∂H
∂p

















 

  

∂ H
∂p






 T

= 0  for a perfect gas. 

Hence, 
  

∂Cp

∂p











T

= 0.  

 

2C  Thermochemistry 
 

Answers to discussion questions 
 
2C.2 The standard state of a substance is the pure substance at a pressure of 1 bar and a specified 

temperature. The term reference state generally refers to elements and is the thermodynamically most 
stable state of the element at the temperature of interest. The distinction between standard state and 
reference state for elements may seem slight but becomes clear for those elements that can exist in 
more than one form at a specified temperature. So an element can have more than one standard state, 
one for each form that exists at the specified temperature. 

 
 

Solutions to exercises 
 
2C.1(b) At constant pressure 

   O 1
vap (1.75 mol) (43.5 kJ mol ) 76.1 kJq H n H −= ∆ = ∆ = × =  

 and 1 1
vaporV (1.75 mol) (8.3145 J K  mol ) (260 K)w p pV nRT − −= − ∆ ≈ − = − = − × ×  

  33.78 10  J 3.78 kJw = − × = −  

  3.78 76.1 72.3 kJU w q∆ = + = − + =  
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Comment. Because the vapor is treated as a perfect gas, the specific value of the external 
pressure provided in the statement of the exercise does not affect the numerical value of the 
answer. 

 
2C.2(b) The reaction is 

    C6H5OH(l) + 7 O2 (g)→  6 CO2 (g) + 3 H2O(l)  

 
O O O O O

c f 2 f 2 f 6 5 f 2

1 1

6 (CO ) 3 (H O) (C H OH) 7 (O )

[6( 393.51) 3( 285.83) ( 165.0) 7(0)] kJ mol 3053.6 kJ mol

H H H H H
− −

∆ = ∆ + ∆ −∆ − ∆

= − + − − − − = −
 

 
2C.3(b) We need   ∆ f H O  for the reaction 

 (4)  2B(s) + 3H2 (g)→ B2H6 (g)  

  reaction(4) = reaction(2) + 3 × reaction(3) – reaction(1) 

Thus,   ∆ f H O = ∆ r H
O {reaction(2)}+ 3× ∆ r H

O {reaction(3)}− ∆ r H
O {reaction(1)} 

 1 1[ 1274 3 ( 241.8) ( 2036)] kJ mol +36.6 kJ mol− −= − + × − − − =  

 
2C.4(b) Because O

f ( , aq) 0H H +∆ = the whole of O
f H∆ (HI,aq) is ascribed to O

f (I , aq)H −∆ . Therefore, 

   O 1
f (I , aq) 55 kJ/molH − −∆ = −  

 
 
2C.5(b) For anthracene the reaction is 

 
 
C14H10 (s) + 33

2
O2 (g)→ 14CO2 (g) + 5H2O(l)  

 O O
c c g g

5[2B.4],  mol
2

U H n RT n∆ = ∆ −∆ ∆ = −  

 

  

∆cU
O = −7061 kJ mol−1 − −

5
2
× 8.3×10−3kJ K−1  mol−1 × 298 K







= −7055 kJ mol−1

 

 ( )
3

O 1
c 1

225 10 g 7055 kJ mol
178.23 g mol

8.91 kJ

Vq q n U
−

−
−

 ×
= = ∆ = × 

 
=

 

 18.91 kJ 6.60 kJ K
1.35 K

q
C

T
−= = =

∆
 

When phenol is used the reaction is 
 
C6H5OH(s) + 15

2
O2 (g)→ 6CO2 (g) + 3H2O(l)  

  O 1
c 3054kJ mol [Table 2C.1]H −∆ = −  

 

  

∆cU = ∆c H − ∆ng RT , ∆ng = −
3
2

= (−3054 kJ mol−1) + ( 3
2 ) × (8.314 ×10−3 kJ K−1 mol−1) × (298 K)

= −3050 kJ mol−1

 

 ( )
3

1
1

135 10  g 3050 kJ mol 4.375 kJ
94.12 g mol

q
−

−
−

 ×
= × = 
 
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 1

4.375 kJ 0.663 K
6.60 kJ K

q
T

C −∆ = = = +  

 
2C.6(b) (a) reaction(3) = (–2) × reaction(1) + reaction(2) and

  
∆ng = −1 

The enthalpies of reactions are combined in the same manner as the equations (Hess’s law). 

  

  

∆ r H
O (3) = (−2) × ∆ r H

O (1) + ∆ r H
O (2)

= [(−2) × (52.96) + (−483.64)]kJ mol−1

= −589.56 kJ mol−1

 

 

  

∆ rU
O = ∆ r H

O − ∆ng RT

= −589.56 kJ mol−1 − (−3) × (8.314 J K−1  mol−1) × (298 K)

= −589.56 kJ mol−1 + 7.43 kJ mol−1 = −582.13 kJ mol−1

 

(b)   ∆ f H O  refers to the formation of one mole of the compound, so  

 ( )O 1 1
f

1(HI) 52.96 kJ mol 26.48 kJ mol
2

H − −∆ = =  

  ( )O 1 1
f 2

1(H O) 483.64 kJ mol 241.82 kJ mol
2

H − −∆ = − = −  

 
2C.7(b)   O O

r r  [2B.4]gH U RT n∆ = ∆ + ∆  

 

= −772.7 kJ mol−1 + (5) × (8.3145×10−3  kJ K−1  mol−1) × (298 K)

= −760.3 kJ mol−1
 

 
2C.8(b)The hydrogenation reaction is  

  (1)C2H2 (g) + H2 (g)→ C2H4 (g) ∆ r H
O (T ) = ?  

The reactions and accompanying data which are to be combined in order to yield reaction (1) and 

  ∆ r H
O (T )  are 

 
  
(2) H2 (g) + 1

2
O2 (g)→ H2O(l) ∆c H O (2) = −285.83kJ mol−1  

   (3) C2H4 (g) + 3O2 (g)→ 2H2O(l) + 2CO2 (g) ∆c H O (3) = −1411kJ mol−1  

 
  
(4) C2H2 (g) + 5

2
O2 (g)→ H2O(l) + 2CO2 (g) ∆c H O (4) = −1300 kJ mol−1  

  reaction (1) = reaction (2) − reaction (3) + reaction (4)  

Hence, at 298 K: 

(i) 
  

∆ r H
O = ∆c H O (2) − ∆c H O (3) + ∆c H O (4)

= [(−285.83) − (−1411) + (−1300)]kJ mol−1 = −175kJ mol−1
  

 
O O

r r g g

1 1 1

[2B.4]; 1

175kJ mol ( 1) (2 48kJ mol ) 173kJ mol

U H n RT n
− − −

∆ = ∆ − ∆ ∆ = −

= − − − × . = −
 

(ii) At 427 K: 

 O O O
r r r(427 K) (298K) (427 K 298K)pH H C∆ = ∆ + ∆ −  [Example 2C.2] 
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O O O O

r J ,m ,m 2 4 ,m 2 2 ,m 2
J

3 1 1 3 1 1

(J)[2C.7c] (C H g) (C H g) (H g)

(43 56 43 93 28 82) 10 kJ K mol 29 19 10 kJ K mol

p p p p pC C C C Cν

− − − − − −

∆ = = , − , − ,

= . − . − . × = − . ×

∑
 

   
O 1 3 1 1

r

1

(427 K) ( 175kJ mol ) (29 19 10 kJ K mol ) (129K)

171 kJ mol

H − − − −

−

∆ = − − . × ×

= −
 

 
  
2C.9(b) For the reaction 8 2 2 210C H (l) + 12O (g) 10CO (g) + 4H O(g)→   

  O O O O
r f 2 f 2 f 81010 (CO ,g) + 4 (H O,g) (C H , l)H H H H∆ = ∆ ×∆ − ∆×  

 In order to calculate the enthalpy of reaction at 478 K we first calculate its value at 298 K using data in 
Tables 2C.1 and 2C.2. Note at 298 K naphthalene is a solid. It melts at 80.2 °C = 353.4 K. 

 O 1 1 1

r

1 ) 4(298 K) 10 393.51 kJ mol ( 241.82 kJ mol ) (78.53 kJ mol ) 4980.91 kJ mol(H − − −− +∆ = − × − − = −×  

 Then, using data on the heat capacities and transition enthalpies of all the reacting substances, we can 
calculate the change in enthalpy, ΔH, of each substance as the temperature increases from 298 K to 478 K. 
The enthalpy of reaction at 478 K can be obtained by adding all these enthalpy changes to the enthalpy of 
reaction at 298 K. This process is shown below: 

 O O

r r 2 2 8 210(478 K) (298 K) 10 (CO , g) 4 (H O, g) (C H ) 12 (O , g)H H H H H H∆ = ∆ + ∆ + × ∆ − ∆ − × ∆×  

 For H2O(g), CO2(g), and O2(g) we have 

   
O478K

O O
f f ,m

298K
(478 K) (298 K) dpH H C T∆ = ∆ + ∫  

 For naphthalene we have to take into account the change in state from solid to liquid at 80.2 °C = 353.4 K. 
Then 

  
O O353.4K 478K

O O
f f ,m trs ,m

298K 353.4K
(478 K) (298 K) d  + dp pH H C T H C T∆ = ∆ + ∆ +∫ ∫   

 We will express the temperature dependence of the heat capacities in the form of the equation given in 
Problem 2C.7 because data for the heat capacities of the substances involved in this reaction are only 
available in that form. They are not available for all the substances in the form of the equation of Table 
2B.1. We use 

   
O

,m
2

pC T Tα β γ= + +    

 For H2O(g), CO2(g), and O2(g), α, β, and γ values are given in Problem 2C.7. For naphthalene, solid and 
liquid, γ is zero and the two forms of the heat capacity equation are then identical and we take α = a and β 
= b from Table 2B.1.  

   O 1
fus 10 8(C H ) 19.01 kJ molH −∆ =        

 Using the data given in Problem 2C.7 we calculate 

 1 1 1   (CO ,g) 5.299 kJ mol ,  (H O, g) 6.168 kJ mol ,  and (O ,g) 5.4302 2 2 kJ molH H H− − −∆ = ∆ = ∆ =  

 Using the data from Table 2C.1 we calculate for naphthalene 
  1

10 8(C H ) 55.36 kJ molH −∆ =  

 Collecting all these enthalpy changes we have 

 O O 1 1(478 K) (298 K) (10 5.299 4 6.168 55.36 12 5.430)kJ mol 5023.77 kJ mol
r r
H H − −∆ = ∆ + × + × − − × = −  

 
2C.10(b) The cycle is shown in Fig. 2C.1. 
  

 
Figure 2C.1 
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O 2 O O O
hyd soln 2 f 2 sub

O O O
vap 2 diss 2 ion

O O O
ion eg hyd

(Ca ) (CaBr ) (CaBr s) (Ca)

(Br ) (Br ) (Ca)

(Ca ) 2 (Br) 2 (Br )

[ ( 103 1) ( 682 8) 178 2 30 91 192 9
589 7 1145 2( 331 0) 2( 289)]kJ mol

H H H H

H H H

H H H

+

+ −

−

−∆ = −∆ −∆ , + ∆

+ ∆ + ∆ + ∆

+ ∆ + ∆ + ∆

= − − . − − . + . + . + .

+ . + + − . + − 1

11684kJ mol−=

 

so O 2 1
hyd (Ca ) 1684kJ molH + −∆ = −  

 
 

Solutions to problems 
 
2C.2 

  
Cr(C6H6 )2 (s)→ Cr(s) + 2C6H6 (g) ∆ng = +2 mol  

O O
r r

1 1 1 1

2  from[2B.4]

(8 0kJ mol ) (2) (8 314J K mol ) (583K) 17 7 kJ mol

H U RT
− − − −

∆ = ∆ + ,

= . + × . × = + .
  

In terms of enthalpies of formation  

  ∆ r H
O = (2) × ∆ f H O (benzene,583K) − ∆ f H O (metallocene,583K)   

or   ∆ r H
O (metallocene,583K) = 2∆ f H O (benzene,583K) −17.7 kJ mol−1  

The enthalpy of formation of benzene gas at 583 K is related to its value at 298 K by  

  

∆ f H O (benzene,583K) = ∆ f H O (benzene,298 K)

+(Tb − 298 K)Cp,m (l) + ∆vap H O + (583K − Tb )Cp,m (g)

−6 × (583K − 298 K)Cp,m (gr) − 3× (583K − 298 K)Cp,m (H2 ,g)

 

where Tb is the boiling temperature of benzene (353 K). We shall assume that the heat capacities of 
graphite and hydrogen are approximately constant in the range of interest and use their values from 
Tables 2B.1 and 2B.2. 
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∆ f H O (benzene,583K) = (49.0 kJ mol−1) + (353− 298) K × (136.1J K−1 mol−1)

+ (30.8kJ mol−1) + (583− 353) K × (81.67 J K−1 mol−1)
− (6) × (583− 298) K × (8.53J K−1 mol−1)
− (3) × (583− 298) K × (28.82 J K−1 mol−1)

= {(49.0) + (7.49) + (18.78) + (30.8) − (14.59) − (24.64)}kJ mol−1

= +66.8kJ mol−1

 

Therefore,  
  
∆ f H O (metallocene,583K) = (2 × 66.8 −17.7) kJ mol−1 = +116.0 kJ mol−1  

 
2C.4 The reaction is 

   C60 (s) + 60O2 (g)→ 60CO2 (g)  

 Because the reaction does not change the number of moles of gas,   ∆ r H = ∆ rU  [2B.4].  Therefore

 O 1 1 1
c ( 36.0334 kJ g ) (60 12.011 g mol ) 25968 kJ molH − − −∆ = − × × = −  

Now relate the enthalpy of combustion to enthalpies of formation and solve for that of C60. 

   ∆c H O = 60∆ f H O (CO2 ) − 60∆ f H O (O2 ) − ∆ f H O (C60 )  

 
  

∆ f H O (C60 ) = 60∆ f H O (CO2 ) − 60∆ f H O (O2 ) − ∆c H O

= [60(−393.51) − 60(0) − (−25968)] kJ mol−1 = 2357 kJ mol−1
 

 
 

2C.6 (a) 
  

∆ r H
O = ∆ f H O (SiH2 ) + ∆ f H O (H2 ) − ∆ f H O (SiH4 )

= (274 + 0 − 34.3) kJ mol−1 = 240 kJ mol−1
 

 (b) 
  

∆ r H
O = ∆ f H O (SiH2 ) + ∆ f H O (SiH4 ) − ∆ f H O (Si2H6 )

= (274 + 34.3− 80.3) kJ mol−1 = 228 kJ mol−1
 

 
 
2C.8  In order to calculate the enthalpy of the protein’s unfolding we need to determine the area under the 

plot of  Cp,ex against T, from the baseline value of Cp,ex at T1, the start of the process, to the baseline 
value of Cp,ex at T2, the end of the process. We are provided with an illustration that shows the plot, but 
no numerical values are provided. Approximate numerical values can be extracted from the plot and 

then the value of the integral 
2

1
,exd  

T

pT
H C T∆ = ∫ can be obtained by numerical evaluation of the area 

under the curve. The first two columns in the table below show the data estimated from the curve, the 
last column gives the approximate area under the curve from the beginning of the process to the end. 
The final value, 1889 kJ mol-1, is the enthalpy of unfolding of the protein. The four significant figures 
shown are not really justified because of the imprecise estimation process involved. 
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θ /˚C C p, ex/kJ K-1 mol-1 ΔH /kJ mol-1

30 20 0
40 23 215
50 26 460
54 28 567
56 33 626
57 40 663
58 46 706
59 52 755
60 58 810
61 63 870
62 70 937
63 80 1011
64 89 1096

64.5 90 1141
65 85 1185
66 80 1267
67 68 1342
68 60 1405
69 52 1461
70 47 1511
72 41 1598
74 37 1676
80 36 1889  

 
 
2C.10 (a)   qV = −n∆cU

O ; hence 

 (ii) 
  
∆cU

O =
−qV

n
=
−C∆T

n
=
−MC∆T

m
 where m is sample mass and M molar mass 

 so 
-1 1

O 1
c

(180 16g mol ) (641J K ) (7 793K) 2802 kJ mol
0 3212g

U
−

−. × × .
∆ = − = −

.
 

 (i) The complete aerobic oxidation is 

   C6H12O6 (s) + 6O2 (g)→ 6CO2 (g) + 6H2O(l)  

 Since there is no change in the number of moles of gas,   ∆ r H = ∆ rU  [2.21] and 

    ∆c H O = ∆cU
O = −2802 kJ mol−1  

 (iii)   ∆c H O = 6∆ f H O (CO2 ,g) + 6∆ f H O (H2O,l) − ∆ f H O (C6H12O6 ,s) − 6∆ f H O (O2 ,g)  

 so   ∆ f H O (C6H12O6 ,s) = 6∆ f H O (CO2 ,g) + 6∆ f H O (H2O,l) − 6∆ f H O (O2 ,g) − ∆c H O  

  
  

∆ f H O (C6H12O6 ,s) = [6(−393.51) + 6(−285.83) − 6(0) − (−2802)] kJ mol−1

= −1274 kJ mol−1
 

 (b) The anaerobic glycolysis to lactic acid is 

   C6H12O6 → 2CH3CH(OH)COOH  

 
  

∆ r H
O = 2∆ f H O (lactic acid) − ∆ f H O (glucose)

={(2) × (−694.0) − (−1274)} kJ mol-1 = −114 kJ mol−1
 

 Therefore, aerobic oxidation is more exothermic by  2688  kJ mol–1 than glycolysis. 
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2D  State functions and exact differentials 
 

Answers to discussion questions 
 
2D.2 An inversion temperature is the temperature at which the Joule-Thomson coefficient, µ, changes sign from 

negative to positive or vice-versa. For a perfect gas µ is always zero, thus it cannot have an inversion 
temperature. As explained in detail in Section 2D.3, the existence of the Joule-Thomson effect depends 
upon intermolecular attractions and repulsions. A perfect gas has by definition no intermolecular 
attractions and repulsions, so it cannot exhibit the Joule-Thomson effect. 

 
  

Solutions to exercises 
 
 
2D.1(b) Also see exercises E2D.1(a) and E2D.2(a) and their solutions. The internal pressure of a van der  

   Waals gas is 2
m/ .T a Vπ =  The molar volume can be estimated from the perfect gas equation: 

   
3 1 1

3 1
m

0.08206 dm  atm K  mol 298 K 24.76 dm  mol
1.000 atm1.00 bar 
1.013 bar

RTV
p

− −
−×

= = =
 × 
 

 

   
6 2

2
2 3 1 2

m

6.775 atm dm  mol 1.11 10  atm 11.2 mbar
(24.76 dm  mol )T

a
V

π
−

−
−= = = × =  

 
2D.2(b) The internal energy is a function of temperature and volume, Um = Um(T,Vm), so 

  

  

dUm =
∂Um

∂T





Vm

dT +
T

∂Um

∂Vm







dVm [πT = (∂Um / ∂V )T ]  

For an isothermal expansion dT = 0; hence 

 
  
dUm =

T

∂Um

∂Vm







dVm = πT dVm =

a
Vm

2 dVm  

  

3 1 3 1m,2 m,2

3 1 3 1m,1 m,2

30.00dm mol
m

m m m2 21 00dm molm m

3
1 1 1

30.00dm mol

1.00 dm molm

3 3 3

d
d d

29.00 0 9667 dm mol
30.00dm mol 1 00dm mol 30.00dm mol

V

V V

V

Va aU U V
VV V

a a a a

a
− −

− −.

−
− − −

∆

= − + = .
.

= = = = −

=

∫ ∫ ∫
 

 
From Table 1C.3, a = 1.337 dm6 atm mol–1 

 

3 6 2
m

3
1 5 1

3 3

3 1 1

3

(0 9667 moldm ) (1 337atm dm mol )

1m(1 2924atm mol ) (1 01325 10 Pa atm )
10 dm

131.0Pa m mol 131.0 J mol

dm

U −

− −

− −

∆ = . .

 
= . × . × × 

 

= =

×

 

 
  
w = − p dVm∫  where 

  
p =

RT
Vm − b

−
a

Vm
2  for a van der Waals gas.  Hence, 

 
  
w = −

RT
Vm − b






dVm +

a
Vm

2 dVm∫∫ = −q + ∆Um  

Thus 
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3 13 1

3 13 1

30.00dm mol30.00dm mol

m m 1.00dm mol1.00dm mol
m

2
1 1 1

2

d ln( )

30.00 3 20 10(8 314J K mol ) (298K) ln 8.505kJ mol
1 00 3 20 10

RTq V RT V b
V b

−−

−−

− 
 − − −
 

−  
 

 
= = − | − 

− . ×
= . × × = +

. − . ×

∫
 

and 1 1 1 1
m (8505J mol ) (131J mol ) 8374 J mol 8.37 kJ molw q U − − − −= − + ∆ = − + = − = −  

 
2D.3(b) The expansion coefficient is 

 

  

α =
1
V

∂V
∂T





 p

=
′V (3.7 ×10−4 K−1 + 2 ×1.52 ×10−6 T K−2 )

V

=
′V [3.7 ×10−4 + 2 ×1.52 ×10−6 (T / K)]K−1

′V [0.77 + 3.7 ×10−4 (T / K) +1.52 ×10−6 (T / K)2 ]

=
[3.7 ×10−4 + 2 ×1.52 ×10−6 (310)]K−1

0.77 + 3.7 ×10−4 (310) +1.52 ×10−6 (310)2 = 1.27 ×10−3 K−1

 

 
2D.4(b) Isothermal compressibility is 

  
  
κT = −

1
V

∂V
∂p





 T

≈ −
∆V

V∆p
 so 

 
∆p = −

∆V
VκT

 

A density increase of 0.10 per cent means 0 0010V V∆ / = − . . So the additional pressure that must 
be applied is 

  2
6 1

0 0010 4.5 10 atm
2 21 10 atm

p − −

.
∆ = = ×

. ×
 

 
2D.5(b) The isothermal Joule-Thomson coefficient is 

  1 1 1 1 1m
,m (1 11K atm ) (37 11J K mol ) 41.2 J atm molp

T

H C
p

µ − − − − −∂  = − = − . × . = − ∂ 
 

If this coefficient is constant in an isothermal Joule-Thomson experiment, then the heat which 
must be supplied to maintain constant temperature is  ∆H  in the following relationship 

  
1 1 1 1

1 1 3

41 2J atm mol so (41 2J atm mol )

(41 2J atm mol ) (10 0mol) ( 75atm) 30.9 10 J

H n H n p
p

H

− − − −

− −

∆ /
= − . ∆ = − . ∆

∆

∆ = − . × . × − = ×

 

 
 

Solutions to problems 
 

2D.2  
  
cs =

γ RT
M







1 2

, γ =
Cp,m

CV ,m

, Cp,m = CV ,m + R  

(a) 
  
CV ,m = 1

2 R(3+νR
∗ + 2νV

∗ ) = 1
2 R(3+ 2) = 5

2 R  

 
  
Cp,m = 5

2 R + R = 7
2 R  

 
  
γ =

7
5
= 1.40; hence cs =

1.40RT
M







1 2

 

(b) 
  
CV ,m =

1
2

R(3+ 2) = 5
2

R, γ = 1.40, cs =
1.40RT

M






1 2
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(c) 
  
CV ,m = 1

2 R(3+ 3) = 3R  

 
  
Cp,m = 3R + R = 4R, γ =

4
3
, cs =

4RT
3M







1 2

 

For air,   M ≈ 29 g mol−1, T ≈ 298 K, γ = 1.40  

  
1 21

1
s 3 1

(1 40) (2 48kJ mol ) 350ms
29 10 kg mol

c
−

−
− −

 . × .
= = × 

 

 
 

2D.4 (a) V = V(p,T); hence, 

  

dV =
T

∂V
∂p







dp +
p

∂V
∂T







dT  

 Likewise p = p(V,T), so 

  

dp =
∂p
∂V






 T

dV +
∂p
∂T






V

dT  

(b) We use 
  
α =

1
V




 p

∂V
∂T







 [2D.6] and 
  
κT = −

1
V




 T

∂V
∂p







 [2D.7] and obtain 

 
  
d lnV =

1
V

dV =
1
V




 T

∂V
∂p







dp + 1
V




 p

∂V
∂T







dT = −κT dp +α dT . 

Likewise 
  
d ln p =

dp
p
=

1
p

∂p
∂V






 T

dV +
1
p

∂p
∂T






V

dT  

We express 
 

∂p
∂V






 T

 in terms of κT: 

 
  
κT = −

1
V

∂V
∂p






 T

= − V ∂p
∂V






 T













−1

so ∂p
∂V






 T

= −
1

κTV
 

We express 
 

∂p
∂T





V

 in terms of κT and α 

 
( )

1 so
( ) T

p

V p V TT

V Tp T V p
T V p T V p

α
κ

∂ / ∂      ∂ ∂ ∂ ∂
= − = − =       ∂ ∂ ∂ ∂ ∂ / ∂      

 

so d  d 1 dd ln d
T T T

V T Vp T
p V p p V

α α
κ κ κ

 
= − + = − 

 
 

 
 
 
2D.6 ( ) ( )

1 1
p

p

V
V T TV V

α ∂= =
∂ ∂

∂

 [reciprocal identity, Mathematical Background 2] 

 
( ) 3

2

3 2

11 [Problem 2D.5]
2 ( )

( ) ( )
( ) (2 ) ( )

V naT V nbV nb RV

RV V nb
RTV na V nb

α = ×
 − × − −  

× −
=

− × −
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κT = − 1
V T

∂V
∂p







= −1

V
T

∂p
∂V







 [reciprocal identity] 

2

2 3

2 2

3 2 2

1 1 [Problem 2D.5]
2

( )

( )
2 ( )

T V nRT n a
V nb V

V V nb
nRTV n a V nb

κ = − ×
   − +   −   

−
=

− −

 

Then 
 

κT

α
=

V − nb
nR

, implying that κTR = α(Vm – b) 

Alternatively, from the definitions of α and κT above 

( ) ( )
1 [reciprocal identity]

[Euler chain relation]

[Problem 2D.5],

T T

p pT

V

V
p

V p V
T V T

T
p

V nb
nR

κ
α

 ∂− ∂ − = =
∂ ∂  ∂

 ∂ ∂ ∂ 

 ∂
=  ∂ 

−
=

 

  
κT R =

α(V − nb)
n

 

Hence, κTR = α(Vm – b) 
 
 

2D.8 
  
µ =

H

∂T
∂p







= − 1
Cp T

∂H
∂p







 [Justification 2D.2] 

  
µ =

1
Cp

T
p

∂V
∂T







−V











 [See the section below for a derivation of this result] 

But 
 
V = nRT

p + nb  or ( )
p

nRV pT
∂ =∂  

Therefore, 

  
µ =

1
Cp

nRT
p

−V







=

1
Cp

nRT
p

−
nRT

p
− nb








=
−nb
Cp

 

Since b > 0 and Cp > 0, we conclude that for this gas µ < 0 or 
  H

∂T
∂p







< 0 . This says that when the 

pressure drops during a Joule–Thomson expansion the temperature must increase. 
 

 Derivation of expression for 
T

H
p

 ∂
 ∂ 

follows: 
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[change of variable]

( ) [definition of ]

( )

( ) equation f

TT T

T T

T TT T

V T T

H H V
p V p

U pV V H
V p

U V pV V
V p V p

p V pVT p
T p p

   ∂ ∂ ∂ =     ∂ ∂ ∂    

 ∂ + ∂ =    ∂ ∂   

   ∂ ∂ ∂ ∂   = +      ∂ ∂ ∂ ∂      

    ∂ ∂ ∂ = − +      ∂ ∂ ∂      

( )
( )  

or

[chain relation]

[reciprocal identity]

T

V T T T

V T
p

p

U
V

p V V VT p V p
T p p p

p V TT V V
TT p
V

VT V
T

 ∂ 
  ∂  

     ∂ ∂ ∂ ∂ = − + +       ∂ ∂ ∂ ∂       

 ∂ ∂ − = + = +    ∂∂ ∂   
∂

∂= − +
∂

 

 
 
2D.10 (a) The Joule–Thomson coefficient is related to the given data by 

 

  

µ = −(1 /Cp )(∂H / ∂p)T = −(−3.29 ×103 J mol−1 MPa−1) / (110.0 J K−1 mol−1)

= 29.9 K MPa−1
 

(b) The Joule–Thomson coefficient is defined as 
    µ = (∂T / ∂p)H ≈ (∆T / ∆p)H  

 Assuming that the expansion is a Joule–Thomson constant-enthalpy process, we have  

 
  
∆T = µ∆p = (29.9 K MPa−1) × [(0.5−1.5) ×10−1 MPa] = −2.99 K  

 
 

2E   Adiabatic changes 
 

Answers to discussion questions 
 
2E.2 See Figure 2E.2 of the text and the Interactivity associated with that figure. For an adiabatic change,

exd d d d dT VU V C T w p Vπ= + = = − [2A.6, 2D.5]. Thus we see that the heat capacity enters into the 
calculation of the change in energy of the system that occurs during an adiabatic expansion. For a perfect 

gas Eqn 2E.3 of the text can be written as i
f i

f

Vp p
V

γ
 

=  
 

 with p

V

C
C

γ = . Again the heat capacity plays a 

role. 
 

Solutions to exercises 
 

2E.1(b) The equipartition theorem would predict a contribution to molar heat capacity of   
1
2 R  for every 

translational and rotational degree of freedom and R for each vibrational mode. For an ideal gas, Cp,m 
= R + CV,m. So for CO2 
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With vibrations  ( ) ( )1 1
,m 2 2

7.5/ 3 2 (3 4 5) 6.5 and 1.15
6.5VC R γ= + + × − = = =  

Without vibrations ( ) ( )1 1
,m 2 2

3.5/ 3 2 2.5 and 1.40
2.5VC R γ= + = = =  

Experimental 
1 1

1 1

37.11 J mol K 1.29
(37.11 8.3145) J mol K

γ
− −

− −= =
−

 

 
The experimental result is closer to that obtained by neglecting vibrations, but not so close that 
vibrations can be neglected entirely. 

 


34 10 1 1

R 23 1

(6 626 10 J s) (2 998 10 cms ) (0.39cm ) 0.56K 298 K
1 381 10 J K

hcB
k

θ
− − −

− −

. × × . × ×
= = = <<

. ×
 

 and therefore rotational contributions cannot be neglected. 
 
 
2E.2(b) For reversible adiabatic expansion 

 ( )i

f

1

f i [2E.2a]
cV

VT T
/

=  

where ( ) 1 1
,mm

1 1

37.11 8.3145 J K  mol
3.463

8.3145 J K  mol
pV C RC

c
R R

− −
,

− −

− −
= = = = ; 

therefore, the final temperature is 

  
Tf = (298.15K) ×

1/3.463
500 ×10−3 dm3

2.00dm3







= 200 K  

 
2E.3(b) In an adiabatic process, the initial and final pressures are related by (eqn. 2E.3) 

  pfVf
γ
 = piVi

γ where 
  
γ =

Cp,m

CV ,m

=
Cp,m

Cp,m − R
=

20.8 J K−1  mol−1

(20.8 − 8.31) J K−1  mol−1 = 1.67  

 Find Vi from the perfect gas law: 

  
-1 -1

3i
i 3

i

(2.5 mol) (8.31 J K  mol ) (325 K) 0.0281 m
240 10  Pa

nRTV
p

× ×
= = =

×  

 so 
1/ 1/1.67

3 3i
f i

f

240 kPa(0.0281 m ) 0.0372 m
150 kPa

pV V
p

γ
   = = × =   

  
 

 Find the final temperature from the perfect gas law: 

  
3 3

f f
f -1 -1

(150 10  Pa) (0.0372 m ) 269 K
(2.5 mol) (8.31 J K  mol )

p VT
nR

× ×
= = =

×
  

 Adiabatic work is (eqn. 2E.1) 

  1 1 3(20.8 8.31) J K  mol 2.5 mol (269 325) K 1.7 10  JVw C T − −= ∆ = − × × − = − ×  

 
 
2E.4(b) Reversible adiabatic work is 
 m f i [2E.1] ( ) ( )V pw C T n C R T T,= ∆ = − × −  

where the temperatures are related by  

 
  
Tf = Ti

1/c
Vi

Vf







 [2E.2a] where 

  
c =

CV ,m

R
=

Cp,m − R
R

= 2.503  
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So 
  
Tf = 23.0 + 273.15( )K  ×

400 ×10−3dm3

2.00 dm3








1 2.503

= 156 K  

 and 
  
w =

3.12 g
28.0 g mol−1







× 29.125− 8.3145( )J K−1  mol−1 × 156 − 296( )K= −325 J  

 
2E.5(b) For reversible adiabatic expansion 

   pfVf
γ = piVi

γ  [2E.3] so ( )
1.33 3

i
f i 3

f

400 10  dm97.3 Torr 3.6 Torr
5.0 dm

Vp p
V

γ −   ×
= = × =   

  
 

 

Integrated activities 
 
 
2.2 (a) and (b). The table below displays computed enthalpies of formation (semi-empirical, PM3 level, PC 

Spartan ProTM), enthalpies of combustion based on them (and on experimental enthalpies of formation 
of H2O(l) and CO2(g), –285.83 and –393.51 kJ mol–1 respectively), experimental enthalpies of 
combustion (Table 2.6), and the relative error in enthalpy of combustion. 

Compound 
  ∆ f H O / kJ mol−1    ∆c H O / kJ mol−1(calc.)    ∆c H O / kJ mol−1(expt.)  % 

error 

CH4(g) –54.45 –910.72 –890 2.33 

C2H6(g) –75.88 –1568.63 –1560 0.55 

C3H8(g) –98.84 –2225.01 –2220 0.23 

C4H10(g) –121.60 –2881.59 –2878 0.12 

C5H12(g) –142.11 –3540.42 –3537 0.10 

The combustion reactions can be expressed as:  

  
CnH2n+2 (g) + 3n +1

2






O2 (g)→ nCO2 (g) + (n +1) H2O(1).  

The enthalpy of combustion, in terms of enthalpies of reaction, is 

  ∆c H O = n∆ f H O (CO2 ) + (n+1)∆ f H O (H2O) − ∆ f H O (CnH2n+2 ),  

Where we have left out   ∆ f H O (O2 ) = 0. The  % error is defined as: 

% error 
  
=
∆c H O (calc) − ∆c H O (expt.)

∆c H O (expt.)
×100%  

The agreement is quite good. 
(c) If the enthalpy of combustion is related to the molar mass by  

  ∆c H O = k[M / (g mol−1)]n  

then one can take the natural log of both sides to obtain: 

  
ln ∆c H O = ln k + n ln M / (g mol−1).  

Thus, if one plots ln 
  
∆c H O  vs. ln [M / (g mol–1)], one ought to obtain a straight line with slope n and 

y-intercept ln |k|.  Draw up the following table:  
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Compound M/(g mol–1)   ∆c H / kJ mol−1  ln M/(g mol–1) 
  
ln ∆c H O / kJ mol−1   

CH4(g) 16.04 –910.72 2.775 6.814 

C2H6(g) 30.07 –1568.63 3.404 7.358 

C3H8(g) 44.10 –2225.01 3.786 7.708 

C4H10(g) 58.12 –2881.59 4.063 7.966 

C5H12(g) 72.15 –3540.42 4.279 8.172 

The plot is shown below in Fig I2.1. 
 

  Figure I2.1 

  
The linear least-squares fit equation is: 

  ln | ∆c H O / kJ mol−1 |= 4.30 + 0.903ln M / (g mol−1) R2 = 1.00  

These compounds support the proposed relationships, with 
 n = 0.903 and  k = –e4.30 kJ mol–1 = –73.7 kJ mol–1. 
The agreement of these theoretical values of  k  and  n  with the experimental values obtained in 
Problem 2C.3 is rather good. 

 
 

2:21 


	2  The First Law
	2A  Internal energy
	2B  Enthalpy
	2C  Thermochemistry
	2D  State functions and exact differentials
	2E   Adiabatic changes
	Integrated activities

